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A Proofs Main Certificate (Section 4)

Proposition 1. Given target node v in graph G, and adversarial budget ρ. Let E denote the event
that the prediction fv(ϕ(G)) receives at least one message from perturbed nodes. Then the change
in label probability |pv,y(G) − pv,y(G′)| is bounded by the probability ∆ = p(E) for all classes
y ∈ {1, . . . , C} and graphs G′ with G′ ∈ Bρ(G): |pv,y(G)− pv,y(G′)| ≤ ∆.

Proof. For a thorough formal proof in the context of image classifiers see (Levine and Feizi, 2020b).
Here, we show the statement in the context of GNNs: Consider a fixed target node v. We exploit that
whenever we intercept all adversarial messages (i.e. nodes are disconnected or we mask out their
features), the adversary cannot alter the prediction. Let Ē denote the event that v does not receive
any message from perturbed nodes. Then we have for any class y:

p(fv(ϕ(G)) = y | Ē) = p(fv(ϕ(G
′)) = y | Ē)

since all input representations with respect toG andG′, which affect the prediction for v, are the same
if all perturbed nodes are ablated or disconnected (i.e. their messages are intercepted). Multiplying
with p(Ē) yields:

p(fv(ϕ(G)) = y ∧ Ē) = p(fv(ϕ(G
′)) = y ∧ Ē) (1)

Following the arguments of (Levine and Feizi, 2020b):

pv,y(G)− pv,y(G′)
(1)
= p(fv(ϕ(G)) = y ∧ E) + p(fv(ϕ(G)) = y ∧ Ē)− pv,y(G′)

(2)
= p(fv(ϕ(G)) = y ∧ E) + p(fv(ϕ(G

′)) = y ∧ Ē)− pv,y(G′)

(3)
= p(fv(ϕ(G)) = y ∧ E)− p(fv(ϕ(G′)) = y ∧ E)

≤ p(fv(ϕ(G)) = y ∧ E)

(4)

≤ p(E)

where (1) and (3) follow from the law of total probability, (2) is due to inserting Equation 1, and (4)
follows from p(A ∩B) ≤ p(B) for any events A and B.

Analogously, pv,y(G′)− pv,y(G) ≤ p(E). Thus: |pv,y(G)− pv,y(G′)| ≤ p(E) = ∆

Lemma 1. Given a fixed target node v and perturbed nodes B in the graph with v /∈ B. Then
fv(ϕ(G)) = fv(ϕ(G

′)) for any graph G′ ∈ Bρ(G) if

∀w ∈ B :
(
∀p ∈ P k

wv : ∃(i, j) ∈ p : ϕ1(A)ij = 0
)
∨ (ϕ2(xw) = t)

Proof. The prediction fv(ϕ(G)) cannot differ from fv(ϕ(G
′)) if for all perturbed nodes w ∈ B we

have (1)w is disconnected from the target node v, or (2) the features ofw are ablated. If the smoothing
distribution ϕ1 deletes an edge (i, j) (that is ϕ(A)ij = 0), the neighborhood N (j) changes, and thus
messages from i to j get intercepted on all GNN layers. That is, the final hidden representation h

(k)
v

of a target node v can only be changed by some non-ablated perturbed source node w if there is at
least one simple path from w to v of length at most k such that no edge on this path is deleted.

Theorem 1. The worst-case change in label probability |pv,y(G)− pv,y(G′)| is bounded by

∆ = max
||ρv||0≤ρ

p (E(ρv))

for all classes y ∈ {1, . . . , C} and any graph G′ ∈ Bρ(G).

Proof. Note the difference:

• E denotes the event that at least one message from perturbed nodes reaches a target node v

• E(ρv) denotes the event that at least one message from nodes indicated by ρv reaches a
target node v
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Put differently, the maximization amounts to the additional worst-case assumption that the adversary
selects those nodes whose messages have the highest chance of getting to the target node. Importantly,
we have to make this additional worst-case assumption to obtain valid robustness certificates for our
threat model.

Since the probability ∆ bounds the worst-case change |pv,y(G)− pv,y(G′)| for all classes y, we can
utilize ∆ to construct robustness certificates: Intuitively, ∆ bounds how much probability mass of
the distribution pv,y(G) over labels y is compromised by the worst-case adversary: If an adversary
cannot shift enough probability mass to change the majority class, our smoothed classifier is robust:
Corollary 3 (Binary Certificate). Given ∆ as defined in Then we can certify the robustness gv(G) =
gv(G

′) for any graph G′ ∈ Bρ(G) if

pv,y∗(G)−∆ >
1

2

where y∗ ≜ gv(G) denotes the majority class predicted by smoothed classifier g.

Proof. Recall that ∆ bounds how much probability mass of the distribution pv,y(G) over y is
compromised by the adversary. Let y∗ ≜ g(G) denote the majority class, that is pv,y∗(G) > 1

2 in
this binary classification setting. Thus, to change the majority class, the adversary needs to shift
enough probability mass from the majority class y∗ to the other class 1− y∗. This is impossible if
pv,y∗(G) −∆ > 1

2 , meaning the adversary cannot shift enough probability mass for a successful
attack. Put differently, even in the worst-case that the adversary always changes the prediction
whenever adversarial messages reach the target node, the majority class cannot be altered.

Corollary 1 (Multi-class certificate). Given ∆ as defined in Proposition 1. Then we can certify the
robustness gv(G) = gv(G

′) for any graph G′ ∈ Bρ(G) if

pv,y∗(G)−∆ > max
ỹ ̸=y∗

pv,ỹ(G) + ∆

where y∗ ≜ gv(G) denotes the majority class, and ỹ the follow-up (second best) class.

Proof. To prove this, we utilize the same arguments as in the binary setting above. Here, given
pv,y∗(G) −∆ > maxỹ ̸=y∗ pv,ỹ(G) + ∆, the adversary does not control enough probability mass
of pv,y(G) over y to alter the second-best class ỹ into the new majority class when classifying the
perturbed graph G′.

Corollary 2. We guarantee gv(G) = gv(G
′) with probability of at least 1− α for any G′ ∈ Bρ(G)

if pv,y∗(G)−∆ > pv,ỹ(G) + ∆, where y∗ denotes the majority class, and ỹ the follow-up class.

Proof. We have pv,y∗(G)−∆ ≥ pv,y∗(G)−∆ > pv,ỹ(G)+∆ ≥ pv,ỹ(G)+∆ due to the assumption

pv,y∗(G)−∆ > pv,ỹ(G) + ∆. The remaining claim follows from Corollary 1 and from the fact that
both bounds hold with significance level α.
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B Theoretical Connection to Randomized Ablation for Image Classifiers

Our gray-box certificates for GNNs are theoretically related to the randomized ablation black-box
certificates for image classifiers. In this section we thoroughly analyze the differences with more
technical insights and carefully discuss how our certificates go beyond theirs. Specifically, we show
that our gray-box certificates yield stronger guarantees, and are provably tighter even in the special
case without additional edge deletion smoothing. In the following we introduce their certificate again,
discuss the differences to our certificate, and eventually prove that our guarantees are tighter.

