
𝐻3×3Youtube Mujoco

Figure 6: Compute homography matrix given 8 correspondence feature points.

A Retargeting: From human hand to robot hand407

To retarget from the human hand to robot hand, we follow a structured process.408

Step 1: Homography Matrix Computation Given a top-view piano demonstration video, we409

firstly choose n different feature points on the piano. These points could be center points of specific410

keys, edges, or other identifiable parts of the keys that are easily recognizable (See Figure 6).411

Due to the uniform design of pianos, these points represent the same physical positions in both412

the video and Mujoco. Given the chosen points, we follow the Eight-point Algorithm to compute413

the Homography Matrix H that transforms the pixel coordinate in videos to the x-y coordinate in414

Mujoco (z-axis is the vertical axis).415

416

Step 2: Transformation of Fingertip Trajectory We then obtain the human fingertip tra-417

jectory with MediaPipe [20]. We collect the fingertips positions every 0.05 seconds. Then we418

transform the human fingertip trajectory within pixel coordinate into the Mujoco x-y 2D coordinate419

using the computed homography matrix H .420

421

Step 3: Heuristic Adjustment for Physical Alignment We found that the transformed fin-422

gertip trajectory might not physically align with the notes, which means there might be no detected423

fingertip that physically locates at the keys to be pressed or the detected fingertip might locate at the424

border of the key (normally human presses the middle point of the horizontal axis of the key). This425

misalignment could be due to the inaccuracy of the hand-tracking algorithm and the homography426

matrix. Therefore, we perform a simple heuristic adjustment on the trajectory to improve the427

physical alignment. Specifically, at each timestep of the video, we check whether there is any428

fingertip that physically locates at the key to be pressed. If there is, we adjust its y-axis value to429

the middle point of the corresponding key. Otherwise, we search within a small range, specifically430

the neighboring two keys, to find the nearest fingertip. If no fingertip is found in the range or431

the found fingertip has been assigned to another key to be pressed, we then leave it. Otherwise,432

we adjust its y-axis value to the center of the corresponding key to ensure proper physical alignment.433

434

Step 4: Z-axis Value Assignment Lastly, we assign the z-axis value for the fingertips. For435

the fingertips that press keys, we set their z-axis values to 0. For other fingertips, we set their z-axis436

value to 2 ¨ hkey , where hkey is the height of the keys in Mujoco.437

B Implementation of Inverse Kinematics Solver438

The implementation of the IK solver is based on the approach of [21]. The solver addresses multiple439

tasks simultaneously by formulating an optimization problem and find the optimal joint velocities440

that minimize the objective function. The optimization problem is given by:441

min
9q

ÿ

i

wi}Ji 9q ´Kivi}
2, (1)

11

where wi is the weight of each task, Ki is the proportional gain and vi is the velocity residual. We442

define a set of 10 tasks, each specifying the desired position of one of the robot fingertips. We do not443

specify the desired quaternions. All the weights wi are set to be equal. We use quadprog 2 to solve444

the optimization problem with quadratic programming. The other parameters are listed in Table 2.

Table 2: The parameters of IK solver
Parameter Value
Gain 1.0
Limit Gain 0.05
Damping 1e-6
Levenberg-Marquardt Damping 1e-6

445

C Detailed MDP Formulation of Song-specific Policy446

Table 3: The detailed reward function to train the song-specific policy. The Key Press reward is the
same as in [11], where ks and kg represent the current and the goal states of the key respectively,
and g is a function that transforms the distances to rewards in the [0, 1] range. pdf and prf represent
the fingertip positions of human demonstrator and robot respectively.

Reward Formula Weight Explanation
Key Press 0.5 ¨ gp}ks ´ kg}2q ` 0.5 ¨ p1 ´ 1false positiveq 2/3 Press the right keys and

only the right keys
Mimic gp}pdf ´ prf }2q 1/3 Mimic the demonstrator’s

fingertip trajectory

Table 4: The observation space of song-specific agent.
Observation Unit Size
Hand and Forearm Joint Positions Rad 52
Hand and forearm Joint Velocities Rad/s 52
Piano Key Joint Positions Rad 88
Piano key Goal State Discrete 88
Demonstrator Forearm and Fingertips Cartesian Positions m 36
Prior control input ũ (solved by IK) Rad 52
Sustain Pedal state Discrete 1

