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A DEFINITIONS AND ASSUMPTIONS

Definition A.1. (Stein Class (Liu et al., 2016)) Assume distribution q has continuous and differen-
tiable density q(x). A function f defined on the domain X ⊂ RD, f : X → R is in the Stein class of
q if f is smooth and satisfies ∫

X
∇x(f(x)q(x))dx = 0 (14)

We can easily see that the above holds true for X = RD if

lim
||x||→∞

q(x)f(x) = 0 (15)

This can be verified using integration by parts or divergence theorem. Specifically, if q(x) vanishes
at infinity, then it only requires the test function f to be bounded. This definition can be generalized
to a vector valued function f : X → RD. We say such function f is in Stein class of q if the member
of f , fi, belongs to the Stein class of q for all i ∈ D.

Definition A.2. (Liu et al., 2016) A kernel k(x,x′) is said to be in the Stein class of q if k(x,x′)
has continuous second order partial derivatives, and both k(x, ·) and k(·,x) are in the Stein class of
q for any fixed x

Radon Transform In machine learning literature, Radon transform has been used as the primary
tool to derive sliced Wasserstein distance (Kolouri et al., 2019; Deshpande et al., 2019; 2018). To
be specific, the standard Radon transform, denoted as R, is a map from L1 integrable functions
I ∈ L1(RD) to the infinite set of its integrals over the hyperplane of RD. Specifically, for L1

integrable functions:

L1(RD) = {I : RD → R |
∫
RD

|I(x)|dx <∞}, (16)

the Radon transform is defined by

R[I](l, g) =
∫
RD

I(x)δ(l − 〈x, g〉)dx (17)

for (l, g) ∈ R× SD−1 where SD−1 ⊂ RD stands for a unit sphere in RD. For fixed g, this defines a
continuous functionR[I](·, g) : R→ R which is the projection of function I on to the hyper-plane
with its normal vector defined by g and offset defined by l.

In the following we state the assumptions that we used to prove our main results.

Assumption 1 (Properties of densities) Assume the two probability distributions p, q has continuous
differentiable density p(x), q(x) supported on RD. Density q satisfies: lim||x||→∞ q(x) = 0.

Assumption 2 (Regularity of score functions) Denote the score function of p(x) as sp(x) =
∇x log p(x) ∈ RD and score function of q(x) accordingly. Assume the score functions satisfy∫

RD

q(x)|(sp(x)− sq(x))Tr|dx <∞∫
RD

q(x)||(sp(x)− sq(x))Tr||2dx <∞
(18)

for all r where r ∈ SD−1 is a vector sampled from a uniform distribution over a unit ball SD−1. In
other words, the score difference, when projected on the r direction, is both L1 and L2 integrable
with respect to the probability measure defined by q(x)dx. These conditions are used to ensure both
the Radon transform and the proposed divergence are well defined.

Assumption 3 (Stein Class of test functions) Assume the test function f(·; r, g) : RD → R is
smooth and belongs to the Stein class of q.
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Assumption 4 (Bounded Radon transformed functions) Define
Iq,p = q(x)(sp(x)− sq(x))Tr (19)

We assume the Radon transformation of Iq,p,R[Iq,p](l, g) is bounded for all g, where g is sampled
from a uniform distribution over a unit ball SD−1. Namely, ||R[Iq,p](l, g)||∞ <∞

Assumption 5 (Properties of kernels) For the RKHSHr,g equipped with kernel function k(·, ·; r, g)
defined as k(x,x′; r, g) = krg(x

Tg,x′Tg), we assume the kernel krg is C0-universal and k belongs
to the Stein class of q for all r and g. We further assume the kernel krg is uniformly bounded such
that supx krg(x

Tg,xTg) <∞ for all g and r. For example, the RBF kernel is a suitable choice for
krg.

B SSD RELATED PROPOSITIONS AND THEOREMS

B.1 UNDERSTANDING THE PROPOSED SLICE STEIN DISCREPANCIES

We provide an explanation on the roles played by r and g. We follow the same notations used in
defining SSD (Eq.(5)). The key idea to tackle the curse-of-dimensionality is to project both the score
function sp(x) ∈ RD and test function input x ∈ RD. First, the slicing direction r is introduced to
project the score function, i.e. srp(x) = sp(x)

Tr. By doing so, if srp(x) = srq(x) for all r ∈ SD−1,
then sp(s) = sq(x) and p = q a.e. These equality conditions can be checked using Stein discrepancy
(section 2.1) by replacing sp(x) with srp(x). Now it remains to address the scalability issue for
the test functions as the score projection operation does not reduce the dimensionality of the test
function input x. In fact, using similar ideas from section 2.1, the optimal test function to describe
the difference between the projected score is proportional to srp(x)− srq(x), which is an RD → R
function and thus it still utilizes the information in the original space x ∈ RD.

To resolve the high dimensionality of x, it is preferred to use a test function that is defined on the
one-dimensional input R→ R. However, using the projected input along the slicing direction r for
the test function is insufficient to tell differences between the projected scores due to the information
loss, as shown in the pathological example at the end of this section. Therefore, we need to find a
way to express the projected score difference using a wide range of one-dimensional representations.

Our solution takes inspiration from the idea of CT-scans. To be precise, we test the difference of the
projected score along a test direction g, by projecting q(x)(srp(x)− srq(x)) to direction g. This is
exactly the Radon transform of function q(x)(srp(x)− srq(x)) in the direction g, which is an R→ R
function with input xTg. Importantly, if the Radon transformed projected score difference is zero
for all g, the invertibility of Radon transform tell us the projected score difference is zero, and then
p = q a.e. if it holds true for all r. Again this equality condition for the Radon transformed projected
score difference can be checked in a similar way as in Stein discrepancy by defining test functions
with input xTg.

To see why using a test direction g is necessary, we provide a counter-example in the case of using
orthonormal slicing basis Or. That is, if we set g = r for r ∈ Or, then there exists a pair of
distributions p 6= q such that the following discrepancy equals to zero:

D(q, p) =
∑
r∈Or

sup
fr∈Fq

Eq[srp(x)fr(xTr) +∇xT rfr(x
Tr)]. (20)

To see this, we first selectOr to be the standard orthonormal basis of RD (i.e. the basis formed by one-
hot vectors) w.l.o.g., as all the orthonormal basis in RD are equivalent up to rotations or reflections.
Now consider two probability distributions p and q supported on RD, where p(x) =

∏D
i p(xi) and

q(xi) = p(xi). Importantly, q distribution might not be factorized. Then we have

D(q, p) =

D∑
i

sup
fi∈Fq

Eqi [sip(xi)fi(xi) +∇xifi(xi)] = 0 (21)

where sip(xi) = ∇xi
log p(xi) and qi = q(xi). The second equality is from Stein identity due to the

matching marginal of p and q. However, it is not necessary that p = q, e.g. each dimensions in q
is correlated. The main reason for this counter-example is that the test function only observes the
marginal input xi and ignores any correlations that may exist in q.
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B.2 PROOF OF THEOREM 1

We split the proof of theorem 1 into two parts. First, we prove the ‘if’ part by the following
proposition.

Proposition 1. (SSD Detect Convergence) If two distributions p = q a.e., and assumption 1-4 are
satisfied, then S(q, p) = 0.

Proof. To prove SSD can detect convergence of q and p, we first introduce the Stein identity (Stein
et al., 2004; Liu et al., 2016).

Lemma 2. (Stein Identity) Assume q is a smooth density satisfied assumption 1, then we have

Eq[sq(x)f(x)T +∇f(x)] = 0

for any functions f : RD → RD in Stein class of q.

From the Stein identity, and p = q a.e., we can take the trace of the Stein identity:∫
q(x)[sq(x)

TF (x) +∇TxF (x)]dx = 0

where F (x) : RD → RD and it belongs to the Stein class of q.
Next, we choose a special form for F (x). For particular sliced direction pair r and g, we define

F (x) =


r1fr,g(x

Tg)
r2fr,g(x

Tg)
...

rDfr,g(x
Tg)


where r = [r1, r2, . . . , rD]

T .

From the assumption 3 and definition of Stein class of q for vector functions in section 2.1, it is trivial
that F (x) belongs to the Stein class of q. Substitute this F (x) into Stein discrepancy Eq.(2), we have∫

q(x)[sq(x)
TF (x) +∇TxF (x)]dx = 0

⇒
∫
q(x)[sq(x)

Trfr,g(x
Tg) + rTg∇xT gfr,g(x

Tg)]dx = 0

for all test functions fr,g that belongs to Stein class of q. Therefore, Eq.(5) is 0 if p = q a.e.

