
A Proof of Main Lemmas and Theorems of Section 5.1

A.1 Proof of Lemma 1

Proof. 1. Proving Markovity requires that

P (Yτ+1|Yτ , Yτ−1, . . . , Y0) = P (Yτ+1|Yτ ). (7)

Let us denote On2
n1

, {On1
, . . . ,On2

}, In2
n1

, {In1
, . . . , In2

} and Jn2
n1

, {Jn1
, . . . , Jn2

}. Re-
call that Oτ = {sτ , aτ , rτ , sτ+1} and that the time index of entering a transition into RB(k)
is t(k, n) ∈ {0, . . . , τ − 1} for all k ∈ {1, . . . ,K} and for all n ∈ {1, . . . N}. Index n re-
lates the position in RB(k) in which the transition is placed at time τ . In addition, recall that
Ok,n = {sk,n, ak,n, rk,n, s′k,n} where s′k,n ∼ Pk(·|sk,n). LetRBτ (k) be RB(k) of MDPMk at time
τ , denoted as RBτ (k) , {Ok,1, . . . ,Ok,N}τ , Ok,Nk,1 (τ) .We denote the collection of all RBτ (k)

as
K⋃
k=1

RBτ (k) ,
K⋃
k=1

Ok,Nk,1 (τ).

Remark 1. Note that each time step that a transition enters some RB(·) is unique. That is, for a fixed
τ , t(k, n) 6= t(k′, n) for all n and for k 6= k′. Moreover, t(k, n) < t(k, n+ 1) for all k and all n. In
addition, note that when a new transition is pushed into the RB, the oldest transition in the RB is thrown
away, and all the transitions in the RB, move one index forward, that is Ok,n+1(τ + 1) = Ok,n(τ)
for n = 1, . . . N − 1 and Ok,1(τ + 1) = Oτ .

Computing the l.h.s. of (7) yields

P (Yτ+1|Yτ , Yτ−1, . . . , Y0)
1
= P

(
K⋃

k=1

RBτ+1(k), Iτ+1, Jτ+1

∣∣∣∣∣
K⋃

k=1

RBτ (k), Iτ , Jτ . . . ,

K⋃

k=1

RB0(k), I0, J0

)

2
= P

(
K⋃

k=1

Ok,Nk,1 (τ + 1), Iτ+1, Jτ+1

∣∣∣∣∣
K⋃

k=1

Ok,Nk,1 (τ), Iτ , Jτ . . . ,

K⋃

k=1

Ok,Nk,1 (0), I0, J0

)

3
= P

(
K⋃

k=1

Ok,Nk,1 (τ + 1), Iτ+1, Jτ+1

∣∣∣∣∣I
τ
0 , J

τ
0 ,

K⋃

k=1

Ok,Nk,1 (τ), . . . ,

K⋃

k=1

Ok,Nk,1 (0)

)

4
= P

(
K⋃

k=1

Ok,Nk,1 (τ + 1)

∣∣∣∣∣I
τ+1
0 , Jτ+1

0 ,

K⋃

k=1

Ok,Nk,1 (τ), . . . ,

K⋃

k=1

Ok,Nk,1 (0)

)

× P
(
Iτ+1

∣∣∣∣∣I
τ
0 , J

τ+1
0 ,

K⋃

k=1

Ok,Nk,1 (τ), . . . ,

K⋃

k=1

Ok,Nk,1 (0)

)

× P
(
Jτ+1

∣∣∣∣∣I
τ
0 , J

τ
0 ,

K⋃

k=1

Ok,Nk,1 (τ), . . . ,

K⋃

k=1

Ok,Nk,1 (0)

)

5
= P

(
K⋃

k=1

Ok,Nk,1 (τ + 1)

∣∣∣∣∣
K⋃

k=1

Ok,Nk,1 (τ), Iτ , Jτ

)
× P (Iτ+1)× P (Jτ+1),

where in equality (1) we use the definition, in equality (2) we wrote the RB samples explicitly, in
equality (3) the terms were rearranged, in equality (4) we expressed the probability as a conditional
product, and in equality (5) we use the fact that Iτ and Jτ are independent random variables and the
rule of pushing transition Oτ into RB(Iτ ):

Ot(k,N)
t(k,1) (τ + 1) =

{
Ot(k,N)
t(k,1) (τ) if k 6= Iτ

Ot(k,N−1)
t(k,1) (τ) ∪ Oτ if k = Iτ
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Similarly, computing the r.h.s of (7) yields

P (Yτ+1|Yτ ) = P

(
K⋃

k=1

RBτ+1(k), Iτ+1, Jτ+1

∣∣∣∣∣
K⋃

k=1

RBτ (k), Iτ , Jτ

)

= P

(
K⋃

k=1

RBτ+1(k)

∣∣∣∣∣
K⋃

k=1

RBτ (k), Iτ+1, Jτ+1, Iτ , Jτ

)

× P
(
Iτ+1

∣∣∣∣∣
K⋃

k=1

RBτ (k), Jτ+1, Iτ , Jτ

)
× P

(
Jτ+1

∣∣∣∣∣
K⋃

k=1

RBτ (k), Iτ , Jτ

)

= P

(
K⋃

k=1

RBτ+1(k)

∣∣∣∣∣
K⋃

k=1

RBτ (k), Iτ , Jτ

)
× P (Iτ+1)× P (Jτ+1)

= P

(
K⋃

k=1

Ok,Nk,1 (τ + 1)

∣∣∣∣∣
K⋃

k=1

Ok,Nk,1 (τ), Iτ , Jτ

)
× P (Iτ+1)× P (Jτ+1).