Randomized Ablation. Levine and Feizi (2020b) introduce randomized ablation for image clas-
sifiers as follows: They define the space B(n, k) ≜ {M : M ∈ P({1, . . . , n}) ∧ |M | = k} of all
pixel-subsets with exactly k of n total pixels (P denoting the power set here). Then, their smoothing
distribution ablates all but k pixels in a uniformly drawn subset M ∈ B(n, k). They define ∆L as
the probability to keep (not ablate) perturbed pixels in the image under this smoothing distribution.
Assuming ρ perturbed pixels in an image:

∆L = 1−
(
n−ρ
k

)(
n
k

)
Discussion. There are various ways of applying such black-box certificates for image classifiers to
certify the robustness of GNNs. One way is to use them to certify threat models where adversaries
control individual attributes all over the graph (Bojchevski et al., 2020). We are interested in certifying
robustness to adversaries that control all features of entire nodes in the graph instead. However,
applying the smoothing distribution of Levine and Feizi (2020b) for certifying robustness to our threat
model (that is by ablating entire node vectors) comes with several deficiencies, as their smoothing
distribution is specifically designed for image classifiers. Most importantly, applying their certificate
for image classifiers to GNNs results in black-box certificates that completely ignore the underlying
message-passing principle.

In contrast, we propose gray-box certificates – we partially open the black-box and consider the
underlying message-passing principle and paths in the graph, that is A and A2. This comes with
two crucial advantages as we show experimentally in Section 7: First, additionally deleting edges
leads to significantly better robustness guarantees for attacks against more distant nodes. Second, our
certificates become increasingly stronger for sparser graphs (while their certificate applied to GNNs
remains unchanged as it ignores graph structure).

B.1 Special Case of Node Feature Ablation Smoothing

Notably, our certificates are provably tighter even without edge deletion smoothing. Specifically, we
formally show the difference between our ∆ for node feature ablation smoothing and ∆L of Levine
and Feizi (2020b) when naively applying their approach to GNNs by randomly ablating features of
entire nodes (instead of pixels in an image). Specifically, while their smoothing distribution samples
exactly k out of n nodes not to ablate (to keep), our smoothing distribution samples k out of n nodes
in expectation. This eventually leads to ∆ < ∆L. We start by characterizing our certificate for node
ablation smoothing:
Proposition 2. For node feature ablation smoothing only (pd = 0), we have ∆ = 1− pρa.

Proof. Recall the definition of the probability ∆: E denotes the event that at least one perturbed
message reaches a target node v, and ∆ ≜ p(E). When only ablating nodes (pd = 0), all nodes are
equally important for the prediction fv(ϕ(G)), since messages are only intercepted in the input layer,
not during the message-passing itself.

We therefore do not have an optimization problem as in Theorem 1. Instead, the probability ∆ to
receive perturbed messages is just the probability that at least one perturbed node is not ablated.
Further, the complementary event denotes that all ρ perturbed nodes are ablated, whose probability is
just pρa. Thus ∆ = 1− pρa.
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Moreover, the multiplicative bound is tight in the special case of node ablation smoothing:

Proposition 4. For pd = 0, the multiplicative bound is tight ∆M = ∆.

Proof. We have

∆i
(1)
=

1− ∏
q∈Pk

wv

(
1− (1− pd)|q|

) (1− pa)
(2)
= 1− pa

where (1) is by definition, and (2) due to our assumption pd = 0. Therefore:

∆M = 1−
ρ∏

i=1

(1−∆i) = 1−
ρ∏

i=1

pa = 1− pρa = ∆

where the first equality is due to definition again, and the last equality follows from Proposition 2.

Proposition 5 (Tighter guarantees). Given adversarial budget ρ > 1. Further assume k > 0. Let ∆L

denote the bounding constant for the smoothing distribution proposed by Levine and Feizi (2020b).
Then ∆ < ∆L.

Proof. Recall that due to uniform ablation we have (compare Levine and Feizi (2020b)):

∆L = 1−
(
n−ρ
k

)(
n
k

)
To compare this to our ∆ = 1 − pρa of Proposition 2, we first need to introduce k and n. We note
that pa is the probability to ablate a single node. We thus have pa = 1− k

n , where k
n amounts to the

probability to “keep” (not ablate) a node. In this setting, we keep n k
n = k nodes in expectation. We

therefore have:

∆ = 1− pρa = 1−
(
1− k

n

)ρ

We observe:(
n−ρ
k

)(
n
k

) =
(n− ρ)!(n− k)!
n!(n− ρ− k)!

=

ρ−1∏
i=0

n− k − i
n− i

(1)
<

(
n− k
n

)ρ

=

(
1− k

n

)ρ

where (1) is due to the mediant inequality (ρ > 1 and k > 0):

∀y < x ∀i > 0 :
y − i
x− i

<
y

x

We conclude that ∆ < ∆L.

The difference decreases for larger n, but our smoothing distribution is significantly better for small
graphs/receptive fields: For example, for n = 10 and k = 1 (i.e. pa = 0.9), the largest certifiable
radius with our method is 6, but only 4 using their certificate.

In detail, there are two ways of applying their method for image classifiers to certify robustness of
GNNs against adversaries that control all features of entire nodes in the graph: by ablating all features
of k out of n uniformly chosen nodes (1) in the entire graph, or (2) locally in each receptive field.

Global randomized ablation. Assume we uniformly ablate all features of k out of n nodes in the
entire graph. If the number of nodes n in the graph is large, the difference between ∆ and ∆L is
small. Still, the resulting black-box certificates only hold globally, not locally in the receptive fields.
Such certificates ignore the receptive fields, specifically that most nodes in the graph may not even be
connected to the target node. For example, in the most extreme case of A = 0 (meaning receptive
fields only consist of target nodes), their certificate applied to GNNs remains entirely unchanged
due to the black-box nature. In contrast, our gray-box certificates guarantee robustness for any ρ
(excluding target nodes) in this case (cf. normalized robustness in Section 7).

19



Local randomized ablation. To remedy the black-box nature of their approach, one can obtain
local guarantees by ablating all features of k out of the n nodes locally in the receptive field of a
target node. However, our message-interception certificates are significantly tighter even without
edge deletion smoothing as receptive fields are typically small. We demonstrate this in Figure 7
where our approach yields significantly stronger guarantees in practice (since Proposition 2 makes a
significant difference).

Note that when applying their approach to GNNs by ablating nodes locally, one also needs to consider
each receptive field individually and cannot use full-batch training/inference as usually implemented
for GNNs. Our message-interception certificates are easier to implement and more efficient as we
obtain local guarantees without considering and processing all receptive fields separately.
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C
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)

ours
Levine’s method applied to GNNs

Figure 7: Given pa = 0.72, we compare our certificate against the certificate proposed by Levine and
Feizi (2020b) by applying their smoothing distribution for image classifiers to GNNs (distance ≥ 1,
with skip-connection). We locally choose k = ⌊(n− 1) ∗ pa⌋ nodes not to ablate – where n− 1 is the
number of nodes in each receptive field, excluding the target node. Our certificates are experimentally
stronger even without additional edge deletion.
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C Closed-form via Inclusion-exclusion Principle