The ’only if’ part of theorem 1 is less direct to prove. Before we start this journey, we need to
introduce some properties relating to Radon transform.

Lemma 3. (Fourier Slice Theorem(Bracewell, 1956)) For a particular smooth function f(x) :
RD → R that satisfies assumptions of Radon transforms, we define FD as the D dimensional Fourier
transform operator, S1 as a slice operator which extracts 1 dimensional central slice of a function and
R as the Radon transform operator. Thus, for a slice direction g, we have the following equivalence

S1[FD[f ]](ω, g) = F1[R[f ](l, g)](ω). (22)

This theorem implies the following two operations are equivalent.

• First apply D dimensional Fourier transform to a function f and then take a slice that goes
through the origin with direction g from the transformed function.

• First apply the Radon transform with direction g to the function f and then apply one
dimensional Fourier transform to the projected function.

Next we show some properties related to the rotated or reflected distributions.
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Lemma 4. (Marginalization Invariance of rotated distribution) Assume we have a probability
distribution q supported on RD, a orthogonal matrixG ∈ RD×D and a test function f : RD → R,
we can define the corresponding rotated distribution qG after applying the rotation matrixG. Thus,
we have the following identity∫

qG(x)f(G
−1x)dx =

∫
q(x)f(x)dx. (23)

Proof. By the definition of rotation and change of variable formula, we define y = Gx, we can show

qG(y) = q(x)|G−1|
= q(G−1y)× 1

= q(G−1y)

where |G−1| represents the determinant of the inverse rotation matrix. Thus, by change of variable
formula, we have ∫

qG(y)f(G
−1y)dy

=

∫
q(G−1y)f(G−1y)dy

=

∫
q(x)f(x)|G|dx

=

∫
q(y)f(y)dy.

This identity is useful when dealing with the rotated distributions. Next, we introduce the generaliza-
tion of change-of-variable formula, which is often used in differential geometry.

Lemma 5. (Change of Variable Formula using Matrix Volume (Ben-Israel, 1999)) If U and V are
sets in spaces with different dimensions, say U ∈ Rn and V ∈ Rm with n > m, and φ : U → V is
a continuously differentiable injective function and f : Rm → R is integrable on V , we have the
following change of variable formula:∫

V
f(v)dv =

∫
U
(f ◦ φ)(u)volJφ(u)du (24)

where volJφ(u) is the matrix volume of the Jacobian matrix Jφ(u) = ∂(v1, . . . , vm)/∂(u1, . . . , un).

Particularly, if Jφ(u) is of full column rank, then volJφ =
√

det JTφ Jφ.

Next, we derive the key lemma that establishes the relationship between the conditional expectation
of rotated distribution and Radon transform of the original distribution.

Lemma 6. (Conditional Expectation = Radon Transform) For a particular test direction gd ∈ SD−1,
we can define an arbitrary rotation matrixG ∈ RD×D that the dth entry is the test direction gd. We
assume the probability distribution q(x) is supported on RD, and x−d represents x\xd (all elements
of x except xd). Further, let define the mapping x = Gu for u ∈ RD and xd is a constant xd = p.
Thus, with the smooth test function f : RD → R and the assumptions in Radon transformation being
true, we have the following identity:∫

Xd

qG(xd,x−d)f(G
−1x)dx−d =

∫
q(u)f(u)δ(p− uTgd)du (25)

where Xd = {x ∈ RD|xd = p}.
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Proof. From the definition of x = Gu, we can define the rotation matrixG as following:

G =


gT1
...
gTd
...
gTD


where gd = [gd,1, . . . , gd,D]

T . Thus, assume xd = p, we can write down

x = Gu =



∑D
k=1 g1,kuk

...
p
...∑D

k=1 gD,kuk

 .

Thus, the Jacobian matrix can be written as

J =
∂(Gu)

∂u
=

 g1,1 . . . gd−1,1 gd+1,1 . . . gD,1
...

...
...

...
...

...
g1,D . . . gd−1,D gd+1,D . . . gD,D

 = [ g1 . . . gd−1 gd+1 . . . gD ] .

By the definition of rotation matrix, the Jacobian matrix is clearly full column rank. Thus, from
Lemma 5, we have

volJ =
√
det JTJ =


gT1
. . .
gTd−1
gTd+1
. . .
gTD

 [ g1 . . . gd−1 gd+1 . . . gD ] = I,

where I ∈ R(D−1)×(D−1) is the identity matrix. Then we directly apply the results in Lemma 5 and
Lemma 4, we have ∫

Xd

qG(xd,x−d)f(G
−1x)dx−d

=

∫
Xd

q(G−1x)f(G−1x)× 1dx−d

Lemma 5
=

∫
U
q(u)f(u)volJdu

where U = {u ∈ RD|gTd u = p}. Thus, we have∫
Xd

qG(xd,x−d)f(G
−1x)dx−d =

∫
q(u)f(u)δ(p− uTgd)du

.

Now, we can prove the ’only if’ part of Theorem 1 using the above lemmas.

Proof. In order to prove equation (Eq.(5)) being 0 implies p = q a.e., the strategy is to construct a
lower bound for Eq.(5) by choosing a particular test function. We also need to make sure this lower
bound is greater or equal to 0 and is 0 only if p = q a.e. Thus, if the Eq.(5) is 0, it implies the lower
bound is 0 and q = p a.e.
Consider the inner supreme inside the Eq.(5), by Proposition 1, we have

Eq[sp(x)Trfr,g(xTg) + rTg∇xT gfr,g(x
Tg)]

= Eq[(sp(x)− sq(x))Trfr,g(xTg)].
(26)
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Now we apply the Lemma 4, and assume y = Gx and yd = gTx, then, Eq.(26) can be rewritten as∫
q(x)[sp(x)− sq(x)]Trfr,g(xTg)dx

=

∫
qG(yd,y−d)[∇G−1y log

p(G−1y)

q(G−1y)
]Trfr,g(yd)dy−ddyd.

(27)

The next step is to choose a specific form for the test function fr,g(yd). Define

fr,g(yd) =

∫
qG(yd,y−d)[∇G−1y log

p(G−1y)

q(G−1y)
]Trdy−d. (28)

First, we need to make sure this selected test function indeed satisfies assumption 3, namely, it needs
to be in the Stein class of q. By Lemma 6, this selected test function can be re-written into∫

qG(yd,y−d)[∇G−1y log
p(G−1y)

q(G−1y)
]Trdy−d =

∫
q(x)[∇xlog

p(x)

q(x)
]Trδ(yd − xTg)dx

= R[Iq,p](yd, g).

This is exactly the Radon transform of the function Iq,p = q(x)(sp(x)− sq(x))Tr. By assumption
4, this Radon transform is bounded. Thus, together with assumption 1, we can show this Radon
transformed function indeed belongs to the Stein class of q (Liu et al., 2016).

Now by substituting this specific test function Eq.(28) into Eq.(27), and defining u =
[u1, . . . , yd, . . . , uD]

T , we have∫
qG(yd,y−d)[∇G−1y log

p(G−1y)

q(G−1y)
]Tr

∫
qG(yd,u−d)[∇G−1u log

p(G−1u)

q(G−1u)
]Trdu−ddy−ddyd

=

∫ {∫
qG(yd,y−d)[∇G−1y log

p(G−1y)

q(G−1y)
]Trdy−d

}
{∫

qG(yd,u−d)[∇G−1u log
p(G−1u)

q(G−1u)
]Trdu−d

}
dyd

=

∫
f2r,g(yd)dyd = 1

≥ 0.
(29)

Thus we have constructed a lower bound (Eq.(29)) for the supremum in Eq.(5) and it is greater than 0.
Next, we show the expectation of this lower bound over pg and pr is 0 only if p = q a.e.. ,If so then
Eq.(5) is 0 only if p = q a.e..

First, it is clearly that 1 = 0 iff. fr,g(yd) = 0 a.e. By Lemma 6, we have fr,g(yd) = R[Iq,p](yd, g).
Thus, we have

1 = 0 ⇒ R[Iq](yd, g) = R[Ip](yd, g) a.e.
where Iq = q(x)sq(x)

Tr and Ip = q(x)sp(x)
Tr.

Now we define the D dimensional Fourier transform operator FD, slice operator S1 as in Theorem 3.
Based on Fourier sliced lemma 3, we have

R[Iq](yd, g) = R[Ip](yd, g)
⇒F1[R[Iq](yd, g)] = F1[R[Ip](yd, g)]
⇒S1[FD[Iq]](·, g) = S1[FD(Ip)](·, g).