Both sides of (7) are equal and therefore Yτ is Markovian.

2. According to Assumption 3, we assume that for every environment k and for every policy π the
Markov Process induced by the MDP together with the policy π is irreducible and aperiodic. In
addition, we assume τ ≥ τ ′, where τ ′ is the time where we have full K RBs, each one with N
transitions. This means that when a new transition arrives to RB(k), it requires throwing away the
oldest transition in the buffer. We saw in part 1 that

P (Yτ+1|Yτ ) = P

(
K⋃

k=1

Ok,Nk,1 (τ + 1)

∣∣∣∣∣
K⋃

k=1

Ok,Nk,1 (τ), Iτ , Jτ

)
× P (Iτ+1)× P (Jτ+1). (8)

Let K = {1, . . .K} be an index set. We now write explicitly the following term

P

(
K⋃

k=1

Ok,Nk,1 (τ + 1)

∣∣∣∣∣
K⋃

k=1

Ok,Nk,1 (τ), Iτ , Jτ

)

= P


OIτ ,NIτ ,1

(τ + 1)

∣∣∣∣∣∣
⋃

k∈K\Iτ

Ok,Nk,1 (τ + 1),

K⋃

k=1

Ok,Nk,1 (τ), Iτ , Jτ




︸ ︷︷ ︸
(a)

×P


 ⋃

k∈K\Iτ

Ok,Nk,1 (τ + 1)

∣∣∣∣∣∣

K⋃

k=1

Ok,Nk,1 (τ), Iτ , Jτ


 ,

︸ ︷︷ ︸
(b)

(9)
where we expressed the probability as a conditional product, separating RB(Iτ ) at time τ + 1 from all
other RB’s. Note that in (b): Ok,Nk,1 (τ + 1) = Ok,Nk,1 (τ) for all k 6= Iτ since these RB’s do not change
in this time-step.

We continue with expression (a).

P


OIτ ,NIτ ,1

(τ + 1)

∣∣∣∣∣∣
⋃

k∈K\Iτ

Ok,Nk,1 (τ + 1),

K⋃

k=1

Ok,Nk,1 (τ), Iτ , Jτ




1
= P

(
OIτ ,NIτ ,1

(τ + 1)
∣∣∣OIτ ,NIτ ,1

(τ), Iτ , Jτ

)

2
= P (OIτ ,1(τ + 1)|OIτ ,1(τ), Iτ , Jτ )

3,(i=Iτ ,ti=tIτ )
= P (si,ti , ai,ti , ri,ti , si,ti+1|si,ti−1, ai,ti−1, ri,ti−1, si,ti , Iτ , Jτ )

4
= P (ai,ti , ri,ti , si,ti+1|si,ti , Iτ , Jτ )

5
= P (ri,ti , si,ti+1|si,ti , ai,ti , Iτ , Jτ )× P (ai,ti |si,ti , Iτ , Jτ )

6
= P (si,ti+1|si,ti , ai,ti , ri,ti , Iτ , Jτ )× P (ri,ti |si,ti , ai,ti)× πθ(Jτ )(ai,ti |si,ti)
7
= P

πθ(Jτ )

Iτ
(si,ti+1|si,ti)× P (ri,ti |si,ti , ai,ti)

(10)
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where in equality (1) we omitted all RBτ+1(k) and RBτ (k) for k 6= Iτ since they do not influence
RBτ+1(Iτ ) and for time τ we left only RBτ (Iτ ). For equality (2) we recall Remark 1: Ok,n+1(τ +
1) = Ok,n(τ) for n = 1, . . . N−1 andOk,1(τ+1) = Oτ . Therefore, the transitions which are equal
in both sides of the probability in equality (1), can be omitted. In equality (3) we write the transitions
explicitly and change the notation for easier readability, i = Iτ and ti = tIτ where ti is the last time-
step in MDPMi. In equality (4) we omit the condition of si,ti on itself and we keep the conditions only
on Iτ , Jτ and state si,ti since the process {si,ti}ti≥0 is Markovian. In equalities (5) and (6) we express
the probability as a conditional product. We denoted the policy πθ(Jτ ) to emphasis that the policy
depends on the observation sampled from RB(Jτ ). Observe that in our setup, both P (ri,ti |si,ti , ai,ti)
and πθ(Jτ )(ai,ti |si,ti) are independent of Iτ . Finally, in equality (7) we use the transitions in the
induced Markov processes {si,ti}ti≥0, PπθIτ (si,ti+1|si,ti) = PIτ (si,ti+1|si,ti , ai,ti)× πθ(ai,ti |si,ti)
(recall that we used i = Iτ ).