Recall that E(ρv) describes the event that v receives messages from any attacked node indicated by
the adversarial budget vector ρv ∈ {0, 1}n. Computing the probability p (E(ρv)) using edge deletion
probability pd and node feature ablation probability pa is challenging as it involves evaluating the
inclusion-exclusion formula. We formalize this expensive closed-form solution in the following: Let
Ew denote the probability to receive a message from node w, and let P indicate all simple paths from
any perturbed w with ρv(w) = 1 to target node v. Further, let Yi denote the probability to receive a
message via path i ∈ P . Then we have:

p (E(ρv)) = p

 ∨
ρv(w)=1

Ew

 = p

(∨
i∈P

Yi

)

since the probability to receive a message from any attacked node equals the probability to receive
a message from any path i from an attacked node to the target node. We now apply the inclusion-
exclusion principle:

p

(∨
i∈P

Yi

)
=

|P|∑
k=1

(−1)k−1
∑
I⊆P
|I|=k

p

(∧
i∈I

Yi

) (2)

The remaining probability can be expressed as follows: The probability to receive messages via all
paths indicated by I is the probability that (1) all edges on those paths are not deleted, and (2) the
corresponding source nodes of the paths are not ablated. Therefore:

p

(∧
i∈I

Yi

)
= (1− pd)a(1− pa)b (3)

where a denotes the number of (unique) edges on all paths indicated by I, and b the number of
(unique) source nodes of the paths indicated by I. Note that the above derivation assumes that the
target node v is not controlled by the adversary. In such a case (ρv(v) = 1), we have p(Ev) = 1− pa
(since we always receive messages from non-ablated target nodes) and:

p (E(ρv)) = p

(∨
i∈P

Yi
∨
Ev

)
p

(∧
i∈I

Yi
∧
Ev

)
(1)
= p

(∧
i∈I

Yi

)
p(Ev)

where (1) is due to independence.

There are different ways that take additional information into account to derive faster ways of
computing p (E(ρv)), for example by exploiting that the receptive fields are trees with the target
node v as root (compare Appendix D). In general, however, computing Equation 2 is expensive since
we have to evaluate Equation 3 exactly 2|P| times.
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D Tree-shaped Receptive Fields

Given fixed ρv ∈ {0, 1}n that indicates nodes controlled by the adversary. Recall that E(ρv)
describes the event that v receives at least one messages from any attacked node indicated by the
adversarial budget vector ρv ∈ {0, 1}n. If the receptive field for target node v is a tree, we can
compute ∆ of Theorem 1 exactly. Specifically, we first provide a recursive formula to compute
p (E(ρv)) and then show that the worst-case selection of nodes by the adversary is straightforward.

We introduce the following random variables to better describe the recursion:

• Let Ri denote the event that root node i receives an adversarial message.

• Let Ai denote the event that the features of node i are ablated.

• Let Di denote the event that root i receives an adversarial message via any of its adjacent
subtrees j ∈ B (“branches”).

• Let Bj further denote the event that we receive an adversarial message via branch j.

The main idea is that branches in a tree are independent:

Theorem 4. We start the recursion with the target node v to compute p(Rv) while following edges
away from the node (j, v) (against their direction). Then the following recursive equation computes
p (E(ρv)) for tree-shaped receptive fields:

p(Ri) ≜

{
1− pa(1− p(Di)) if ρv(i) = 1

p(Di) else

with
p(Di) ≜ 1−

∏
(j,i)

(1− p(Bj)) p(Bj) ≜ (1− pd)p(Rj)

Proof. We show the three equations consecutively:

1. For p(Ri): If root i is not controlled by the adversary, then the probability to receive an
adversarial message is just the probability that we receive such a message via any of its
adjacent subtrees, that is p(Ri) = p(Di). If root i is controlled by the adversary (ρv(i) = 1),
we can exploit independence between edge deletion smoothing ϕ1 and node feature ablation
smoothing ϕ2:

p(Ri) = p(Āi ∨Di) = 1− p(Ai ∧ D̄i)
(1)
= 1− p(Ai)p(D̄i) = 1− p(Ai)(1− p(Di))

where (1) is due to independence. Since the probability that we do not receive any adversarial
message from root i is the probability that the features of root i are ablated: p(Ai) = pa.
We therefore have: p(Ri) = 1− pa(1− p(Di)).

2. For p(Di): For the probability that root i receives an adversarial message via any of its
adjacent branches j ∈ B, we exploit independence between branches (which we can do
since we have trees):

p(Di) = p

∨
j∈B

Bj

 = 1− p

∧
j∈B

B̄j

 (1)
= 1−

∏
j∈B

p(B̄j) = 1−
∏
j∈B

(1− p(Bj))

where (1) is due to independence.

3. For p(Bj): The probability to receive a message via branch j is the probability that the
edge from branch j to root i is not deleted (1− pd) times the probability that we receive a
message via the next root j (recursive call).

For leaves we have B = ∅ and thus the product over j ∈ B is 1, that is p(Di) = 0 for all leaves.

22



0 1 2 3 4 5 6 7 8 9 10 11
Perturbed nodes

25

50

75

C
er

t.
ra

tio

(a)
distance≥2 (tight delta)
distance≥2 (m. bound)

0 1 2 3 4 5 6 7 8 9 10 11
Perturbed nodes

25

50

75

C
er

t.
ra

tio

(b)
distance≥2 (tight delta)
distance≥2 (m. bound)

Figure 8: Comparing multiplicative bound and tight tree bound (distance at least 2). (a) Tree-
certificate only for tree-shaped receptive fields. (b) Sparsifying all receptive fields into trees.

Interestingly, we can reconstruct the following special cases:

Special case of edge deletion smoothing. Assume pa = 0. Then we directly see that p(Ri) = 1 if
root i is controlled by the adversary. This means that the adversary controls the entire sub-tree if the
root node is already attacked. Put differently, the adversary does not need to control more parts of the
tree to change the prediction if the adversary already controls the root.

Special case of node feature ablation smoothing. Assume pd = 0. Then we can directly see
that resolving the recursion just multiplies the node feature ablation probabilities pa and we get
p (E(ρv)) = 1−pρa for ρ = ||ρv||0. This matches the special case already discussed in Proposition 2.

Worst-case selection of nodes. Recall that our certificates are conservative and assume the additional
worst-case that the adversary attacks those nodes in the receptive field that maximize the probability
that the target node receives a message from attacked nodes (maximization in Theorem 1). This
additional assumption is required to obtain valid certificates. Notably, this worst-case adversary is
straightforward for trees: First, an adversary would always prefer closer nodes over more distant
nodes to maximize the probability that messages are getting through. Second, an adversary would
always distribute its budget over different branches to exploit independence between branches, which
also maximizes the probability that messages are getting through (also compare Appendix E).

Experiments. We find that computing ∆ tight for tree-shaped receptive fields can increase the
certifiable radius in practice (compare Figure 8). Interestingly, 25% of nodes in Cora-ML have
receptive fields that are trees (considering 2-layer GNNs). We apply our recursive scheme above
to compute tight certificates in two settings: First, we only compute tight certificates for the nodes
whose receptive fields are trees. Second, we apply sparsification that successively deletes edges in
the graph until the receptive fields of all test nodes are trees. In detail, we train GAT models on
Cora-ML and apply sparsification at test time. We use the skip-connection, train with pa = 0.68,
pd = 0.02 and compute certificates with pa = 0.79, pd = 0.36. Without sparsification we achieve
clean accuracies of 79% on average, and 77% when applying sparsification at test time.