(30)

This means the one dimensional slice at direction g for Fourier transform FD(Iq) and FD(Ip) are
the same. Also note that the discrepancy (Eq.(5)) is defined by integrating over test directions g with
a uniform distribution pg(g) over SD−1. This means if the discrepancy is zero, then Eq.(30) must
hold true for g a.e. over the hyper-sphere. Thus, we can show

FD(Iq) = FD(Ip) a.e. (31)
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It is well-known that the Fourier transform is injective, thus, for any direction r, we have

FD(Iq) = FD(Ip)
⇒Iq = Ip

⇒q(x)sq(x)Tr = q(x)sp(x)
Tr

⇒sq(x)Tr = sp(x)
Tr

(32)

The S(q, p) (Eq.(5)) also integrates over sliced directions r ∈ SD−1, thus, we have

sq(x)
Tr = sp(x)

Tr for all r ⇒ sq(x) = sp(x) ⇒ p = q a.e.

This finishes the proof of the “only if” part: S(q, p) ≥ 0 and is 0 only if q = p a.e.

B.3 PROOF OF COROLLORY 1.1

To prove the corollory 1.1, we first propose a variant of SSD (Eq.(5)) by relaxing the score projection
r. We call it orthogonal basis SSD.
Remark 1. (Orthogonal basis for SSD) It is not necessary to integrate over all possible r ∈ SD−1 for
Theorem 1 to hold true. In fact, it suffices to use a set of projections that forms the orthogonal basis
Or of RD. In such case we have

So(q, p) =
∑
r∈Or

∫
SD−1

pg(g) sup
frg∈Fq

Eq[srp(x)frg(xTg) + rTg∇xT gfrg(x
Tg)]dg (33)

is zero if and only if p = q a.e. One simple choice for Or can be Or = {r1, . . . , rD} where rd is
one-hot vector with value 1 in dth component.

To prove Remark 1, we only need to slightly modify the last few steps in the proof of Theorem 1.

Proof. We focus on the ‘only if’ part as the other part is trivial. Without loss of generality, we set
Or = {r1, . . . , rD} where rd is one-hot vector with value 1 in ith component. For general Or, we
can simply apply a inverse rotation matrixR−1 to recover this special case.

From Eq.(32), we have for direction rd,

sq(x)
Trd = sp(x)

Trd

⇒∇xd
log q(xd,x−d) = ∇xd

log p(xd,x−d)

⇒∇xd
log q(xd|x−d) = ∇xd

log p(xd|x−d).
If the above holds true for all directions rd ∈ Or, then the score of the complete conditional for q
and p are equal. Then from Lemma 1 in (Singhal et al., 2019), we have p = q a.e.

Now we can prove Corollory 1.1 using Remark 1.

Proof. It is trivial to show Smax(q, p) = 0 if p = q a.e. (Stein Identity). Now assume Smax(q, p) =
0, this means for any direction r ∈ Or, and g ∈ SD−1, we have

sup
frg∈Fq

Eq[srp(x)frg(xTg) + rTgr∇xT grfrg(x
Tg)] = 0

This is because we have show in the proof of Theorem 1 that the above term is greater or equal to 0.
Then we can directly use Remark 1 to show Smax(q, p) = 0 only if q = p a.e.

C SKSD RELATED THEOREMS

C.1 PROOF OF THEOREM 2

Proof. First, we can verify the following equality using the proof techniques in (Liu et al., 2016;
Chwialkowski et al., 2016):

hp,r,g(x,y) = 〈ξp,r,g(x, ·), ξp,r,g(y, ·)〉Hrg . (34)
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Next, we show that ξp,r,g(x, ·) is Bochner integrable (Christmann & Steinwart), i.e.

Eq||ξp,r,g(x)||Hrg
≤
√

Eq||ξp,r,g(x)||2Hrg
=
√
Eq[hp,r,g(x,x)] ≤ ∞. (35)

Thus, we can interchange the expectation and the inner product. Finally we finish the proof by
re-writing the supremum in So(q, p): (Eq.(33))

|| sup
frg∈Hrg,||frg||≤1

Eq[srp(x)frg(xTg) + rTg∇xT gfrg(x
Tg)]||2

=|| sup
frg∈Hrg,||frg||≤1

Eq[〈srp(x)krg(xTg, ·) + rTg∇xT gkrg(x
Tg, ·), frg〉Hrg ]||2

=|| sup
frg∈Hrg,||frg||≤1

〈frg,Eq[srp(x)Trkrg(xTg, ·) + rTg∇xT gkrg(x
Tg, ·)]〉Hrg

||2

=||Eq[ξp,r,g(x)]||2Hrg

=〈Eq[ξp,r,g(x, ·)],Eq[ξp,r,g(x′, ·)]〉Hrg

=Ex,x′∼q[hp,r,g(x,x′)].

(36)

C.2 PROOF OF THEOREM 3

Proof. First, we assume p = q a.e. To show SKo(q, p) = 0, we only need to show D2
rg(q, p) = 0

for all r and g. From Theorem 2, we have

D2
r,g(q, p) = 〈Eq[ξp,r,g(x, ·)],Eq[ξp,r,g(x′, ·)]〉.

From Assumption 5, we know krg(x
Tg, ·) belongs to the Stein class of q. Then we follow the same

proof technique in Proposition 1 but replace the test function frg(xTg) with krg(xTg, ·). This gives

Eq[srq(x)Trkrg(xTg, ·) + rTg∇xT gkrg(x
Tg, ·)] = 0, (37)

i.e. Eq[ξp,r,g(x, ·)] = 0. Thus, D2
rg(q, p) = 0.

Next, we prove that it can detect the non-convergence of p and q. We know SKo(q, p) = 0 if and
only if D2

rg(q, p) = 0. This means

Drg(q, p) = 0

⇒||Eq[ξp,r,g(x)]||Hrg
= 0

⇒Eq[ξp,r,g(x, ·)] = 0

where the second equality is from theorem 2. From Eq.(37), we can re-write

Eq[ξp,r,g(x, ·)] = Eq[(srp(x)− srq(x))krg(xTg, ·)].
Next, we denote G as an arbitrary rotation with the dth entry as the test direction g, and y = Gx
with yd = xTg. Then from Lemma 4, we have∫

q(x)∇x log
p(x)

q(x)

T

rkrg(x
Tg, ·)dx

=

∫
qG(yd,y−d)∇G−1y log

q(G−1y)

p(G−1y)

T

rkrg(yd, ·)dy−ddyd

=

∫
qG(yd)krg(yd, ·)

∫
qG(y−d|yd)∇G−1y log

q(G−1y)

p(G−1y)

T

rdy−ddyd

=

∫
qG(yd)krg(yd, ·)Hr(yd)dyd

whereHr(yd) =
∫
qG(y−d|yd)∇G−1y log

q(G−1y)
p(G−1y)

T
rdy−d. The above equation is exactly the mean

embedding of the function Hr(yd) w.r.t. measure qG. By assumption 5 that the kernel is C0-universal,
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and by Carmeli et al. (2010), its embedding is zero if and only if Hr(·) = 0. This implies

Hr(yd) =

∫
qG(y−d|yd)∇G−1y log

q(G−1y)

p(G−1y)

T

rdy−d = 0

⇒
∫
qG(yd,y−d)∇G−1y log

q(G−1y)

p(G−1y)

T

rdy−d = 0

⇒
∫
q(x)(srp(x)− srq(x))δ(yd − xTg)dx = 0

where the third equality is from Lemma 6. Then we can follow the same proof technique in Theorem
1 and remark 1 to show SKo(q, p) = 0 only if p = q a.e.

D DEEP KERNEL

Using deep kernels for KSD is straight-forward and it only requires the deep kernel to be characteristic.
But a naive application of deep kernels to SKSD or maxSKSD would result in a kernel evaluated on
φ(xTg), which is less desirable. To make the kernel evaluated on the transformed input φ(x)Tg, we
need to slightly adapt the form of SKSD (Eq.10). Assume we have a smooth injective mapping φ, we
define the following term

ξp,r,g,φ(x, ·) = srp(x)krg(φ
g(x), ·) + Cφ(x)∇φg(x)krg(φ

g(x), ·) (38)

and

hp,r,g,φ(x,y) =

srp(x)krg(φ
g(x), φg(y))srp(y) + Cr,g,φ(x)s

r
p(y)∇φg(x)krg(φ

g(x), φg(y))

+ Cr,g,φ(y)s
r
p(x)∇φg(y)krg(φ

g(x), φg(y))

+ Cr,g,φ(x)Cr,g,φ(y)∇2
φg(x),φg(y)krg(φ

g(x), φg(y))

(39)

where Cr,g,φ(x) = rT
∂φ(x)
∂x g and φg(x) = φ(x)Tg. We provide the following theorem to prove the

validity of the corresponding SKSD discrepancy measure.