Recall that Iτ and Jτ are independent random variables and that P (Iτ+1 = k) = qk and P (Jτ+1 =
k) = βk. Combining (8), (9) and (10) yields

P (Yτ+1|Yτ ) = P
πθ(Jτ )

Iτ
(s′|s)× P (r|s, a)× qIτ+1 × βJτ+1 .

Using Assumption 3 and since the probability P (r|s, a) does not influence the policy and MDP
dynamics, the process Yτ is aperiodic and irreducible.

A.2 Proof of Theorem 2

Proof. Recall that our TD-error update in line 6 in Algorithm 1 is defined as δ(Õz) = r̃z − η +

φ(s̃′z)>v − φ(s̃z)>v, where Õz = {s̃z, ãz, r̃z, s̃′z}. In the critic update in line 8 in Algorithm 1 we
use an empirical mean over several sampled observations, denoted as {Õz}Nsamples

z=1 . Then, the critic
update is defined as

v′ = v + αv
1

Nsamples

∑

z

δ(Õz)φ(s̃z).

Consider Nsamples = 1. For a single sample update, we will use the following notations for the rest of
the proof: Õ = {s̃, ã, r̃, s̃′} and δ(Õ) = r̃ − η + φ(s̃′)>v − φ(s̃)>v.

In this proof we follow the proof of Lemma 5 in [6]. Observe that the average reward and critic
updates from Algorithm 1 can be written as

ητ+1 = ητ + αητ
(
F ητ +Mη

τ+1

)
(11)

vτ+1 = vτ + αvτ
(
F vτ +Mv

τ+1

)
, (12)

where
F ητ , Ek∼β,Õ∼RB(k),s̃,ã∈Õ [r̃ − η|Fτ ]

Mη
τ+1 , (r̃ − ητ )− F ητ
F vτ , Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δ(Õ)φ(s̃)

∣∣∣Fτ
]

Mv
τ+1 , δ(Õ)φ(s̃)− F vτ

and Fτ is a σ-algebra defined as Fτ , {ηt, vt,Mη
t ,M

v
t : t ≤ τ}.

We use Theorem 2.2 of [8] to prove convergence of these iterates. Briefly, this theorem states that
given an iteration as in (11) and (12), these iterations are bounded w.p.1 if

Assumption 8. 1. F ητ and F vτ are Lipschitz, the functions F∞(η) = limσ→∞ F η(ση)/σ and
F∞(v) = limσ→∞ F v(σv)/σ are Lipschitz, and F∞(η) and F∞(v) are asymptotically
stable in the origin.

2. The sequences Mη
τ+1 and Mv

τ+1 are martingale difference noises and for some Cη0 , Cv0

E
[
(Mη

τ+1)2
∣∣Fτ
]
≤ Cη0 (1 + ‖ητ‖2)

E
[
(Mv

τ+1)2
∣∣Fτ
]
≤ Cv0 (1 + ‖vτ‖2).
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We begin with the average reward update in (11). The ODE describing its asymptotic behavior
corresponds to

η̇ = Ek∼β,Õ∼RB(k),s̃,ã∈Õ [r̃ − η] , F η. (13)

F η is Lipschitz continuous in η. The function F∞(η) exists and satisfies F∞(η) = −η. The origin is
an asymptotically stable equilibrium for the ODE η̇ = F∞(η) and the related Lyapunov function is
given by η2/2.

For the critic update, consider the ODE

v̇ = Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δ(Õ)φ(s̃)

]
, F v

In Lemma 5 we show that this ODE can be written as

v̇ = Φ>AθΦv + Φ>bθ, (14)

where Aθ and bθ are defined in (6). F v is Lipschitz continuous in v and F∞(v) exists and satisfies
F∞(v) = Φ>AθΦv. Consider the system

v̇ = F∞(v) (15)

In assumption 5 we assume that Φv 6= e for every v ∈ Rd. Therefore, the only asymptotically stable
equilibrium for (15) is the origin (see the explanation in the proof of Lemma 5 in [6]). Therefore, for
all τ ≥ 0

E
[
(Mη

τ+1)2
∣∣Fτ
]
≤ Cη0 (1 + ‖ητ‖2 + ‖vτ‖2)

E
[
(Mv

τ+1)2
∣∣Fτ
]
≤ Cv0 (1 + ‖ητ‖2 + ‖vτ‖2)

for some Cη0 , C
v
0 < ∞. Mη

τ can be directly seen to be uniformly bounded almost surely. Thus,
Assumptions (A1) and (A2) of [8] are satisfied for the average reward, TD-error, and critic updates.
From Theorem 2.1 of [8], the average reward, TD-error, and critic iterates are uniformly bounded
with probability one. Note that when τ → ∞, (13) has η̄θ defined as in (3) as its unique globally
asymptotically stable equilibrium with V2(η) = (η − η̄θ)

2 serving as the associated Lyapunov
function.