In practice, we found that the gain in computing ∆ exactly may be rather small, as adversaries
typically distribute their budget to different branches to increase the probability that their messages
arrive. This means adversaries maximize independencies between edges. In other words, the
multiplicative bound is already quite strong in practice, and specifically tight until the degree of the
node (given that each first-hop neighbor has at least one child).
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E Proofs of Section 5

Figure 9: Visualization of two dependent (left) and independent paths (right). When randomly
deleting edges with the same edge deletion probability pd, the probability that all messages from
both source nodes are intercepted is lower when the paths are independent (more possibilities for the
message to get through).

We first prove a more general claim that we can use to prove the multiplicative bounds of Theorem 2
and Theorem 3. Let Xi denote the event that target node v receives a message via any path s in a set
of paths Si such that all paths start at an arbitrary source node and end at target node v. Intuitively, it
is more likely to receive at least one messages via Si and one message via Sj when there are shared
edges, compared to when we assume their paths were independent. Put differently, the probability
that all messages from all paths are intercepted is higher when paths are dependent (cf. Figure 9).
More formally:
Theorem 5. For two arbitrary sets Si and Sj of simple paths with the same target node v we have

p(Xi)p(Xj) ≤ p(Xi ∧Xj)

under the smoothing distribution ϕ1 for edge deletion.

Proof. We are interested in the probability that all messages via all paths are intercepted. Consider
the following two possibilities:

1. The paths in Si and the paths in Sj are (pairwise) independent, meaning there are no edges
that appear on both - on a path si ∈ Si and on a path sj ∈ Sj .
In this case we have p(Xi ∧Xj) = p(Xi)p(Xj) due to independence.

2. Consider the scenario where there are at least two dependent paths that share a common
edge. If we assume they were independent, there would be more possibilities how a message
can get through than there actually are. In other words, assuming independence results in
lower probability that all messages via both sets get intercepted.
Thus p(Xi)p(Xj) < p(Xi ∧Xj). □

Consider the following definition of positively associated random variables (Esary et al., 1967).
Definition 1. We call a random vector x = (X1, . . . , Xn) positively associated if

Cov(ϕ(x), ψ(x))) ≥ 0

for all non-decreasing, element-wise functions ϕ, ψ such that second moments of ψ(x) and ϕ(y) exist.

The concept of positively associated random variables is for example used in physical statistics
(Goldstein and Wiroonsri, 2018). We can use this concept here to prove multiplicative bounds:
Corollary 4. The random vector x = (X1, . . . , Xn) is positively associated.

Proof. Due to Theorem 5 we have p(Xi)p(Xj) ≤ p(Xi ∧Xj) and thus

⇒E[Xi]E[Xj ] ≤ E[XiXj ]

⇒E[XiXj ]− E[Xi]E[Xj ] ≥ 0

⇒Cov(Xi, Xj) ≥ 0

since Xi and Xj are binary random variables.

Thus, the elements of the covariance matrix are non-negative: Cov(x̄, x̄) ≥ 0 (variance is always
non-negative). According to Theorem 4.2 in Esary et al. (1967), x̄ is positively associated. Since x̄ is
positively associated, it follows from (BP1) in Esary et al. (1967) that x is positively associated.
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Proposition 6. Given random variables Xi as defined above. Then:

1− p

(
n∧

i=1

Xi

)
≤ 1−

n∏
i=1

p
(
Xi

)
Proof. Since x and x̄ are positively associated random variables, we can use Theorem 4.1 in (Esary
et al., 1967) and conclude that

p

(
n∧

i=1

Xi

)
≥

n∏
i=1

p
(
Xi

)
⇔ 1− p

(
n∧

i=1

Xi

)
≤ 1−

n∏
i=1

p
(
Xi

)

Theorem 2 (Single Source Multiplicative Bound). Given target node v and source node w ̸= v in
the receptive field of a k-layer message-passing GNN f with respect to v. Let P k

wv denote all simple
paths from w to v of length at most k in graph G. Then ∆w ≤ ∆w for:

∆w ≜

1− ∏
q∈Pk

wv

(
1− (1− pd)|q|

) (1− pa)

where |q| denotes the number of edges on the simple path q ∈ P k
wv from w to v.

Proof. Note in the special case of the target node v = w we just have ∆w = 1 − pa, since the
features xv of the target node v are used for the prediction independent of any edges.

For any w ̸= v in the receptive field: Let Ew denote the event that the target node v receives messages
from node w, and ∆w ≜ p(Ew). We further introduce Aw for the event that the features of node w
are ablated, and Dw for the event that v receives at least one messages from w. Then we have:

∆w = p(Ew) = p(Āw ∧Dw)
(1)
= p(Āw)p(Dw) = (1− pa)p(Dw)

where (1) holds since the two smoothing distributions for node feature ablation and edge deletion are
independent. We continue with p(Dw). Therefore, recall that P ≜ Pk

wv denotes the set of simple
paths from w to v. Further, let p(q) for simple path q ∈ P denote the probability that v receives a
message via path q. Clearly, a message “arrives” only via path q if none of the edges on that path is
deleted, that is when the node is connected via path q. Since the deletion of edges is independent,
p(q) = (1− pd)|q|, where |q| denotes the number of edges on the simple path q. We derive:

p(Di) = p

∨
q∈P

q

 = 1− p

∧
q∈P

q


We can use positive association to conclude

1− p

∧
q∈P

q

 (1)

≤ 1−
∏
q∈P

p (q)

where (1) follows from Proposition 6. Finally, we resolve the remaining terms:

1−
∏
q∈P

p (q) = 1−
∏
q∈P

(1− p (q)) = 1−
∏
q∈P

(
1− (1− pd)|q|

)
Due to (1) above, we finally get ∆w ≤ ∆w, where the inequality becomes an equality if all paths are
independent (that is the paths do not share edges).

Proposition 7. We have ∆w = ∆w for ℓ-layer GNNs with ℓ ≤ 2.

Proof. For ℓ-layer GNNs with ℓ ≤ 2, all paths from a single source to the target node are independent.
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Theorem 3 (Generalized multiplicative bound). Assume an adversarial budget of ρ nodes and let
∆1, . . . ,∆ρ denote the ρ largest ∆i for nodes i in the receptive field. Then we have ∆ ≤ ∆M for

∆M ≜ 1−
ρ∏

i=1

(1−∆i)

Proof. We recall from Theorem 1:

∆ = max
||ρv||1≤ρ

p (E(ρv))

where E(ρv) describes the event that target node v receives messages from any attacked node
indicated by ρv. Recall that Ew denotes the event that the prediction for target node v is based on
information of node w in the receptive field. We further have ∆w ≜ p(Ew). Then:

p (E(ρv)) = p

 ∨
ρv(w)=1

Ew

 = 1− p

 ∧
ρv(w)=1

Ēw


where we can apply Proposition 6 and use the assumption that paths from several source nodes to the
target were independent to obtain an upper bound:

1− p

 ∧
ρv(w)=1

Ēw

 ≤ 1−
∏

ρv(w)=1

p
(
Ēw

)
Further resolving the terms yields:

1−
∏

ρv(w)=1

p
(
Ēw

)
= 1−

∏
ρv(w)=1

(1− p (Ew)) = 1−
∏

ρv(w)=1

(1−∆w)

Since the above equations hold for any fixed ρv:

∆ = max
||ρv||1≤ρ

p (E(ρv)) ≤ max
||ρv||1≤ρ

1−
∏

ρv(w)=1

(1−∆w)

Assume we have ordered ∆w so that ∆i ≥ ∆i+1 for all i ∈ {1, . . . , ρ}. Then:

max
||ρv||1≤ρ

1−
∏

ρv(w)=1

(1−∆w) = 1−
ρ∏

i=1

(1−∆i) = ∆M

Note that instead of ∆w we can alternatively use upper bounds ∆w, which yields an even looser
upper bound on ∆ since

1−
ρ∏

i=1

(1−∆i) ≤ 1−
ρ∏

i=1

(
1−∆i

)
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F Approximation Error

Notably, the multiplicative bound derived above is tighter than the following union bound:
Proposition 8 (Union Bound). Given monotonously decreasing ∆i such that ∆i ≥ ∆i+1. Then we
have ∆ ≤ ∆U for

∆U ≜
ρ∑

i=1

∆i

Proof.

p (E(ρv)) = p

 ∨
ρv(w)=1

Ew

 ≤ ∑
ρv(w)=1

p (Ew) =
∑

ρv(w)=1

∆w

∆ = max
||ρv||1≤ρ

p (E(ρv)) ≤ max
||ρv||1≤ρ

∑
ρv(w)=1

p (Ew) =

ρ∑
i=1

∆i

The union bound is quite loose, not a probability and can even grow larger than 1. We show the
difference in practice Figure 10 (a). We also discuss the approximation error between the upper
bounds ∆U , ∆M and the tight ∆ for the following constructed example where all paths are dependent:
We assume a setting where an adversary attacks only second-hop neighbors that are connected to the
target node via the same direct neighbor of the target node. With pa = 0 we have ∆ = (1−pd)(1−pρd)
since we only receive a message if the bottleneck edge is not ablated, and at least one edge of the
attacked second-hop nodes is not ablated (which is the complementary probability of all second-hop
edges are ablated). In this constructed case, all paths are dependent as they share the bottleneck edge.
We show how the upper bounds compare to the tight ∆ for different edge deletion probabilities pd in
Figure 10 (b). Note that the example is constructed and worst-case adversaries aim at maximizing
independencies by choosing nodes without bottleneck edges (in which case the multiplicative bound
is a strong bound in practice).
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Figure 10: (a) Multiplicative bound is tighter than union bound and provides stronger guarantees
(Smoothed GAT model on Cora-ML with pa = 0.85, pd = 0). (b) Constructed example: All
path share the same bottleneck edge: Comparing the tight ∆ against the union bound ∆U and the
multiplicative bound ∆M for different edge deletion probabilities pd. The multiplicative bound is
tighter than the union bound, which can grow larger than 1.
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G Hyperparameters

We implement certificates for directed and undirected graphs. For our main experiments (Section 7),
however, we follow the standard procedure and prepocess all graphs into undirected graphs, only
consider the largest connected component, and binarize node features. We compute simple paths
using a modified depth first search. All datasets are included in PyTorch Geometric (Fey and Lenssen,
2019).5 We train models full-batch using Adam (learning rate = 0.001, β1 = 0.9, β2 = 0.999,
ϵ = 10−08, weight decay = 5 ∗ 10−04) for 1,000 epochs with early stopping after 50 epochs. We
use a dropout of 0.8 on the feature matrix X and on the attention coefficients. During training, we
sample a different graph from ϕ(G) each epoch. Each sampled graph contains nodes with features
replaced by the ablation representation t. We implement t as a parameter of our models: We initialize
t using Xavier initialization and we optimize t as we optimize the GNN weights during training. We
implement all models for two message-passing layers. We use 8 heads and 8 hidden channels for
GAT and GATv2 (Velickovic et al., 2018; Brody et al., 2022); 64 hidden channels for GCN (Kipf and
Welling, 2017); and we use k = 64 and temperature=1.0 for SMA (Geisler et al., 2021). We use the
ReLU activation function for the skip-connection. For GDC sparsification, we set the sparsification
threshold of GDC to ϵ = 0.022, and ignore edge attributes resulting from GDC preprocessing.

Training-time smoothing parameters. We also delete edges and ablate node features during training
(using different probabilities pd and pa during training and inference). Specifically, we train models
presented in Section 7 as follows: In Figure 3 (a,b) we show results for pd = 0.01, pa = 0.6 during
training (and pd = 0.31, pa = 0.794 during inference and certification). In Figure 4 (a,b) we use
pd = 0, pa = 0.59 during training (and pd = 0.31, pa = 0.71 during inference and certification). In
Figure 4 (c) we use the same probabilities pd, pa during training and inference.

In our experiments (Section 7), we also randomly sample different probabilities for training and
inference to explore the joint parameter space of the training-time and inference-time smoothing
parameters. That is, our search space is [0, 1]4 when sampling different probabilities from [0, 1] for
the Pareto-plots in Figure 6 and Appendix H (we sample separately for training and inference).

H Detailed Results

We report certified accuracies in Figure 16 for the corresponding certified ratios in Figure 3. Moreover,
we provide detailed results for the datasets Cora-ML, Citeseer, and PubMed. We show results for
second-hop attacks against (1) smoothed GAT models in Figure 11, (2) smoothed GATv2 models
in Figure 12, (3) smoothed GCN models in Figure 13, and (4) smoothed SMA models in Figure 14.
We run 1,000 experiments for each combination, drawing random deletion and ablation probabilities
from [0, 1] for each experiment (sampling separately for training and inference). Lines connect
dominating points on the Pareto front. Comparing results with and without skip-connection we
observe that skip-connections allow higher node feature ablation probabilities while retaining high
accuracy, which can yield better robustness-accuracy tradeoffs. Moreover, as discussed in Section 7,
evaluating certificates in transductive settings comes with serious shortcomings. We nevertheless
report such results in Figure 15 for a smoothed GAT model.

Abstained predictions. Our smoothed classifier abstains from predicting if pv,y∗(G) ≤ pv,ỹ(G). We
show the ratio of abstained predictions for smoothed GAT models trained on Cora-ML in Figure 17
for different edge deletion probabilities pd and node feature ablation probabilities pa. We use the
same ablation probability during training and inference for this specific experiment. We observe that
our smoothed classifier abstains for rather large probabilities. Future work could introduce novel
architectures and training techniques to further diminish the effect of abstained predictions.

Experiments on ogbn-arxiv. We run additional experiments and compute certificates for the larger
graph ogbn-arixv with 169,343 nodes, 128 attributes and 40 classes (Hu et al., 2020). We adopt
their transductive setting, implement two-layer smoothed GCNs with skip-connection and compute
certificates for 100 randomly chosen test nodes. In Figure 18 we show results for pd = 0.1, pa = 0.4
during training, and pd = 0.3, pa=0.8 during inference and certification. Notably, we can certify
GNNs for such large graphs. However, our approach only achieves 53% clean accuracy in this setting.

5https://pytorch-geometric.readthedocs.io
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Future work could develop novel architectures and training procedures to improve clean accuracy
under our smoothing distribution.