Theorem 4. (Deep Kernel SKSD) For two probability distributions p and q, assume we have a smooth
injective mapping φ(x), such that Assumptions 1,2 and 5 are satisfied, and Eq[hp,r,g,φ(x,x)] <∞
for all r and g, then we propose deep kernel SKSD (Deep-SKSD) as

DSKo(q, p) =
∑
r∈Or

∫
SD−1

pg(g)D
2
r,g,φ(q, p)dg, D2

r,g,φ(q, p) = Eq[hp,r,g,φ(x,x′)], (40)

and it is 0 if and only if p = q a.e..

Deep-SKSD (Eq.(40)) can be viewed as a generalization of SKSD (Eq.(10)). Specifically, SKSD can
be recovered using Deep-SKSD with φ as the identity mapping.

D.1 THEOREM 4

Proof. We follow the proof of Theorem 2 to show

hp,r,g,φ(x,y) = 〈ξp,r,g,φ(x, ·), ξp,r,g,φ(y, ·)〉Hrg
.

By Assumption 5, krg belongs to the Stein class of q. Thus, krg(φg(x), ·) belongs to the Stein class
of q. This can be easily verified by using the definition of Stein class of q, and the facts that the kernel
function is bounded and q vanishes at boundary. Now we follow the proof in proposition 1 to define

F (x) =


r1krg(φ

g(x), ·)
r2krg(φ

g(x), ·)
...

rDkrg(φ
g(x), ·)
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and substitute this into Stein identity. This returns∫
q(x)[srq(x)krg(φ

g(x), ·) + Cr,g,φ(x)∇φg(x)krg(φ
g(x), ·)]dx = 0

⇒Eq[ξq,r,g,φ(x, ·)] = 0

⇒D2
r,g,φ(q, q) = Eq[hq,r,g,φ(x,x′)] = 〈Eq[ξq,r,g,φ(x, ·)],Eq[ξq,r,g,φ(x′, ·)]〉Hrg

= 0.

Therefore, if p = q a.e., then DSKo(q, p) = 0.

Now we prove DSKo(q, p) = 0 only if p = q a.e.. It is trivial that DSKo(q, p) = 0 if and only if
D2
r,g,φ(q, p) = 0. In other words,

DSKo(q, p) = 0 ⇒ Eq[ξp,r,g,φ(x, ·)] = 0.

Similar to the proof in Theorem 3, the RHS term above can be re-written as

Eq[ξp,r,g,φ(x, ·)] = Eq[(srp(x)− srq(x))krg(φg(x), ·)].
We denote G as an arbitrary rotation with the dth entry as the test direction g. We also define
y = φ(x) and u = Gy with ud = yTg. Thus, by the change of variable formula, we have

qφ(y) = q(x)|J |−1,
qGφ(u) = qφ(y)|G|−1 = qφ(y),

(41)

where J is the Jacobian matrix ∂φ(x)
∂x and | · | is the determinant. Thus, we have∫

q(x)[∇x log
p(x)

q(x)
]Trkrg(φ

g(x), ·)dx

=

∫
qφ(y)|J |[∇φ−1(y) log

p(φ−1(y))

q(φ−1(y))
]Trkrg(y

Tg, ·)|J |−1dy

=

∫
qGφ(ud,u−d)[∇φ−1(G−1u) log

p(φ−1(G−1u))

q(φ−1(G−1u))
]Trkrg(ud, ·)|G−1|duddu−d

=

∫
qGφ(ud)krg(ud, ·)

∫
qGφ(u−d|ud)[∇φ−1(G−1u) log

p(φ−1(G−1u))

q(φ−1(G−1u))
]Trdu−ddud

=

∫
qGφ(ud)krg(ud, ·)H(ud)dud.

Following the proof steps in Theorem 3, we have H(ud) = 0. Then by Lemma 6, we have∫
qGφ(u−d, ud)[∇φ−1(G−1u) log

p(φ−1(G−1u))

q(φ−1(G−1u))
]Trdu−d

=

∫
qφ(y)[∇φ−1(y) log

p(φ−1(y))

q(φ−1(y))
]Trδ(ud − yTg)dy.

Finally using similar proof techniques in Theorem 1, we have

p(φ−1(y)) = q(φ−1(y)).

As φ is injective, we have p = q a.e.

E CLOSED-FORM SOLUTIONS FOR GGG

In general, such closed-from solutions ofG is difficult to find, and we have to resort to gradient-based
optimization for such task. However, the closed-form solutions exists under certain conditions. In the
following, we give the closed-form solution ofG under conditions that p and q are full-factorized.
Let define two distributions p, q with support RD, such that log p(x) =

∑D
d=1 log pd(xd) and

log q(x) =
∑D
d=1 log qd(xd). Now we consider the maxSSD-g (Eq.6) with Or to be a group of

one-hot vectors. Thus, eq.6 becomes

Smax(q, p) =

D∑
d=1

max
fd∈Fq,gd∈SD−1

Eq[Sp,d(xd)fd(xTgd) + gd,d∇xT gdfd(x
Tgd)] (42)
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where Sp,d(xd) = ∇xd
log pd(xd) and gd,d is the dth element of gd. It is difficult to directly solve

this optimization. Instead, we can find its upper bound, and show that such upper bound can be
recovered by choosing a specific form ofG. Thus, suchG will be the optimal one.
Let’s consider the Stein divergence with test function H(x) : RD → RD and H(x) =
[h1(x), . . . , hD(x)]

T . We have

SD(q, p) = max
H∈Fq

Eq[∇x log p(x)TH(x) +∇TxH(x)]

= max
H∈Fq

Eq[
D∑
d=1

∇xd
log pd(xd)hd(x) +∇xd

hd(x)]

= max
H∈Fq

D∑
d=1

Eq[Sp,d(xd)hd(x) +∇xd
hd(x)]

=

D∑
d=1

max
hd∈Fq

Eq[Sp,d(xd)hd(x) +∇xd
hd(x)]

(43)

where Sp,d(xd) = ∇xd
log pd(xd). It is trivial that SD(q, p) ≥ Smax(q, p) because hd(x) is less

restrictive than fd(xTgd). From Hu et al. (2018), we can obtain the optimal form for H∗(x) ∝
Sp(x)− Sq(x) where Sp(x) = ∇x log p(x). Therefore, h∗d(x) = h∗d(xd) ∝ Sp,d(xd)− Sq,d(xd).
By substitution into eq.43, we have

SD(q, p) =

D∑
d=1

Eq[Sp,d(xd)h∗d(xd) +∇xd
h∗d(xd)] (44)

We note that eq.44 can be recovered by maxSSD-g (eq.42) with gd = [0, . . . , 1d, . . . , 0]
T where dth

element 1d = 1, and fd(xd) ∝ Sp,d(xd)− Sq,d(xd). Thus, the optimalG = I , which is an identity
matrix.

F APPLICATIONS OF MAXSKSD

F.1 GOODNESS-OF-FIT TEST

We propose a Goodness-of-fit test method based on the U-statistics of maxSKSD (Eq.(12)) given
the optimal test direction gr. In the following we analyze the asymptotic behavior of the proposed
statistic.
Theorem 5. Assume the conditions in Theorem 3 are satisfied, we have the following:

1. If q 6= p, then SK
∧

max(q, p) is asymptotically normal. Particularly,
√
N(SK
∧

max(q, p)− SKmax(q, p))
d→ N (0, σ2

h) (45)

where σ2
h = varx∼q(

∑
r∈Or

Ex′∼q[hp,r,gr (x,x′)]) and σh 6= 0

2. If q = p, we have a degenerated U-statistics with σh = 0 and

NSK
∧

max(q, p)
d→
∞∑
j=1

cj(Z
2
j − 1) (46)

where {Zj} are i.i.d standard Gaussian variables, and {cj} are the eigenvalues of the kernel∑
r∈Or

hp,r,gr (x,x
′) under q(x). In other words, they are the solutions of cjφj(x) =∫

x′

∑
r∈Or

hp,r,gr (x,x
′)φj(x

′)q(x′)dx′.

Proof. We can directly use the results in Section 5.5 of (Serfling, 2009). We only need to check the
conditions σh 6= 0 when p 6= q and σh = 0 when p = q.