Next, suppose that v = vπ is a solution to the system Φ>AθΦv = 0. Under Assumption 5, using
the same arguments as in the proof of Lemma 5 in [6], vπ is the unique globally asymptotically
stable equilibrium of the ODE (14). Assumption 8 is now verified and under Assumption 6, the claim
follows from Theorem 2.2, pp. 450 of [8].

A.2.1 Auxiliary Lemma for Theorem 2

The following Lemma computes the expectation of the critic update E
[
δ(Õ)φ(s̃)

]
.

Lemma 5. Assume we have full K RBs, each one with N transitions. Then the following holds

Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δ(Õ)φ(s̃)

]
= Φ>AθΦv + Φ>bθ,

where Aθ and bθ are defined in (6).
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Proof. We note that due to the probabilistic nature of Algorithm 1, we do not know explicitly when
each sample was pushed to any of the RBs. Next, we compute the expectation of the critic update
with linear function approximation according to Algorithm 1.

Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δ(Õ)φ(s̃)

]

= Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ
[(
r(s̃, ã)− η + φ(s̃′)>v − φ(s̃)>v

)
φ(s̃)

]

= Ek∼β
[
EÕ∼RB(k),s̃,ã,s̃′∈Õ

[(
r(s̃, ã)− η + φ(s̃′)>v − φ(s̃)>v

)
φ(s̃)

]]

=

K∑

k=1

βkEÕ∼RB(k),s̃,ã,s̃′∈Õ
[(
r(s̃, ã)− η + φ(s̃′)>v − φ(s̃)>v

)
φ(s̃)

]

=

K∑

k=1

βkEÕ∼RB(k)

[
Es̃,ã,s̃′∈Õk

[(
r(s̃, ã)− η + φ(s̃′)>v − φ(s̃)>v

)
φ(s̃)

]]

=

K∑

k=1

βk

N∑

n=1

1

N
Es̃,ã,s̃′∈Õk,n

[(
r(s̃, ã)− η + φ(s̃′)>v − φ(s̃)>v

)
φ(s̃)

]
.

(16)

We note that in the last expression, the inner expectation is according to a tuple of indices (k, n)
where k corresponds to RB(k) and n corresponds to the n-th transition in this RB(k). Also, this
sample (k, n) corresponds to some θt(k,n). Recall that the time t(k, n) is the time that the agent
interacted with the k-th MDP and since then n samples were added to RB(k) (and the n oldest
samples were removed). In other words, sample (k, n = 1) is the newest sample in RB(k) while
sample (k, n = N) is the oldest. Abusing notation, we define

t(k, n) = {t|For the time τ , the time t the n-th sample in RB(k) was pushed.} (17)

Next, we define the induced MC for the time t(k, n) with a corresponding parameter θt(k,n). For
this parameter, we denote the corresponding state distribution vector ρt(k,n) and a transition matrix
Pt(k,n) (both induced by the policy πθt(k,i) . In addition, we define the following diagonal matrix
St(k,n) , diag(ρt(k,n)). Similarly to [4] Lemma 6.5, pp.298, we can substitute the inner expectation

Es̃,ã,s̃′∈Õk,n
[(
r(s̃, ã)− η + φ(s̃′)>v − φ(s̃)>v

)
φ(s̃)

]
=

Φ>St(k,n)

(
Pt(k,n) − I

)
Φv + Φ>St(k,n)(rt(k,n) − ηθ,ke),

(18)

where I is the |S|× |S| identity matrix, e in |S|×1 vector of ones and rk,n is a |S|×1 vector defined
as rt(k,n)(s) =

∑
a πθt(k,n)

(a|s)r(s, a). Combining equations (5), (16) and (18) yields

K∑

k=1

N∑

n=1

βk
N

(
Φ>St(k,n)

(
Pt(k,n) − I

)
Φv + Φ>St(k,n)(rt(k,n) − ηθ,ke)

)
= Φ>AτΦv + Φ>bτ ,

(19)

In the limit, τ →∞ and ρt(k,n) → µθ,k for all index n. Using Aθ and bθ defined in (6), (16) can be
expressed as

Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δ(Õ)φ(s̃)

]
= Φ>AθΦv + Φ>bθ. (20)

A.3 Proof of Theorem 3

Proof. Recall that our TD-error update in line 6 in Algorithm 1 is defined as δ(Õz) = r̃z − η +

φ(s̃′z)>v − φ(s̃z)>v, where Õz = {s̃z, ãz, r̃z, s̃′z}. In the actor update in line 9 in Algorithm 1 we
use an empirical mean over several sampled observations, denoted as {Õz}Nsamples

z=1 . Then, the actor
update is defined as

θ′ = Γ

(
θ − αθ 1

Nsamples

∑

z

δ(Õz)∇ log πθ(ã
z|s̃z)

)
.
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Consider Nsamples = 1. For a single sample update, we will use the following notations for the rest of
the proof: Õ = {s̃, ã, r̃, s̃′} and δ(Õ) = r̃ − η + φ(s̃′)>v − φ(s̃)>v.