Experiments with different confidence levels. We conduct additional experiments with varying
confidence levels α and Monte-Carlo samples. We observe strong guarantees for even smaller
confidence levels, requiring little computational efforts. The underlying reason for this is that the
theoretical largest certifiable radius of our certificates is bounded, only determined by the edge
deletion probability pd and node feature ablation probability pa, and therefore cannot increase by
changing α. Our certificates are thus less sensitive to changes in α compared to Neyman-Pearson-
based certificates (Bojchevski et al., 2020).

In fact, the difference in certifiable robustness for α = 0.05 and α = 0.0001 is already extremely
small when drawing just 2, 000 Monte-Carlo samples (Figure 19 a). We only observe differences in
robustness for considerably small amounts of Monte-Carlo samples (Figure 19 b). Drawing 2,000
samples takes only 12 seconds on Cora-ML on average. This is significantly faster compared to
all previous probabilistic certificates for GNNs that use up to 106 Monte-Carlo samples (compare
(Bojchevski et al., 2020)). In additional experiments, we also found that the classification accuracy is
high for just a few thousand Monte-Carlo samples (Figure 20).
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Figure 11: Robustness-accuracy tradeoffs for second-hop attacks against smoothed GAT on Cora-ML,
Citeseer and PubMed (columns). Top row without skip-connection, bottom row with skip-connection.
Lines connect dominating points on the Pareto front.
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Figure 12: Robustness-accuracy tradeoffs for second-hop attacks against smoothed GATv2 on Cora-
ML, Citeseer and PubMed (columns). Top row without skip, bottom row with skip-connection.
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Figure 13: Robustness-accuracy tradeoffs for second-hop attacks against smoothed GCN on Cora-ML,
Citeseer and PubMed (columns). Top row without skip-connection, bottom row with skip-connection.
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Figure 14: Robustness-accuracy tradeoffs for second-hop attacks against smoothed SMA on Cora-ML,
Citeseer and PubMed (columns). Top row without skip-connection, bottom row with skip-connection.
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Figure 15: Transductive learning setting: Robustness-accuracy tradeoffs for second-hop attacks
against smoothed GAT on Cora-ML, Citeseer and PubMed. Experiments without skip-connection.
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Figure 16: Certified accuracies for the setting of Figure 3 – Smoothed GAT on Cora-ML: (a) Robust-
ness at different distances (pd=0.31, pa=0.794, with skip-connection, ACC=0.79).
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Figure 17: Abstained ratios of smoothed GAT models trained on Cora-ML for different edge deletion
probabilities pd and node feature ablation probabilities pa.
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Figure 18: Certified ratio and accuracy for smoothed two-layer GCN on ogbn-arxiv. We certify 100
randomly selected test nodes in the graph. Certificates for nodes with distance 2 to the target node.
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Figure 19: Certified ratio of smoothed GAT on Cora-ML (pa = 0.84, pd = 0, with skip-connection)
for different confidence levels α and number of Monte-Carlo samples n1. The difference in robustness
is already considerably small for just 2,000 samples.
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Figure 20: Clean accuracy of smoothed GAT on Cora-ML (pa = 0.84, pd = 0, with skip-connection).
for varying number of confidence levels α and Monte-Carlo samples n. For α = 0.05 the clean
accuracy is high for just 1, 000 samples. For smaller α, the certification accuracy decreases only
slightly. Drawing more than 3, 000 samples is not necessary except for extremely small confidence
levels such as α = 0.00001.
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Figure 21: Visualizing Proposition 3. (a) Theoretically maximally certifiable radius for given node
ablation probability pa. (b) Certified ratio of smoothed GAT trained on CoraML for different node
ablation probabilities (pd = 0, ϵ = 0.01). Note: 2

√
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I On Neyman-Pearson and Ablation Certificates

There are currently two types of randomized smoothing certificates for discrete data: The certificates
of Lee et al. (2019) and Bojchevski et al. (2020) are based on the Neyman-Pearson Lemma (Neyman
and Pearson, 1933), and we therefore call them Neyman-Pearson-based certificates. The other
certificates are ablation-based (Levine and Feizi, 2020b,a; Liu et al., 2021). We show that largest
certifiable radius of ablation-based certificates is bounded indepdentent of the classifier, which is not
the case for Neyman-Pearson-based certificates (see discussion in Section 6).

In ablation-based certificates, the bounding constant ∆ determines the probability mass of the
distribution pv,y(G) over labels y that the worst-case adversary controls. This probability mass ∆
is independent of the classifier f and distribution pv,y(G) and solely determined by the smoothing
distribution. Although the final certificates still depend on the classifier f , the largest certifiable radius
of such ablation-based certificates is bounded as we show for our interception smoothing certificates:

Note again that ∆ does not depend on the base GNN f : the probability to receive at least one message
from a perturbed node is only characterized by the number of perturbed nodes ρ, and the probabilities
pd for edge deletion and pa for node ablation. Moreover, ∆ is monotonously increasing in ρ, since
the probability to receive messages from perturb nodes increases the more nodes adversaries control.
Interestingly, since ∆ is monotonously increasing in ρ, there exists a largest certifiable radius that
depends on the graph structure and changes for each target node (assuming fixed pd, pa). In the
special case of node ablation smoothing, we can directly determine the largest certifiable radius:

Proposition 3. Given fixed pa > 0 and pd = 0, it is impossible to certify a radius ρ if pa ≤ ρ
√
0.5.

Proof. Due to Corollary 3 and Corollary 1, we only get certificates if ∆ < 1
2 , i.e. the adversary

should not control more than half of the distribution pv,y(G) over y. Thus:

∆ <
1

2

(1)⇔ 1− pρa <
1

2
⇔ pρa >

1

2
⇔ pa >

ρ
√
0.5

since the root is monotonously increasing and pa > 0. Further, (1) stems from Proposition 2. Thus
we need an ablation probability of at least larger than ρ

√
0.5 to certify a radius of ρ.

Proposition 3 allows us to directly determine the largest certifiable radius for given pa. We visualize
this largest radius for different ablation probabilities in Figure 21 (a). Theoretically, we can only
certify large radii for relatively large ablation probabilities: For example, to theoretically certify a
radius of 10, we already need an ablation probability of more than 10

√
0.5 ≈ 0.933. Proposition 3

implies that we cannot certify any radius for ablation probabilities pa ≤ 0.5 (cf. Figure 2). Moreover,
we can certify a radius of only 1 for ablation probabilities between 1

√
0.5 = 0.5 and 2

√
0.5 ≈ 0.707.

Note, however, that this is only a theoretical consideration and that the certificate also depends on
the label probabilities pv,y∗(G) and pv,ỹ(G) in practice (Figure 21 b), where we observe that the
certified ratio drops to zero when the largest certifiable radius is passed.
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As discussed in Section 6, our certificates are probabilistic and hold with a certain confidence level α.
Here we present alternative, deterministic certificates using a simplified smoothing distribution that
just deletes nodes instead of ablating their features. We believe that future work can build upon it
towards even more efficient and scalable derandomization schemes. Specifically, our derandomized
certificates come with the following advantages: First, they are deterministic, exact certificates and
hold independent of a confidence level. Second, the smoothed classifier never abstains from making
a prediction (we resolve draws by whatever index comes first). Third, with more computation time
we obtain more derandomized certificates. This is in continuation to probabilistic certificates that can
be improved using more Monte-Carlo samples (Cohen et al., 2019).