When p = q, we re-write Ex′∼q[hp,r,gr ] as

Ex′∼q[hp,r,gr (x,x′)] = 〈ξp,r,gr (x, ·),Ex′∼q[ξp,r,gr (x′, ·)]〉Hrgr
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From the Eq.(37) in theorem 3, we have Ex′∼q[ξp,r,g(x′, ·)] = 0. Thus, Ex′∼q[hp,r,gr ] = 0 for all
r ∈ Or. Thus, we have σh = 0 when q = p.

We assume when p 6= q, σh = 0. This means Ex′∼q[hp,r,g(x,x′)] = cr where cr is a constant. Thus,

cr = Ex∼p[Ex′∼q[hp,r,g(x,x′)]]
⇒cr = Ex′∼q[Ex∼p[hp,r,g(x,x′)]]

From the Eq.(37) in Theorem 3, we have cr = 0 for all r ∈ Or. Thus, Ex,x′∼q[hp,r,g(x,x′)] =
cr = 0 which contradict p 6= q

This theorem indicates a well-defined limit distribution for maxSKSD U-statistics. Next, similar to
the previous work (Liu et al., 2016), we adopt the bootstrap method (Arcones & Gine, 1992; Huskova
& Janssen, 1993). The quantile computed by the bootstrap samples (Eq.13) is consistent to the one
using degenerated U-statistics. This consistence is established in (Huskova & Janssen, 1993; Arcones
& Gine, 1992).

F.2 SLICED SVGD

First, we introduce one result from Liu & Wang (2016), that shows the connections between the SD
and KL divergence between the particle’s underlying distribution q and target p.

Lemma 7. (Liu & Wang, 2016) Let T (x) = x + εφ(x) and q[T ](z) be the density of z = T (x)
when x ∼ q(x). With Ap the Stein operator defined in Eq.(1), we have

∇εKL[q[T ]||p]|ε=0 = −Eq[Apφ(x)]. (47)

To derive the sliced version of SVGD, we follow the similar recipe of Liu & Wang (2016) by first
connecting the SSD with KL divergence (like Lemma 7), and then derive the optimal perturbation
directions (like Lemma 1 in background section 2.2). To achieve this, we modify the flow mapping
to TG(x) : RD → RD as TG(x) = x + εφG(x). Specifically for φG(x), we adopt D univariate
perturbations instead of one multivariate perturbation:

φG(x) =

 φg1(x
Tg1)

...
φgD (x

TgD)

 (48)

where G = [g1, . . . , gD] ∈ RD×D represents slice matrix. For this specific mapping we have the
following result analogous to Lemma 7.

Lemma 8. Let TG(x) = x+ εφG(x) where φG is defined as Eq.(48). Define q[TG](z) as the density
of z = TG(x) when x ∼ q(x), with slice matrixG, we have

∇ε[q[TG]||p]|ε=0 = −
D∑
d=1

Eq[sdp(x)φgd(xTgd) + gd,d∇xT gdφgd(x
Tgd)] (49)

where sdp(x) = ∇xd
log p(x) and gd,d is the dth element in gd.

Proof. This can be easily verified by substituting Eq.(48) into Eq.(47).

Eq.(49) is similar to maxSSD (Eq.(6)) where the optimal test directions and test functions are replaced
with matrixG and perturbation φgd(x). Or takes the values one-hot vectors. The main difference
between this decrease magnitude and maxSSD is that we do not assumeG is optimal. Next, we show
how to obtain an analytic descent directions that maximize the decrease magnitude.

By restricting each perturbation φgd ∈ Hrgd whereHrgd is an RKHS equipped with kernel, we have
the following result.
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Lemma 9. Assume the conditions in lemma 8. If for each perturbation φgd ∈ Hrgd whereHrgd is an
RKHS equipped with kernel krgd and ||φgd ||Hrgd

≤ Drgd(q, p), then the steepest descent direction
for dth perturbation is

φ∗gd(·) = Eq[ξp,rd,gd(x, ·)], (50)

and

∇εKL[q[TG]||p]|ε=0 = −
D∑
d=1

D2
dgd

(q, p), (51)

where D2
dgd

(q, p) = Eq[hp,rd,gd(x,x′)] with one-hot vector rd.

Proof. We show this result using the reproducing property of RKHSHrgd . The supremum of Eq.(49)
can be re-written as

sup
φG

D∑
d=1

Eq[sdp(x)φgd(xTgd) + rTd gd∇xT gdφgd(x
Tgd)]

=

D∑
d=1

sup
φgd

Eq[sdp(x)φgd(xTgd) + rTd gd∇xT gdφgd(x
Tgd)]

=

D∑
d=1

sup
φgd
∈Hrgd

||φgd
||Hrgd

≤Drgd
(q,p)

Eq[〈sdp(x)krgd(xTgd, ·) + rTd gd∇xT gdkrgd(x
Tgd, ·), φgd〉Hrgd

]

=

D∑
d=1

sup
φgd
∈Hrgd

||φgd
||Hrgd

≤Drgd
(q,p)

〈Eq[ξp,rd,gd(x, ·)], φgd〉Hrgd

=

D∑
d=1

Eq[hp,rd,gd(x,x′)] =
D∑
d=1

D2
dgd

(q, p),

(52)

where the third equality is because of the Bochner integrability of ξp,rd,gd(x, ·) shown in Theorem 2.
And the optimal perturbation for dth dimension is

φ∗gd(·) = Eq[ξp,rd,gd(x, ·)]. (53)

Note that in Lemmas 8 and 9, we assume an arbitrary projection matrix G. To find the steepest
descent direction, one can maximize Eq.(51) w.r.t.G. In this case this decrease magnitude Eq.(51) is
identical to maxSKSD Eq.(11) with orthogonal basis Or and optimal test directionsG.

The name sliced SVGD comes from that for each perturbation φgd(·), the kernel krgd and the re-
pulsive force rTd g∇xT gdkrgd(x

Tgd, ·) are evaluated on xTgd instead of x in SVGD. Although
S-SVGD only uses one-dimensional projection of x, it is still a valid inference method as long
as the optimality of G is ensured, because maxSKSD is a valid discrepancy measure.1 The S-
SVGD method is summarised in Algorithm 2. In practice this algorithm may violate the opti-
mality condition of G (due to estimation error using finite samples and local optimum found by

1Note that maximizing Eq.(51) w.r.t. sliced matrix G is necessary, otherwise Eq.(51) is not a valid discrepancy
measure, and a zero value does not imply p = q. In such case the resulting particle inference method is not
asymptotically exact.
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Figure 5: This rejection rate contour demonstrates the sensitivity of each GOF method to the change
of mean/variance of two Gaussians under SDS. (Left) The rejection sensitivity of KSD. (Middle)
Sensitivity of maxSKSD-g. (Right) Sensitivity of maxSKSD-rg.

gradient-based optimization), which is a common issue in many adversarial training procedure.

Algorithm 2: S-SVGD for variational inference

Input :Initial samples {xi}Ni=1, target score function sp(x), Orthogonal basis Or, initial slice
matrixG, kernel function krg , iteration number L and step size ε.

Output :Set of particles {xi}Ni=1 that approximates p
for l ≤ L do

Update each particles xl+1
i = xli + εφ∗G(x

l
i) where φ∗G(x

l
i) is computed using Eq.(50);

Find the optimal slice matrixG by maximizing Eq.(51) using {xl+1
i }Ni=1

end

G LIMITATIONS OF MAXSKSD-G

In this section, we discuss the potential limitations of maxSKSD-g and motivate the use of maxSKSD-
rg to address such issue. We begin this journey by proposing a sensitivity test on the rejection rate
between two Gaussians with different mean and variances. Then, we analyze the issue of maxSKSD-g,
and why maxSKSD-rg can potentially address such pathology. In the end, we empirically show
maxSKSD-rg indeed solves the problem under the same sensitivity test, and achieves the best
performance.

G.1 SENSITIVITY TEST OF TWO GAUSSIANS

Assume we have two fully factorized 50 dimensional Gaussians p, q, we propose to test the sensitivity
of the GOF test method to the change of mean and variance of q. In the following experiment, we
only change the mean and variance of the 1st dimension and keep the remaining 49 dimensions to be
the same as p. We call this scheme single dimension shift (SDS). We include KSD as the baseline for
comparison.

From the left and middle panel of figure.5, we notice that KSD is sensitive to the mean shift but less
sensitive to the variance change. Specifically, KSD successfully detects the difference between q
and p when the mean shift is beyond 0.18 but fails if the only changed term is the variance. On the
other hand, maxSKSD-g is capable of detecting small variance changes but less sensitive to the mean
change compared to KSD. This is consistent with the conclusion in section 4.1.1 that maxSKSD-g
obtains nearly optimal rejection rate in Gaussian diffusion test where KSD completely fails. However,
this still shows the potential limitations of maxSKSD-g that it may perform worse than the baselines
under certain circumstances.
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Figure 6: (Left) The discrepancy value of KSD, maxSKSD-g and maxSKSD-rg with standard error
for SDS mean shift. Each plot is obtained by averaging 100 runs. (Right) The rejection rate for SDS
mean shift with different dimensions.