D Training Details of Song-specific Policy447

We use PPO [27] (implemented by StableBaseline 3 [30]) to train the song-specific policy with resid-448

ual RL(See Algorithm 1). All of the experiments are conducted using the same network architecture449

and tested using 3 different seeds. Both actor and critic networks are of the same architecture, con-450

taining 2 MLP hidden layers with 1024 and 256 nodes, respectively, and GELU [31] as activation451

functions. The detailed hyperparameters of the networks are listed in Table 7.452

2https://github.com/quadprog/quadprog

12

Table 5: The action space of song-specific agent.
Action Unit Size
Target Joint Positions Rad 46
Sustain Pedal Discrete 1

Table 6: The Hyperparameters of PPO
Hyperparameter Value
Initial Learning Rate 3e-4
Learning Rate Scheduler Exponential Decay
Decay Rate 0.999
Actor Hidden Units 1024, 256
Actor Activation GELU
Critic Hidden Units 1024, 256
Critic Activation GELU
Discount Factor 0.99
Steps per Update 8192
GAE Lambda 0.95
Entropy Coefficient 0.0
Maximum Gradient Norm 0.5
Batch Size 1024
Number of Epochs per Iteration 10
Clip Range 0.2
Number of Iterations 2000
Optimizer Adam

E Representation Learning of Goal453

We train an autoencoder to learn a geometrically continuous representation of the goal (See Figure454

7 and Algorithm 2). During the training phase, the encoder E , encodes the original 88-dimensional455

binary representation of a goal piano state ˇ “(t into a 16-dimensional latent code z. The positional456

encoding of a randomly sampled 3D query coordinate x is then concatenated with the latent code z457

and passed through the decoder D. We use positional encoding here to represent the query coordinate458

more expressively. The decoder is trained to predict the SDF fpx, ˇ “(tq. We define the SDF value of459

x with respect to ˇ “(t as the Euclidean distance between the x and the nearest key that is supposed to460

be pressed in ˇ “(t, mathematically expressed as:461

SDFpx, ˇ “(tq “ min
pPtpi| ˇ “(t,i“1u

}x´ p}, (2)

where pi represents the position of the i-th key on the piano. The encoder and decoder are jointly462

optimized to minimize the reconstruction loss:463

Lpx, , ˇ “(tq “ pSDFpx, ˇ “(tq ´ DpEpv, xqqq2. (3)

464

We pre-train the autoencoder using the GiantMIDI dataset 3, which contains 10K piano MIDI files465

of 2,786 composers. The pre-trained encoder maps the ˇ “(t into the 16-dimensional latent code,466

which serves as the latent goal for behavioral cloning. The encoder network is composed of four467

3https://github.com/bytedance/GiantMIDI-Piano

13

Algorithm 1 Training of the song-specific policy with residual RL

1: Initialize actor network πθ
2: Initialize critic network vϕ
3: for i “ 1 : Niteration do
4: # Collect trajectories
5: for t “ 1 : T do
6: Get human demonstrator fingertip position xt and observation ot
7: Compute the prior control signal that tracks xt with the IK controller ũt “ ikpxt, otq
8: Run policy to get the residual term rt “ πθpotq
9: Compute the adapted control signal ut “ ũt ` rt

10: Execute ut in environment and collect st, ut, rt, st`1

11: end for
12: # Update networks
13: for n “ 1 : N do
14: Sample a batch of transitions tpsj , uj , rj , sj`1qu from the collected trajectories
15: Update the actor and critic network with PPO
16: end for
17: end for

Query
Coordinate

Positional
Embedding

SDFEncoder...

1
0

1
0

1

88-dimensional
binary vector

Latent
Code

+

Figure 7: 1) Encoding: The encoder compresses the binary representation of the goal into latent
code. 2) Decoding: A 3D query coordinate x is randomly sampled. A neural network predicts the
SDF value given the positional encoding of x and the latent code.