Simplified smoothing distribution. We define a smoothed classifier that classifies node v in G
as follows: Consider a retention constant k ∈ N that represents the number of nodes not deleted
(retained) in the receptive field. Then the smoothed classifier g predicts class y with the largest
probability pv,y(G) that f classifies v as y under uniform deletion of all but k nodes:

gv(G) ≜ argmax
y

pv,y(G) pv,y(G) ≜ pK∼U(d,k)(f(RK) = y)

whereRK encodes the deletion of all nodes in the receptive field of target node v except those indexed
by K, and f(RK) denotes the predicted class of f for target node v given ablated graphRK (omitting
v for conciseness). We further denote the indexing of nodesK as follows: Define the set of all k unique
indices in [d] ≜ {1, . . . , d} including 0 as B(d, k) = {{0}∪M :M ∈ P([d])∧ |M | = k}, where P
denotes the power set (w.l.o.g. we index target nodes as 0). For example, K = {0, 1, 3, 6} ∈ B(d, k)
for retention constant k = 3 and receptive field size d = 10. Note that |K| = k + 1 for K ∈ B(d, k)

but |B(d, k)| =
(
d
k

)
since we never delete the target node. Finally, let U(d, k) denote the uniform

distribution over B(d, k).

(1)
0

1 2 3

4 5 6 7 8 9

(2)
0

1 2 3

4 5 6 7 8 9

(3)
0
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(4)
0

1 2 3

4 5 6 7 8 9

Figure 22: Given a receptive field with 10 nodes, target node 0 and k = 3. (1) If we keep nodes
K = {0, 1, 3, 6} and delete all other nodes, node 6 is disconnected. (2) If we keep nodes K =
{0, 1, 3, 7} and delete all other nodes, node 7 is disconnected. (3) In both cases, only the nodes
S(K) = {0, 1, 3} affect the prediction. (4) In the algorithm: Given S = {0, 1, 3} with neighborhood
NS = {2, 4, 5, 8, 9}. Choosing k + 1 − |S| = 1 further nodes, we find that S is a reduced
representative S(K) since there are |Vv|−|NS |−|S| = 10−5−3 = 2 nodes to choose from (6 and 7).

Computing pv,y∗(G) and pv,ỹ(G) exactly is challenging. One naive approach would be to simply
iterate over the support of the smoothing distribution (all possible node deletions). For small receptive
fields, the number of possible combinations to sample k out of d nodes may be small, allowing us to
enumerate all possibilities. However, this may be infeasible for larger receptive fields. Still, similar
to how we use the message-passing structure for certification, we can also leverage it here to partition
the support of the simplified smoothing distribution into a smaller number of equivalence classes.

Specifically, we observe: First, when uniformly deleting nodes in the receptive field, some of the
remaining nodes K may be disconnected from the target node. Moreover, disconnected nodes will
not affect the prediction for the target node. Second, several possibilities for K may share the same
nodes that are still connected to v (see examples in Figure 22). This means that different possibilities
for K will lead to the same prediction by f , but the full enumeration of all possibilities is suboptimal:
We wish to avoid redundant evaluations since the evaluation of the base classifier f may be costly.

We observe that the connectivity explained above induces an equivalence relation: All sampled nodes
K that share the same nodes connected to v can be grouped into equivalence classes [K]. For any
representative K of [K] we denote the nodes still connected to v as S(K). We call S(K) a reduced
representative, since it represents a reduced form of K and only contains the nodes from which the
target node will receive messages. Note that S(K) is unique for all representatives K.
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Formally, given receptive fieldR with d+ 1 nodes and index K ∈ B(d, k) of k + 1 nodes. Consider
the subgraphRK induced byK. We observe that not necessarily all nodes inRK have to be connected
to the target node. Thus, different K ∈ B(d, k) will result in same prediction of the base classifier.
Let S(K) ⊆ K denote all nodes indexed by K without the disconnected nodes. Put differently, S(K)
stands for nodes still connected to the target node (see example in Figure 22). Then:
Proposition 9. The definition of S(K) induces an equivalence relation ∼ over B(d, k) given by
K ∼ K′ ⇔ S(K) = S(K′) and eq. classes [K] := {K′ ∈ B(d, k) : K ∼ K′} for K ∈ B(d, k).

Proof. Reflexivity, symmetry and transitivity hold by the definition of sets.

The equivalence relation ∼ partitions B(d, k) into disjoint equivalence classes, denoted by the
quotient set B(d, k)/ ∼ ≜ {[K] | K ∈ B(d, k)}. The set S(K) is uniquely defined for each
equivalence class [K] in B(d, k)/ ∼. We therefore call S(K) with 1 ≤ |S(K)| ≤ k + 1 the reduced
representative of [K]. Note that we have |S(K)| = k + 1 ⇔ S(K) = K and |[K]| = 1. We
further call S = {S(K) | K ∈ B(d, k)} the complete set of reduced representatives. Note that
S ∼= B(d, k)/ ∼ and thus |S| = |B(d, k)/ ∼ |.
To efficiently derandomize our certificates, we can leverage the fact that we only need a complete set
of reduced representatives S to compute the label probabilities pv,y(G). Given S, we only have to
evaluate f once for each reduced representative S(K) ∈ S:
Corollary 5. Given the complete set of reduced representatives S, the label probabilities are:

pv,y(G) =

(
d

k

)−1∑
S∈S

I[f (RS) = y] · βS

where I[f (RS) = c] indicates whether f classifies the target node v in subgraphRS as class c, and
βS is the size of an equivalence class, βS = |[K]|. We write S ≜ S(K) and omit v for conciseness.

Proof. For all K,K′ ∈ B(d, k) with K ∼ K′ we have fv(Rv
K) = fv(Rv

K′) = fv(Rv
S(K)) as only

information from nodes of the reduced representative S(K) can be passed to the target node (other
nodes are disconnected). Thus, instead of evaluating fv(Rv

K(G)) for all K ∈ B(d, k) we only have
to evaluate fv(Rv

S(K)(G)) for each S(K) ∈ S. To do so we have to count fv(Rv
S(K)(G)) = i exactly

βS = |[K]| times. Further, as we uniformly sample K from U(d, k) over B(d, k), we have to scale
the possibilities by |B(d, k)|−1, which corresponds to the inverse binomial coefficient above.