G.2 ANALYSIS OF THE PATHOLOGY

In this section, we give a detailed analysis on the potential reasons behind such limitation. From the
setup of SDS mean shift, we know the mean of q, µq , differs from µp only in the 1st dimension. We
write down qd(xd) to be the marginal distribution for dimension d, and pd accordingly. maxSKSD-g
(Eq.11) requires the orthogonal basis Or and corresponding optimal slice matrix G. We set Or to
be the standard basis of RD, i.e. a set of one-hot vectors. Due to the fully factorized property of p,
q and SDS setup, the optimal slice matrix G is an identity matrix. Therefore, we can re-write the
maxSKSD-g into a summation over a set of KSD between their marginals qd and pd. We first inspect
the optimal test function in Eq.(7) for dimension d. Assume we use the same kernel k for all r, g, i.e.
k = krg , we have

ξp,r,g(x, ·) = srp(x)k(x
Tgr, ·) + rTgr∇xT grk(x

Tgr, ·)
= spd(xd)k(xd, ·) +∇xd

k(xd, ·)
(54)

Substituting it into Eq.(9), we obtain

Drg(q, p) = ||Eq[ξp,r,g(x)]||2Hrg
= ||Eqd [ξp,r,g(xd)]||2Hrg

= Eqd(xd)qd(x′d)
[up(xd, x

′
d)]

= D2(qd, pd)

(55)

This is exactly the KSD between the marginal qd and pd. Therefore, the maxSKSD-g is written as

SKmax(q, p) =
∑
r∈Or

sup
gr

D2
rg(q, p)

=

D∑
d=1

Drg(q, p)

=

D∑
d=1

D2(qd, pd)

(56)

This is the summation of the KSD between their marginals across all dimensions.

As the mean only differs in the first dimension, the dominant value for maxSKSD-g is the KSD
between the first marginal, q1 and p1. However, in practice, variances exists in other KSD term inside
the summation of maxSKSD-g and they provides nothing but noise. Therefore the overall variance of
maxSKSD-g increases with the dimensions. For a high dimensional problem, the important signal
can be easily buried due to the increasing variance. Figure 6 (Left) shows the discrepancy value
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against dimensions. We can easily observe that the variance of maxSKSD-g increases with the
dimensions. This is consistent with the above analysis. The variance of KSD also increases but is
less obvious compared to maxSKSD-g. Figure 6 (Right) shows that maxSKSD-g also suffers from
curse-of-dimensionality under the SDS mean shift due to such increasing variance.

G.3 MAXSKSD-RG

Based on the above analysis, the underlying reason behind maxSKSD-g pathology is the noise
provided by the irrelevant dimensions. This is the fundamental problem caused by choosing a
orthogonal basis Or for maxSKSD. In fact, for any orthogonal basis Or, we can always create a
such pathology where maxSKSD-g suffers from the extra noise provided by irrelevant basis. One
potential way to address such problem is to introduce a metric to avoid such irrelevant basis. In here,
we choose maxSKSD itself as the metric. Thus, instead of selecting a orthogonal basis Or, we try to
optimize the projections Or ∈ RD×D (not necessarily orthogonal). We write maxSKSD-rg as

SKmax−rg(q, p) = sup
Or,G

∑
r∈Or

D2
rgr (q, p) (57)

We test the performance of maxSKSD-rg in the same SDS mean shift setup. Due to the fully factorized
property of two Gaussians, the optimal Or consists of repeated one-hot vector r = [1, 0, 0, . . .]. The
optimal slice matrixG share the same structure as Or. Thus, maxSKSD-rg (Eq.57) becomes

SKmax−rg(q, p) = D ×D2(q1, p1) (58)

which is D times KSD value between the marginals of the 1st dimensions. We notice that D is just a
constant, thus can be removed without changing its performance. We call this effective (maxSKSD-
rg). As it only considers the marginal of the most important dimension, its variance does not increase
with dimension of the problem. From the maxSKSD-rg value in figure.6 (left), we observe it has the
lowest variance and does not change across the dimensions as expected. In terms of the rejection
rate (the right of figure.6), maxSKSD-rg does not suffers from the curse-of-dimensionality, and
consistently achieves nearly optimal rejection rate.

We also conduct the sensitivity test for maxSKSD-rg (the right in figure.5). We observe maxSKSD-rg
not only addresses the mean shift pathology of maxSKSD-g, it is also more sensitive compared to
KSD. Additionally, it is even more sensitive to the variance change compared to maxSKSD-g. The
reason is the same as the mean shift case.

G.4 IS MAXSKSD-RG ALWAYS BETTER?

Based on the above analysis, maxSKSD-rg is superior compared to maxSKSD-g theoretically. Indeed,
it is trivial that maxSKSD-g is a lower bound for maxSKSD-rg which indicates a weaker discriminative
power. However, this theoretical advantage relies on the assumption of the optimality of r, which is
also the key gap between theory and application.

maxSKSD-rg often gives superior performance compared to maxSKSD-g in terms of GOF test. This
is because GOF test only focus on the difference between two distributions, i.e. it focuses on finding
a direction that gives higher discrepancy value. But this is not the case for model learning especially
when they are used as training objectives. Instead, model learning focuses on the fact that the
model approximates the target distribution in every directions. In theory, maxSKSD-rg can still give
good performance as at each training iteration, this objective tries to minimize the largest difference
between two distributions. However, this is not true in practice. We suspect the reasons are two
fold: (1) optimal r can not be guaranteed; (2) if the true optimal direction is drastically changing
between iterations, gradient-based optimization may takes long time to move away from the current
r. Therefore, instead of relying on one slicing direction that might be sub-optimal in practice, in
maxSKSD-g slicing along the directions in the orthogonal basis Or provides better coverage of the
difference between p and q. Figure 7 shows the comparison between maxSKSD-rg and maxSKSD-g
for training 200 dimensional ICA.

H COMPUTATIONAL AND MEMORY COST
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Figure 7: The ICA training curve of test negative LL with different training objectives. y-axis
indicates the negative test log-likelihood.
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In this section, we give a brief analysis on the computational and memory cost for performing GOF
test and S-SVGD.

H.1 MEMORY COST

First, let’s consider the GOT test. If maxSKSD-g is used, we only need to store the slicing matrixG,
which cost O(D2). However, if maxSKSD-rg is used, the actual memory cost can be much reduced.
For GOF test, we only care about whether it can detect the differences between distributions. Thus,
we do not need D number of basis r, instead, in theory, we only need 1 basis which maximizes the
discriminative power. In practice, we may need m basis where 1 < m� D. Thus, the memory cost
will be O(mD) +O(mD) = O(mD).

In the scope of this work, the memory cost for S-SVGD is similar to GOF test with maxSKSD-g,
where slicing matrix G ∈ RD×D need to be stored. However, it remains a question that whether
maxSKSD-rg can be used to derive a corresponding variant of S-SVGD. If that’s the case, one only
need to select ’important’ basis r to drive the particles towards the target distributions. Thus, the
memory cost is reduced to O(mD). For the BNN experiment in appendix J.5, the actual memory
cost for SVGD with Boston housing data set is 1003MB and 1203MB for S-SVGD with NVIDIA
Quadro P6000.

H.2 TIME COMPLEXITY

The computational cost of computing the kernel K(x,x′) with each pair of x,x′ is O(D). Thus,
evaluating KSD requires the O(N2D) where N is the number of samples used for Monte Carlo
estimations. Similarly, the cost of each kernel evaluation K(xTg,x′Tg) is O(D), but maxSKSD-g
requires such evaluation for each g. Thus, the total cost for maxSKSD-g is O(N2D2). On the other
hand, maxSKSD-rg can reduce such cost to O(N2Dm) where m is the number of ’important’ basis
selected by maximizing Eq.11.

For SVGD, the kernel is also evaluated on each pair of x,x′. Thus, the computational cost isO(N2D)
where N is the number of particles. Similarly, the computational cost of S-SVGD is O(N2D2). In
practice, first we compare their time consumption on the above BNN experiment. The S-SVGD
uses about 0.073s per epoch whereas SVGD only uses 0.032s per epoch, which is about 2.5 times
larger than SVGD with P6000. For amortized SVGD experiment with MNIST data set, the time
consumption of amortized SVGD is 0.112s per iteration, and S-SVGD is 0.122s per iteration, which
is almost the same due to the smaller latent dimension (32).