In this proof we follow the proof of Theorem 2 in [6]. Let δπ(Õ) = r̃ − η + φ(s̃′)>vπ − φ(s̃)>vπ,
where vπ is the convergent parameter of the critic recursion with probability one (see its definition in
the proof for Theorem 2). Observe that the actor parameter update from Algorithm 1 can be written
as

θτ+1 = Γ
(
θτ − αθτ

(
δ(Õ)∇θ log πθ(ã|s̃) + F θτ − F θτ +Nθτ

τ −Nθτ
τ

))

= Γ
(
θτ − αθτ

(
Mθ
τ+1 + (F θτ −Nθτ

τ ) +Nθτ
τ

))

where

F θτ , Ek∼β,Õ∼RB(k),ã,s̃,s̃′∈Õ

[
δ(Õ)∇θ log πθ(ã|s̃)

∣∣∣Fτ
]

Mθ
τ+1 , δ(Õ)∇θ log πθ(ã|s̃)− F θτ
Nθ
τ , Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δπθ (Õ)∇θ log πθ(ã|s̃)

∣∣∣Fτ
]

and Fτ is a σ-algebra defined as Fτ , {ηt, vt, θt,Mη
t ,M

v
t ,M

θ
t : t ≤ τ}.

Since the critic converges along the faster timescale, from Theorem 2 it follows that F θτ −Nθτ
τ = o(1).

Now, let

M2(τ) =

τ−1∑

r=0

αθrM
θ
r+1, τ ≥ 1.

The quantities δ(Õ) can be seen to be uniformly bounded since from the proof in Theorem 2, {ητ} and
{vτ} are bounded sequences. Therefore, using Assumption 6, {M2(τ)} is a convergent martingale
sequence [5].

Consider the actor update along the slower timescale corresponding to αθτ in line (9) in Al-
gorithm 1. Let v(·) be a vector field on a set Θ. Define another vector field: Γ̂

(
v(y)

)
=

lim0<η→0

(
Γ
(
y+ηv(y)

)
−y

η

)
. In case this limit is not unique, we let Γ̂

(
v(y)

)
be the set of all possible

limit points (see pp. 191 of [27]). Consider now the ODE

θ̇ = Γ̂
(
− Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δπθ (Õ)∇θ log πθ(ã|s̃)

] )
(21)

Substituting the result from Lemma 6, the above ODE is analogous to

θ̇ = Γ̂(−∇θη̄θ + ξπθ ) = Γ̂
(
−Nθ

τ

)
(22)

where ξπθ =
∑K
k=1 βk

∑
s̃ µθ,k(s̃)

(
φ(s̃)>∇θvπθ −∇θV̄ πθk (s̃)

)
. Consider also an associated ODE:

θ̇ = Γ̂
(
−∇θη̄θ

)
(23)

We now show that h1(θτ ) , −Nθτ
τ is Lipschitz continuous. Here vπθτ corresponds to the weight

vector to which the critic update converges along the faster timescale when the corresponding policy
is πθτ (see Theorem 2). Note that µθ,k(s), s ∈ S , k ∈ {1, . . . ,K} are continuously differentiable in
θ and have bounded derivatives. Also, η̄θτ is continuously differentiable as well and has bounded
derivative as can also be seen from (1). Further, vπθτ can be seen to be continuously differentiable
with bounded derivatives. Finally, ∇2πθτ (a|s) exists and is bounded. Thus h1(θτ ) is a Lipschitz
continuous function and the ODE (21) is well posed.

Let Z denote the set of asymptotically stable equilibria of (23) i.e., the local minima of η̄θ, and let
Zε be the ε-neighborhood of Z . To complete the proof, we are left to show that as supθ ‖ξπθ‖ → 0
(viz. δ → 0), the trajectories of (22) converge to those of (23) uniformly on compacts for the same
initial condition in both. This claim follows the same arguments as in the proof of Theorem 2 in [6].
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A.3.1 Auxiliary Lemma for Theorem 3

The following Lemma computes the expectation of E
[
δπθ (Õ)∇θ log πθ(ã|s̃)

]
.

Lemma 6. Assume we have full K RBs, each one with N transitions. Then the following holds

Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δπθ (Õ)∇θ log πθ(ã|s̃)

]

= ∇θη̄θ −
K∑

k=1

βk
∑

s̃

µθ,k(s̃)
(
φ(s̃)>∇θvπθ −∇θV̄ πθk (s̃)

)
,

where V̄ πθk (s̃) =
∑
ã∈A πθ(ã|s̃)

(
r(s̃, ã)− ηθ,k +

∑
s̃′∈S Pk(s̃′|s̃, ã)φ(s̃′)>vπθ

)
.