1D-convolutional layers, followed by a linear layer. Each successive 1D-convolutional layer has an468

increasing number of filters, specifically 2, 4, 8, and 16 filters, respectively. All convolutional layers469

utilize a kernel size of 3. The linear layer transforms the flattened output from the convolutional470

layers into a 16-dimensional latent code. The decoder network is a MLP with 2 hidden layers, each471

with 16 neurons. We train the autoencoder for 100 epochs with a learning rate of 1e´ 3.472

F Training Details of Diffusion Model473

All the diffusion models utilized in this work, including One-stage Diff, the high-level and474

low-level policies of Two-stage Diff, Two-stage Diff-res and Two-stage Diff w/o SDF, share475

the same network architecture. The network architecture are the same as the U-net diffusion476

14

Algorithm 2 Training of the goal autoencoder

1: Initialize encoder Eϕ
2: Initialize decoder Dψ
3: for i “ 1 : Nepoch do
4: for j “ 1 : Nbatch do
5: for each goal v in batch do
6: Compute the latent code z “ Eψp ˇ “(tq
7: Sample a 3D coordinate as query x “ Sample3DCoordinate()
8: Compute the positional encoding of query pe “ PositionalEncoding(xq

9: Compute the output of the decoder conditioned by the query Dϕpz, peq
10: Compute the SDF value of query SDFpx, ˇ “(tq
11: Compute the reconstruction loss L
12: end for
13: Compute the sum of the loss
14: Compute the gradient
15: Update network parameter ϕ, ψ
16: end for
17: end for

policy in [22] and optimized with DDPM [28], except that we use temporal convolutional net-477

works (TCNs) as the observation encoder, taking the concatenated goals (high-level policy) or478

fingertip positions (low-level policy) of several timesteps as input to extract the features on tem-479

poral dimension. Each level of U-net is then conditioned by the outputs of TCNs through FiLM [32].480

481

High-level policies take the binary representation (Two-stage Diff w/o SDF) or the SDF em-482

bedding (Two-stage Diff, Two-stage Diff-res) of goals over 10 timesteps and the current fingertip483

position as input and predict the fingertip positions of 4 timesteps. Besides, for training the484

high-level policies, we add a standard gaussian noise on the current fingertip position to enhance485

generalization. Low-level policies take the predicted fingertip positions and the goals over 4486

timesteps, the proprioception state and the action solved by IK solver (only for Two-stage Diff-res)487

as input and output the robot actions (One-stage Diff, Two-stage Diff, Two-stage Diff w/o SDF)488

or the residual term of IK solver (Two-stage Diff-res). The proprioception state includes the robot489

joint positions and velocities, as well as the piano joint positions. We use 100 diffusion steps during490

training. To achieve high-quality results during inference, we find that at least 80 diffusion steps are491

required for high-level policies and 50 steps for low-level policies.492

Table 7: The Hyperparameters of DDPM
Hyperparameter Value
Initial Learning Rate 1e-4
Learning Rate Scheduler Cosine
U-Net Filters Number 256, 512, 1024
U-Net Kernel Size 5
TCN Filters Number 32, 64
TCN Kernel Size 3
Diffusion Steps Number 100
Batch Size 256
Number of Iterations 800
Optimizer AdamW
EMA Exponential Factor 0.75
EMA Inverse Multiplicative Factor 1

15

G Policy Distillation Experiment493

Two-stage Diff w/o SDF We directly use the binary representation of goal instead of the SDF494

embedding representation to condition the high-level and low-level policies.495

496

Two-stage Diff-res We employ an IK solver to compute the target joints given the fingertip497

positions predicted by the high-level policy. The low-level policy predicts the residual terms of IK498

solver instead of the robot actions.499

500

Two-stage BeT We train both high-level and low-level policies with Behavior Transformer501

[23] instead of DDPM. The hyperparameter of Bet is listed in Table 8.502

503

One-stage Diff We train a single diffusion model to predict the robot actions given the SDF504

embedding representation of goals and the proprioception state.505

506

Multi-task RL We create a multi-task environment where for each episode a random song is507

sampled from the dataset. Consequently, we use Soft-Actor-Critic (SAC) [33] to train a single agent508

within the environment. Both the actor and critic networks are MLPs, each with 3 hidden layers,509

and each hidden layer contains 256 neurons. The reward function is the same as that in [11].510

511

BC-MSE We train a feedforward network to predict the robot action of next timestep con-512

ditioned on the binary representation of goal and proprioception state with MSE loss. The513

feedforward network is a MLP with 3 hidden layers, each with 1024 neurons.