We argue that there is no free lunch and every method has its compromises. In our case, the significant
advantages of the proposed methods compared to KSD and SVGD come with the cost of higher
computational and memory consumption. Even with this extra cost, the proposed framework is still a
significant improvement for KSD and SVGD, as they fail even at very low dimensions (around 30),
where the cost of our method is not much higher. Especially for GOF test, even the dimension is
huge, one can always adopt maxSKSD-rg to reduce the memory and computational cost by selecting
important basis.
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I GOF TEST

I.1 SETUP FOR HIGH DIMENSIONAL BENCHMARK GOF TEST

For each GOF test, we draw 1000 samples from alternative hypothesis q. These samples are directly
used for GOF test methods that do not require any training procedure, like KSD, MMD, RFSD and
FSSD Rand. However, for methods that require training like maxSKSD and FSSD Opt, we split
the entire samples into 200 training data and 800 GOF test data as (Jitkrittum et al., 2017; Huggins
& Mackey, 2018). For maxSKSD, we initially draw the slice matrixG from a normal distribution
before normalizing the magnitude of each vectors inG to 1 and use Adam with learning rate 0.001 to
update it (maximizing Eq.(11)). For FSSD-Opt, we use the default settings in the original publication.
During the GOF test, only the test data are used for FSSD-Opt and maxSKSD. We set the significant
level α = 0.05 and the dimension of the distribution grows from 2 to 100. We use 1000 bootstrap
samples for all tests, and 1000 trials for Gaussian Null test, 500 trials for Gaussian Laplace test, 250
trials for Gaussian Multivariatet-t test and 500 trials for Gaussian diffusion test.

I.2 SETUP FOR RBM GOF TEST

For the RBM, we use 50 dimension for observable variable and 40 dimension for hidden variable.
We run 100 trials with 1000 bootstrap samples for each method. 1000 test samples are used for
methods like KSD, MMD, RFSD and FFSD Rand. For maxSKSD_g, maxSKSD_rg and FFSD Opt
that require training, we use 800 samples for test. Parallel block Gibbs sampler with 2000 burn-in is
used to draw samples from q. To avoid the over-fitting to small training samples, we use 200 samples
to update the slice matrixG (orG and r for maxSKSD_rg) in each Gibbs step during the burning.
However, it should be noted that these intermediate samples from the burn-in should not be used as
the test samples for other methods because they are not from q. This setup is slightly different from
the most general GOF test where only test samples and target density are given. However, it is still
useful for some applications such as detecting convergence/selecting hyper-parameter of MCMC
sampler (appendix I.3). Finding relatively good directions for maxSKSD with fewer training samples
is a good direction for future work.

I.3 SELECTING HYPERPARAMETER OF A BIASED SAMPLER

We use the proposed methods to select the step size of a biased sampler. Particularly, we consider
using SGHMC here which is a biased sampler without Metropolis-Hasting step. The bias is mainly
caused by the discretization error, namely, the step size. For smaller step size, the bias is small but
the mixing speed is slow. Larger step size results in higher bias with fast mixing.

Selecting the step size is essentially a GOF test problem, where alternative hypothesis is the invariant
underlying distribution of SGHMC, and the bias is quantified by the discrepancy value. The best step
size is the one corresponding to the lowest discrepancy value. We compare our proposed maxSKSD
based methods with KSD. The target distribution is a 15 dimensional correlated Gaussian distribution
with zero mean and randomly generated co-variance matrix. We also include a strong baseline using
KL divergence where the q is a Gaussian distribution, with parameters estimated by samples from
SGHMC.

Setup We run 100 parallel SGHMC chains with 2000 burn-in period. During each step in burn-in,
we update the sliced matrix G (and r) using such 100 samples. After burn-in, we fix the G and
r and continue to run SGHMC with thinning 5 until 1500 test samples are collected. We run this
experiment using 3 different seeds. For KSD and maxSKSD discrepancy value, we use U-statistics
due to its unbiasedness.

Figure 8 shows the discrepancy curve with different step sizes and table 4 shows some diagnostic
statistics. KL based method is used as the ’ground truth’ measure. In summary, the step sizes chosen
by maxSKSD based methods are more sensible than those selected by KSD. To be specific, take
random seed 1 as an example, KSD failed to detect the non-convergence for step size larger than
0.011 where KL starts to increase. Even worse, KSD achieves the lowest value at step size 0.015
which is a poor choice indicated by KL divergence. On the other hand, maxSKSD based methods,
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Figure 8: Discrepancy value for different random seed. The x-axis indicates the step size used for
SGHMC.

especially maxSKSD_rg, can detect the non-convergence and agrees with the trend shown by the KL
method. The above also holds true for other random seeds.

Method Random seed
1 2 3

KL 0.004 0.004 0.004
KSD 0.015 0.015 0.013
maxSKSD_rg 0.004 0.008 0.008
maxSKSD_g 0.013 0.004 0.008

(a)

Method Metric
step size KSD maxSKSD_rg maxSKSD_g KL

KSD 0.015 -0.384 902 66.0 1.46
maxSKSD_rg 0.008 -0.0166 -0.332 -0.018 0.257
maxSKSD_g 0.004 -0.0100 -0.269 -0.079 0.201

(b)

Table 4: Top: This table shows the step size chosen by different methods. We can observe that those
chosen by maxSKSD based methods and KL method are closer compared to KSD. Bottom: The
divergence value at the chosen step size for random seed 2. The row indicates the method used to
choose the step size and column indicates the corresponding values. We can observe maxSKSD
based methods indeed agree more with KL method where the KL value is around 0.2 at step size
chosen by maxSKSD based methods. On the other hand, KSD failed to detect the non-convergence
at step size 0.015 where KL value is already 1.46

J MODEL TRAINING

J.1 VARIANCE ESTIMATION FOR GAUSSIAN TOY EXAMPLE

This experiment is to demonstrate the mode collapse problem of SVGD at high dimensions and the
advantage of the proposed S-SVGD.

Setup The target distribution is an standard Gaussian distribution N (0, I). 50, 100 and 200
samples are used for SVGD and S-SVGD. For fair comparison, we use the same RBF kernel with
median heuristic for both SVGD and S-SVGD. We run 6000 update steps to make sure they fully
converged before estimating the variance. For S-SVGD, to avoid the over-fitting of sliced matrix
G to small number of samples, we only update the matrixG when the samples after the update are
far away from the one used for previous update. The initialized particles are drawn from N (2,2I).
The evaluation metric is the averaged estimated variance of the resulting samples. Namely, for a D
dimensional target distribution, Varavg = 1

D

∑D
d=1 Var({xd}Nn=1).
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Figure 9: Statistics for SVGD and S-SVGD. The PARF is calculated as 1
N

∑N
n=1 ||R(xn, q̂N )||∞

(Zhuo et al., 2017), whereR(xn, q̂N ) is the repulsive force for xn and q̂N is the empirical distribution
of the samples {x}Nn=1. For SVGD, it is R(x, qy) = Eqy [∇yk(x,y)] and for S-SVGD, the dth

element of R(x, qy) is R(x, qy)d = Eqy [gd,d∇yT gdkgd(x
Tgd,y

Tgd)].

From figure 2, we observe when the sample number is small, the resulting samples tend to collapse
to a point in high dimensions (low variance). On the other hand, the proposed S-SVGD correctly
recovers the true target variance regardless of the number of samples and dimensions. This mode
collapse behavior of SVGD is directly related to the decrease of the repulsive force at high dimensions
(for detailed analysis of this behavior, refer to (Zhuo et al., 2017)). To verify this, we plot the particle
averaged repulsive force (PARF) and the averaged estimated mean of the samples in figure 9. The
PARF for SVGD reduces as the dimension increases whereas S-SVGD stays at a constant level. This
is because the kernel and repulsive force of S-SVGD are evaluated on the one-dimensional projections
instead of the full input x. This dimensionality reduction side steps the decrease of the repulsive
force at high dimensions regardless of the sample number, thus S-SVGD recovers the correct target
variance.