Proof. We compute the expectation of δπθ (Õ)∇θ log πθ(ã|s̃) with linear function approximation
according to Algorithm 1. Due to the probabilistic nature of Algorithm 1, we do not know explicitly
when each transition was pushed to any of the RBs. Recall that the tuple (k, n) corresponds to
some θt(k,n) where time t(k, n) was defined in Section 4. We use the same notations for the state
distribution vector ρt(k,n) and a transition matrix Pt(k,n) (both induced by the policy πθt(k,n)

, as in
the proof for Lemma 5). We define now the following term:

V̄
πθt(k,n)

k (s̃) =
∑

ã∈A
πθt(k,n)

(ã|s̃)Q̄
πθt(k,n)

k (s̃, ã) =
∑

ã∈A
πθt(k,n)

(ã|s̃)
(
r(s̃, ã)− ηθ,k +

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>vπθ

)
,

(24)

where V̄
πθt(k,n)

k (s̃) and Q̄
πθt(k,n)

k (s̃, ã) correspond to policy πθt(k,n)
. Note that here, the convergent

critic parameter vπθ is used. Let’s look at the gradient of (24):

∇θV̄
πθt(k,n)

k (s̃) = ∇θ
(∑

ã∈A
πθt(k,n)

(ã|s̃)Q̄
πθt(k,n)

k (s̃, ã)

)

=
∑

ã∈A
∇θπθt(k,n)

(ã|s̃)
(
r(s̃, ã)− ηθ,k +

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>vπθ

)

+
∑

ã∈A
πθt(k,n)

(ã|s̃)
(
−∇θηθ,k +

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>∇θvπθ

)

=
∑

ã∈A
∇θπθt(k,n)

(ã|s̃)
(
r(s̃, ã)− ηθ,k +

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>vπθ

)

−∇θηθ,k +
∑

ã∈A
πθt(k,n))(ã|s̃)

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>∇θvπθ

where with abuse of notation, ∇θπθt(k,n)
(ã|s̃) = ∇θπθ|θ=θt(k,n)

(ã|s̃). In the limit, τ → ∞ and
ρt(k,n) → µθ,k for all index n. Summing both sides over β distribution and stationary distribution
µθ,k

K∑

k=1

βk
∑

s̃

µθ,k(s̃)∇θV̄ πθk (s̃)

=

K∑

k=1

βk
∑

s̃

µθ,k(s̃)
∑

ã∈A
∇θπθ(ã|s̃)

(
r(s̃, ã)− ηθ,k +

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>vπθ

)

+

K∑

k=1

βk
∑

s̃

µθ,k(s̃)

(
−∇θηθ,k +

∑

ã∈A
πθ(ã|s̃)

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>∇θvπθ

)

= Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δπθ (Õ)∇θ log πθ(ã|s̃)

]

−∇θη̄θ +

K∑

k=1

βk
∑

s̃

µθ,k(s̃)
∑

ã∈A
πθ(ã|s̃)

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>∇θvπθ
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We will write in short E
[
δπθ (Õ)∇θ log πθ(ã|s̃)

]
= Ek∼β,Õ∼RB(k),s̃,ã,s̃′∈Õ

[
δπθ (Õ)∇θ log πθt(k,i)(ã|s̃)

]
.

Then:

∇θη̄θ = E
[
δπθ (Õ)∇θ log πθ(ã|s̃)

]

+

K∑

k=1

βk
∑

s̃

µθ,k(s̃)

(∑

ã∈A
πθ(ã|s̃)

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>∇θvπθ −∇θV̄ πθk (s̃)

)
.

Since µθ,k is the stationary distribution for each environment k,
∑

s̃

µθ,k(s̃)
∑

ã∈A
πθ(ã|s̃)

∑

s̃′∈S
Pk(s̃′|s̃, ã)φ(s̃′)>∇θvπθ =

∑

s̃

µθ,k(s̃)
∑

s̃′∈S
Pθ,k(s̃′|s̃)φ(s̃′)>∇θvπθ

=
∑

s̃′

∑

s̃

µθ,k(s̃)Pθ,k(s̃′|s̃)φ(s̃′)>∇θvπθ

=
∑

s̃′

µθ,k(s̃′)φ(s̃′)>∇θvπθ ,

Then,

∇θη̄θ = E
[
δπθ (Õ)∇θ log πθ(ã|s̃)

]
+

K∑

k=1

βk
∑

s̃

µθ,k(s̃)
(
φ(s̃)>∇θvπθ −∇θV̄ πθk (s̃)

)

The result follows immediately.

B Proof of Main Lemmas and Theorems of Section 5.2

B.1 Proof of Theorem 4

Proof. 1. We have a common policy to both sim and real. Thus,

∣∣P θs (s′|s)− P θr (s′|s)
∣∣ =

∣∣∣∣∣
∑

a∈A
Ps(s

′|s, a)πθ(a|s)−
∑

a∈A
Pr(s

′|s, a)πθ(a|s)
∣∣∣∣∣

=

∣∣∣∣∣
∑

a∈A
πθ(a|s) (Ps(s

′|s, a)− Pr(s′|s, a))

∣∣∣∣∣

≤
∑

a∈A
πθ(a|s) |Ps(s′|s, a)− Pr(s′|s, a)|

≤ |A|εs2r,

(25)

where the last inequality is due to Assumption 7.