Table 8: The Hyperparameters of Behavior Transformer
Hyperparameter Value
Initial Learning Rate 3e-4
Learning Rate Scheduler Cosine
Number of Discretization Bins 64
Number of Transformer Heads 8
Number of Transformer Layers 8
Embedding Dimension 120
Batch Size 256
Number of Iterations 1200
Optimizer AdamW
EMA Exponential Factor 0.75
EMA Inverse Multiplicative Factor 1

514

H F1 Score of All Trained Song-Specific Policies515

Figure 8 shows the F1 score of all song-specific policies we trained.516

I Detailed Results on Test Dataset517

Note: We observed that the F1 scores reported for all methods in the main part of the paper were518

higher than their actual values (Precision and Recall are correct). This error is due to an issue with519

scikit 4. Here, we present the corrected F1 scores of our two methods. We will update the F1 scores520

4https://github.com/scikit-learn/scikit-learn/pull/27577

16

of other baselines during the rebuttal phase. We apologize for the inconvenience. In Table 9 and521

Table 10, we show the Precision, Recall and F1 score of each song in our collected test dataset and522

the Etude-12 dataset from [11], achieved by Two-stage Diff and Two-stage Diff-res, respectively.523

We observe an obvious performance degradation when testing on Etude-12 dataset. We suspect that524

the reason is due to out-of-distribution data, as the songs in the Etude-12 dataset are all classical,525

whereas our training and test dataset primarily consists of modern songs.

Table 9: Quantitative results of each song in the our collected test dataset

Song Name
Two-stage Diff Two-stage Diff-res

Precision Recall F1 Precision Recall F1

Forester 0.81 0.70 0.68 0.79 0.71 0.67
Wednesday 0.66 0.57 0.58 0.67 0.54 0.55
Alone 0.80 0.62 0.66 0.83 0.65 0.67
Somewhere Only We Know 0.63 0.53 0.58 0.67 0.57 0.59
Eyes Closed 0.60 0.52 0.53 0.61 0.45 0.50
Pedro 0.70 0.58 0.60 0.67 0.56 0.47
Ohne Dich 0.73 0.55 0.58 0.75 0.56 0.62
Paradise 0.66 0.42 0.43 0.68 0.45 0.47
Hope 0.74 0.55 0.57 0.76 0.58 0.62
No Time To Die 0.77 0.53 0.55 0.79 0.57 0.60
The Spectre 0.64 0.52 0.54 0.67 0.50 0.52
Numb 0.55 0.44 0.45 0.57 0.47 0.48
Mean 0.69 0.54 0.56 0.71 0.55 0.57

526

Table 10: Quantitative results of each song in the Etude-12 dataset

Song Name
Two-stage Diff Two-stage Diff-res

Precision Recall F1 Precision Recall F1

FrenchSuiteNo1Allemande 0.45 0.31 0.34 0.39 0.27 0.30
FrenchSuiteNo5Sarabande 0.29 0.23 0.24 0.24 0.18 0.19
PianoSonataD8451StMov 0.58 0.52 0.52 0.60 0.50 0.51
PartitaNo26 0.35 0.22 0.24 0.40 0.24 0.26
WaltzOp64No1 0.44 0.31 0.33 0.43 0.28 0.31
BagatelleOp3No4 0.45 0.30 0.33 0.45 0.28 0.32
KreislerianaOp16No8 0.43 0.34 0.36 0.49 0.34 0.36
FrenchSuiteNo5Gavotte 0.34 0.29 0.33 0.41 0.31 0.33
PianoSonataNo232NdMov 0.35 0.24 0.25 0.29 0.19 0.21
GolliwoggsCakewalk 0.60 0.43 0.45 0.57 0.40 0.42
PianoSonataNo21StMov 0.32 0.22 0.25 0.36 0.23 0.25
PianoSonataK279InCMajor1StMov 0.43 0.35 0.35 0.53 0.38 0.39
Mean 0.42 0.31 0.33 0.43 0.30 0.32

17

Figure 8: F1 score of all 184 trained song-specific policies (descending order)

18

	Retargeting: From human hand to robot hand
	Implementation of Inverse Kinematics Solver
	Detailed MDP Formulation of Song-specific Policy
	Training Details of Song-specific Policy
	Representation Learning of Goal
	Training Details of Diffusion Model
	Policy Distillation Experiment
	F1 Score of All Trained Song-Specific Policies
	Detailed Results on Test Dataset