J.2 SETUP FOR ICA MODEL TRAINING

We increase the dimensions for ICA from 10 to 200 to evaluate their performance in low and high
dimensions. We generate the training and test data by using a randomly sampled weight matrix. We
use 20000 training data and 5000 test data. To make the computation stabler, we follow (Grathwohl
et al., 2020) such that the weight matrix is initialized until its conditional number is smaller than
the dimension of the matrix. For LSD, we follow the exact same architecture as the original paper
(Grathwohl et al., 2020). For KSD, we use the U-statistics with the bandwidth chosen as the median
distance (the training for KSD with V-statistic diverges). For maxSKSD, we instead use the V-
statistics with 1.5 times median distance as the bandwidth. We train the ICA model for 15000 steps
using Adam optimizer with 0.001 learning rate and β1 = 0.5, β2 = 0.9. We use 5 independent runs
and average their results.

J.3 ICA ADDITIONAL PLOTS

From the figure 10, we observe at low dimensions (D = 10), LSD converges fastest and KSD is
the slowest. However, as the dimension increases, the convergence speed of maxSKSD catches up
with LSD and becomes faster after D = 60, whereas KSD starts to slow down and even diverges at
D = 200.

J.4 AMORTIZED SVGD

Algorithm 3 shows the training framework of amortized SVGD. For experiment details, we use
fully connected neural network with ReLU activations and 2 hidden layers for encoder and decoder
([300, 200] and [200, 300] respectively). For decoder output, we use sigmoid activation function and
binary cross-entropy for the decoder loss. For the implicit encoder, the input is simply a concatenation
of the image and Gaussian noise with the same dimension as the latent space. We also use dropout
with probability 0.3 for each layer of the encoder. For SVGD and S-SVGD, we use 0.1 for step size
and only run 1 update of the latent samples before we update the encoder. The kernel bandwidth
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Figure 10: Training curve of different methods for ICA problems. The y-axis indicates the NLL of
test data.

is chosen by the median heuristic. We update the sliced matrix G for S-SVGD once per each
encoder update. 50 latent samples are used for both encoder and decoder updates. We use Adam
optimizer(Kingma & Ba, 2014) with 0.001 learning rate and 100 for batch size.

For evaluation, the log likelihood is computed using Hamiltonian annealed importance sampling
(HAIS) (Wu et al., 2016). Specifically, we use 1000 annealed steps and 10 leapfrog update per step.
We tune the HAIS step size to maintain 0.65 acceptance rate.

For imputation, we follow (Rezende et al., 2014) to use approximate Gibbs sampler with D =
32 latent space. Specifically, with missing and observed pixels denoted as xm and xo, encoder
distribution qφ and decoder pθ, we iteratively applies the following procedure: (1) generate latent
samples z ∼ qφ(z|xo,xm) (2) reconstruction x∗ ∼ pθ(x

∗|z) (3) Imputation xm ← x∗m. To
compute label entropy and accuracy, 200 parallel samplers are used for each image with 500 steps
to make sure they fully converged. The imputation label is found by the nearest neighbour method
in training data. Label entropy is computed by the its empirical probability and the accuracy is the
percentage of the correct ones among all imputed images.

Algorithm 3: Amortized SVGD
Input :Total training step T ,Adam learning rate εO, SVGD/S-SVGD step size εS , latent

sample size N , encoder network fq , decoder network fd and decoder loss L
for t ≤ T do

Generate N initial latent samples using encoder {zi}Ni=1 = fq(x);
Update the samples {z∗i }Ni=1 based on {zi}Ni=1 using SVGD or S-SVGD (algorithm 2) with

step size εS ;
Compute the encoder MSE loss between {z∗i }Ni=1 and {zi}Ni=1 and update encoder fq using
Adam(fq, εO);

Compute decoder loss L(x, {z∗i }Ni=1) and update decoder using Adam(fd, εO);
end

Figure 11 shows some of the resulting imputed images after 500 Gibbs steps. We can clearly observe
that the S-SVGD generated more diverse images compared to Vanilla VAE (e.g. digit ’8’ and digit
’5’), where it only captures a single mode. Compared to amortized SVGD, the diversity of generated
images are similar, but the imputed images of S-SVGD seems to be closer to the original image
(e.g. digit ’8’ and the first digit ’5’). This explains the high accuracy value in table 3. Although
vanilla VAE also generates images that are close to the original one, it may fail to capture the correct
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(a) Vanilla VAE

(b) Amortized SVGD

(c) Amortized S-SVGD

Figure 11: Imputation images after 500 Gibbs steps. Those images are generated by parallel pseudo-
Gibbs sampler. The first column shows the original images. The second column represents the
masked images. The rest of the columns are the imputed images.

mode and get stuck at the wrong one (e.g. first digit ’5’). This explains the slightly worse accuracy
compared to amortized S-SVGD.

J.5 BAYESIAN NEURAL NETWORK REGRESSION

We also compare our proposed S-SVGD algorithm with the baseline SVGD in high dimensional
Bayesian neural network inference. We follow the same settings in (Liu & Wang, 2016) to use a fully
connected one-hidden-layer neural network with ReLU activation and 50 hidden units. The dataset
are randomly split into 90% training and 10% test data. Batch size 100 is used for all data sets. Each
results are averaged over 15 random trials, except for Protein where 5 trails are conducted. AdaGrad
is used for both SVGD and S-SVGD. For SVGD, the bandwidth is selected in the same way as (Liu
& Wang, 2016). For S-SVGD, we use the same way to select the bandwidth except we multiply a
coefficient 0.15 in front of the bandwidth. 50 samples are used for both SVGD and S-SVGD. We
initialize the particles to be closed to each other. For small datasets like Boston Housing, Yacht
and Energy, we apply a small coefficient for the initial repulsive force of S-SVGD, and it gradually
increases to 1 after 500, 1000 and 500 epochs respectively. This is to avoid the over-dominance of the
repulsive force at the beginning. For other datasets, we do not tune the repulsive force. For Boston
Housing, Concrete, and Energy, we train the network for 2000 epochs. We use 500 and 50 epochs for
Wine and Protein respectively. For the rest of the data set, we use 200 epochs.

We evaluate the performance through the log likelihood and root mean squared error (RMSE) of the
test set, together with the particle-sum distance

∑
1≤i<j≤N dist(xi,xj) to examine the spread of

the resulting particles. Table 5 shows the performance of BNN trained using SVGD and S-SVGD on
9 UCI data sets. We can clearly observe S-SVGD outperforms SVGD on 7 out of 9 data sets. From
the particle-sum distance, the resulting particles from S-SVGD are more spread out than SVGD to
prevent mode collapse. This behavior can indeed bring benefits especially when dealing with small
data set where uncertainty quantification is important. To be specific, SVGD achieves better result
only on the large Protein data set where the epistemic uncertainty is low compared to small data
set. Therefore, the mode collapse of SVGD does not affect the performance too much. This can be
partially verified by examining other smaller datasets. Boston Housing, Concrete, Energy and Yacht
are very small data sets with quite noisy features. Thus, S-SVGD significantly outperforms SVGD on
those datasets due to its better uncertainty estimation. For the remaining data set, e.g. Combined,
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Table 5: BNN results on UCI regression benchmarks, comparing SVGD and S-SVGD. See main text
for details.

Dataset RMSE test LL Dist
SVGD S-SVGD SVGD S-SVGD SVGD S-SVGD

Boston 2.937± 0.173 2.87 ± 0.163 −2.533± 0.092 −2.507 ± 0.086 23272± 986 49550± 6250
Concrete 5.189± 0.115 4.880 ± 0.082 −3.076± 0.024 −3.004 ± 0.023 24650± 1367 62680± 1090
Combined 3.979± 0.040 3.914 ± 0.041 −2.802± 0.010 −2.786 ± 0.010 7148± 245 33090± 430
Naval 0.0030± 0 0.0029 ± 0 4.368± 0.014 4.411 ± 0.010 61838± 2450 231600± 2980
Wine 0.607± 0.009 0.603 ± 0.009 −0.924± 0.015 −0.914 ± 0.015 12534± 982 35280± 2470
Energy 1.353± 0.049 1.132 ± 0.048 −1.736± 0.040 −1.540 ± 0.044 16476± 719 50850± 1570
kin8nm 0.082± 0.001 0.079 ± 0 1.084± 0.012 1.104 ± 0.006 55715± 2276 117700± 902
Yacht 0.714± 0.078 0.613 ± 0.064 −1.277± 0.155 −0.999 ± 0.087 15530± 1079 47290± 2100
Protein 4.543 ± 0.010 4.587± 0.009 −2.932 ± 0.003 −2.942± 0.002 62370± 2143 102600± 2335

Naval and kin8nm, their data set sizes are between the aforementioned small set and Protein. Thus,
S-SVGD still achieves better results but the difference is less significant. One exception is Wine, a
small data set, where S-SVGD has similar performance as SVGD. This is because Wine has relatively
easy prediction targets.
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