2. The stationary distribution satisfies µθs
>
P θs = µθs

>. Let us define ∆P , P θs − P θr and ∆µ ,
µθs − µθr . Then, we have

µθs
>

(P θs − I) = 0

(µθr + ∆µ)>(P θs − I) = 0

µθr
>

(P θs − I) + ∆µ>(P θs − I) = 0

µθr
>

(∆P + P θr − I) + ∆µ>(P θs − I) = 0

µθr
>

(P θr − I) + µθr
>

∆P + ∆µ
(
P θs − I

)
= 0

µθr
>

∆P + ∆µ
(
P θs − I

)
= 0

∆µ
(
P θs − I

)
= −µθr

>
∆P .

(26)
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We note that since P θs satisfies Assumption 2, it is of degree |S| − 1 (P θs has only one eigenvalue
equals 1, thus, I −P θs has only one eigenvalue equals 0). Without loss of generality, we define ∆̃µ to
be a vector with the first |S| − 1 entries, P̃ θs to be a sub-matrix with the first (|S| − 1)× (|S| − 1)

entries of P θs , µ̃θr a vector with the first |S| − 1 first entries of µθr , ∆̃P a sub-matrix with the first
(|S| − 1)× (|S| − 1) entries of ∆P , and Ĩ to be identity matrix of dimension S − 1. As a result, we
have the following full rank equations system:

∆̃µ
(
P̃ θs − I

)
= −µ̃θr

>
∆̃P , (27)

and the matrix
(
P̃ θs − I

)
is of full rank and invertible. Thus,

∆̃µ = −µ̃θr
>

∆̃P
(
P̃ θs − I

)−1

. (28)

We apply the Frobenius norm on both sides and get

‖∆̃µ‖F =

∥∥∥∥µ̃θr
>

∆̃P
(
P̃ θs − I

)−1
∥∥∥∥
F

.

≤
∥∥∥µ̃θr

∥∥∥
F

∥∥∥∆̃P
∥∥∥
F

∥∥∥∥
(
P̃ θs − I

)−1
∥∥∥∥
F

.

≤ 1 · |S|2 · ε
∥∥∥∥
(
P̃ θs − I

)−1
∥∥∥∥
F

.

(29)

We note that according to Assumption 1, Θ is compact and according to Assumption 3 the induced
MC is aperiodic and irreducible. Therefore, the Frobenius norm of the latter norm (for all θ ∈ Θ)
gets both the maximum and the minimum in Θ. Using Gersgorin Theorem ([17]; Theorem 6.1.1)
on matrix P̃ θs − I , and since the diagonal is greater than 1 and for each row, the off diagonal entries
sum to less than 1, all the eigenvalues of P̃ θs − I are strictly above some value RG > 0. As a result,
the eigenvalues of (P̃ θs − I)−1 are bounded by R−1

G . Using Assumption 3, the matrix (P̃ θs )−1 is
bounded for all θ ∈ Θ by RM , max θ ∈ ΘR−1

G , and the Frobenius of the latter norm is bounded
by
√
S ·RM . Summarizing, ‖∆̃µ‖ ≤ ε|S|2 minθ∈Θ

√
SR2

m for the first S − 1 states. We left with
proving that for the last state, the same hold. Since

∑|S|
i=1 µ

θ
r(i) = 1 and

∑|S|
i=1 µ

θ
s(i) = 1, subtracting

these two equations and rearranging yield

µθs(|S|)− µθr(|S|) = −
|S|−1∑

i=1

(
µθs(i)− µθr(i)

)
.

Applying Frobenius norm yields the desired result.

3. The boundedness of the average reward is immediate from part 2, i.e.,

‖ηθs − ηθr‖F = ‖µθr
>
r − µθs

>
r‖F

≤ ‖µθr
> − µθs

>‖F · ‖r‖F
≤ Bµ|S|.

(30)

Similarly to part 2, the value function for sim and real are

vθs = r − η + P θs v
θ
s ,

vθr = r − η + P θr v
θ
r .

(31)

Subtracting both yields

vθs − vθr = P θs v
θ
s − P θr vθr . (32)

We add and subtract P θs v
θ
r and rearrange to get

vθs − vθr = P θs v
θ
s − P θs vθr + P θs v

θ
r − P θr vθr

vθs − vθr = P θs (vθs − vθr) + (P θs − P θr )vθr

(I − P θs )(vθs − vθr) = (P θs − P θr )vθr .

(33)
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Similarly to 2, we have an under-determined equation system. We assume that for both BEs of
vθs(s

∗) = vθr(s
∗) = 0 in order for (31) to be each with a unique solution. Now, similarly to 2, we

look at the |S| − 1 first equations (that now has a unique solution)

(Ĩ − P̃ θs )(ṽθs − ṽθr) = (P̃ θs − P̃ θr )ṽθr . (34)
Again, similarly to 2 we get the desired result.

B.2 Corollary for Theorem 4

The following corollary follows immediately from Theorem 4 and establishes that any convex
combination of "close" enough sim and real share the same properties as both sim and real.
Corollary 7. Assuming the same as in Theorem 4, if Y is a process where its dynamics can be
described as PY = βPs(s

′|s, a) + (1 − β)Pr(s
′|s, a) for 0 ≤ β ≤ 1, then Y satisfies the same

properties as of Theorem 4 w.r.t. the real process.

Proof. The process Y is a convex combination of both sim and real, therefore, the distance between
Pr and PY is smaller then the distance between Pr and Ps. Using Theorem 4 the result follows
immediately.

C Experiment Details of Section 6

We trained the Fetch Push task using the DDPG algorithm [29] together with HER [1]. For DDPG,
HER and FetchPush task we used the same hyper-parameters as in [1]. For completeness, we specify
the hyper-parameters and task parameters used in our experiments.

C.1 Training procedure

We train for 150 epochs. Each epoch consists of 50 cycles where each cycle consists of running the
policy for 2 episodes per worker. Every episode consists of 50 environment time-steps. Then, 40
optimization steps are performed on mini-batches of size 256 sampled uniformly from a replay buffer
consisting of 106 transitions. For improved efficiency, the whole training procedure is distributed over
8 threads (workers) which average the parameters after every update. Training for 150 epochs took us
approximately 2h using 8 cpu cores. The networks are optimized using the Adam optimizer [24] with
learning rate of 0.001. We update the target networks after every cycle using the decay coefficient of
0.95. We use the discount factor of γ = 0.98 for all transitions and we clip the targets used to train
the critic to the range of possible values, i.e. [− 1

1−γ , 0]. The behavioral policy we use for exploration
works as follows. With probability 0.3 we sample (uniformly) a random action from the hypercube
of valid actions. Otherwise, we take the output of the policy network and add independently to every
coordinate normal noise with standard deviation equal to 0.2 of the total range of allowed values on
this coordinate. Goals selection for HER algorithm was performed using the "future" HER strategy
with k = 4. See [1] for additional details.

C.2 Networks architecture

The architecture of the actor and critic networks is a Multi-Layer Perceptrons (MLP) with 3 hidden
layers and ReLu activation function. Each layer has 256 hidden units. The actor output layer uses
the tanh activation function and is rescaled so that it lies in the range [−5cm, 5cm]. We added the
L2 norm of the actions to the actor loss function to prevent tanh saturation and vanishing gradients
(in the same way as in [1]). We rescale the inputs to the critic and actor networks so that they have
mean zero and standard deviation equal to one and then clip them to the range [−5, 5]. Means and
standard deviations used for rescaling are computed using all the observations encountered so far in
the training.

C.3 Task parameters

The initial position of the gripper is fixed, located 20cm above the table. The initial position of the
box on the table is randomized, in the 30cm × 30cm square with the center directly under the gripper.
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The width of the box is 5cm. The goal position is sampled uniformly from the same square as the
box position.

The state space is 28-dimensional: 25 dimensions for the gripper and box poses and velocities and
3 for the goal position. The action space is 4-dimensional. Three dimensions specify the desired
relative gripper position at the next time-step. The last dimension specifies the desired distance
between the 2 fingers which are position controlled. Our task does not require gripper rotation and
therefore we keep it fixed.

C.4 Friction values

In our experiments, the difference between the real and sim environments is the friction be-
tween the box and the table. The friction parameter is a vector of 5 dimensions: two tan-
gential, one torsional, two rolling. In our experiments, the friction values in the real envi-
ronment are [0.03, 1., 0.005, 0.0001, 0.0001] and the friction values in the sim environment are
[2., 2., 0.005, 0.01, 0.0001]. The sim friction values were chosen after a preceding experiment on
the friction range [1.8, 2.2]× [1.8, 2.2]× [0.005]× [0.0001, 0.1]× [0.0001, 0.1], respectively, which
ensured that if we train a policy only on the simulator and use this policy in the real environment,
it does not solve the task. In this way we have a simulator which is close to the real world, but not
identical to it, what usually happens when designing simulators for real systems such as a robotic
arm.

C.5 Performance evaluation

In our experiments, for each environment (real or sim) the task is solved if in the last time-step of
an episode, the box position satisfies ‖box position - goal position‖2 ≤ 0.05. After each training
epoch, we tested in the real environment the trained policy for 10 episodes. The test was performed
separately for each one of the 8 workers. For calculating the final success rate for each epoch we
averaged the local success rate form each worker. Finally, for each qr and βr values, and for each
mixing strategy, we repeated the experiment with 10 different random seeds.
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