Hence, we can compute the label probabilities pv,y(G) exactly for larger receptive fields if the number
of equivalence classes |S| is small and we have an efficient algorithm to compute S and βS . We
propose such algorithm by exploiting the sparsity of graphs as follows:

We successively enumerate all possible connected subgraphs of the receptive fieldR indexed by S
that contain the target node and at most k further nodes. Let S denote indices of such subgraph ofR
andNS the neighborhood of S inR. If S contains k+1 nodes, then all k+1 nodes will be connected
to the target node and S is already a representative with βS = 1. If S contains less than k + 1 nodes,
then S corresponds to a reduced representative if we can choose the remaining k + 1− |S| nodes
such that they are disconnected. Therefore, the main idea of our algorithm is that the size βS is just a
binomial coefficient: The number of disconnected nodes is given by |Vv| − |NS | − |S|, out of which
we have to choose k + 1− |S| nodes to augment S to set of k + 1 nodes (where Vv denote nodes in
the receptive field):

βS =

(
|Vv| − |NS | − |S|
k + 1− |S|

)
If βS > 0, there must exist a representative K such that the reduced representative S(K) corresponds
to S , that is S = S(K) (compare (4) in Figure 22 for an example). Finally, our algorithm enumerates
all possible S by recursively augmenting S with nodes from the neighborhood of S (compare
algorithm 1). This way, we exploit the sparsity of graphs to find all reduced representatives S that
avoid disconnected nodes.
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Algorithm 1: Compute complete set of reduced representatives S and equivalence class sizes βS
Input: Index 0 of target node v, Receptive fieldRv = (Vv, Ev), Retention constant k
S ← {0}
Output: EQCGeneration(S, Vv , Ev , k)

Function EQCGeneration(S, Vv , Ev , k):
R← {}
if |S| = k + 1 then

return {(S, 1)}
end
NS ← {w ∈ Vv \ S | ∃u ∈ S : (w, u) ∈ Ev} // O(|Vv|)
βS ← binom(|Vv| − |NS | − |S|, k + 1− |S|)
if βS > 0 then

R← {(S, βS)}
end
for w ∈ NS do // O(|Vv|)

R← R∪ EQCGeneration(S ∪ {w}, Vv , Ev , k)
end
return R

Note that in algorithm 1, Vv denotes nodes in the receptive field of classifier f with respect to target
node v, and Ev the edges in the receptive field.
Lemma 2 (Correctness of algorithm 1). Let S with 0 ∈ S ⊆ Vv be a set of at most k + 1 nodes
1 ≤ |S| ≤ k + 1 such that all nodes indexed by S are connected to the target node inR. We denote
the neighbors of S in R as NS ≜ {w ∈ Vv \ S | ∃u ∈ S : (w, u) ∈ Ev}. When we define the
following binomial coefficient as

βS ≜

(
|Vv| − |NS | − |S|
k + 1− |S|

)
∈ N.

then there exists a representative K ∈ B(d, k) such that S is a reduced representative for the
equivalence class [K] if βS > 0. Then we have βS = |[K]|.

Proof. First note that for a given set S as defined above we can partition Vv into three disjoint sets
Vv = S⊎NS⊎Nr with S andNS defined as above, and the disconnected nodesNr ≜ Vv \(S∪NS).
We thus have |Nr| = |Vv| − |NS | − |S|. Now we distinguish the following cases:

Case 1: |S| = k + 1

We have |Vv| − |NS | − |S| ∈ N0 and βS = 1 > 0. Thus for |S| = k + 1 the condition is trivially
fulfilled and we have that K ≜ S is already a representative with |[K]| = 1 as discussed before.
Note that this does not mean that all sets with k + 1 nodes are representatives, as we still have the
connectivity constraint for nodes in S.

Case 2: |S| < k + 1

We have βS > 0⇔ |Vv| − |NS | − |S| ≥ k + 1− |S| ⇔ |Nr| ≥ k + 1− |S| where the latter means
that we can choose the remaining k + 1− |S| nodes from Nr to augment S to representative K of
the equivalence class [K] since then |K| = |S|+ k + 1− |S| = k + 1. The corresponding size |[K]|
is given by βS .

Finally, note that the equivalence classes and the algorithm are independent of the classifier f .
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Discussion. In the worst case, we have |S| = |B(d, k)| =
(
d
k

)
, but we enumerate

∑k
i=0

(
d
i

)
≥
(
d
k

)
possibilities, as there are

∑k
i=0

(
d
i

)
candidates for reduced representatives in a fully connected graph.

Therefore, in the worst case of fully connected graphs, directly enumerating all
(
d
k

)
possibilities

would be faster. In practice, however, we rather observe sparse graphs with |S| ≪ |B(d, k)|. The
more sparse the receptive field, the less equivalence classes exist and the larger each equivalence
class. Thus we exploit the sparsity of graphs to efficiently compute S and the corresponding sizes
|[K]| for all equivalence classes [K].
Moreover, as our algorithm recursively enumerates all possible pairs (S, βS), we can determine a
stopping criterion at which we back off to Monte-Carlo sampling for estimating the label probabilities.
To this end, if R denotes the current set of (S, βS) pairs with βS > 0, we know that |R| is a lower
bound on the number of equivalence classes, |R| ≤ |S|. By summing up βS for all (S, βS) ∈ R we
can determine the percentage of |B(d, k)| that we already cover with R:∑

(S,βS)∈R

βS ≤
∑

S(K)∈S

|[K]| =
(
d

k

)
= |B(d, k)|

This allows us to use the condition
∑

(S,βS)∈R βS > τ ′ with threshold τ ′ ∈ N as a stopping criterion.
Using thresholds this way, our algorithm will always find more solutions in S given more time via
larger thresholds. Note that we use

(
d
k

)
> τ in practice, since the binomial coefficient provides a fast

upper bound for the number of equivalence classes |S|.

J.1 Evaluating Message-passing-aware Derandomization

Table 1: Smoothed classifier results for GCN trained on Cora-ML for different relative retention
constants. Der.: Ratio of nodes with derandomized certificates. Eq.: Mean of unique receptive fields
over all derandomized certificates. Acc.: Clean accuracy.

GCN on Cora-ML GCN on Citeseer GCN on PubMed

krel Der. Eq. Abstained Acc. Der. Eq. Abstained Acc. Der. Eq. Abstained Acc.

0.01 0.87 0.22 6.27e-04 0.73 1.00 0.41 0.00e+00 0.65 0.94 0.15 0.00e+00 0.73
0.03 0.72 0.23 5.69e-04 0.73 0.94 0.42 0.00e+00 0.66 0.81 0.16 1.56e-03 0.73
0.10 0.50 0.28 5.02e-03 0.74 0.87 0.42 1.63e-03 0.65 0.61 0.19 4.24e-03 0.74
0.30 0.31 0.46 1.42e-02 0.80 0.73 0.53 7.61e-03 0.68 0.37 0.38 6.23e-03 0.77

Relative retention constant. Consider a small retention constant k = 1 for a node v with deg(v) <
dv−deg(v), where dv denotes the receptive field size (excluding the target node). Then the probability
for selecting a direct neighbor of v is low and the prediction of the smoothed classifier is merely
based on the target node v itself, which amounts to traditional i.i.d. prediction. Thus, for non-trivial
robustness guarantees we use retention constants k that are relative to the receptive field size: Given a
fixed relative retention constant krel ∈ [0, 1], our smoothed classifier keeps k = ⌈dv ·krel⌉ ∈ N nodes
in the receptive fieldR.6 The ceiling operation ensures that we keep at least one additional node.

Derandomization results. Our certificates are deterministic for small receptive fields, and proba-
bilistic for large receptive fields: we derandomize certificates if

(
d
k

)
is smaller than a threshold τ . If

the number of possibilities to choose k out of d nodes is small, we can enumerate all possibilities and
use f to predict the class of v for all possibilities. In our experiments we set τ = 100,000. There
are more possibilities to sample k out of d nodes for larger krel and thus the ratio of deterministic
certificates decreases (compare Table 1). For example, we can derandomize around 50% of the
certificates for Cora-ML given krel = 0.1. We further derandomize more certificates for Citeseer
than for Cora-ML, which can be explained by the fact that two-layer GNNs have larger receptive
fields on Cora-ML. Note that the average degree in Cora-ML is 6, in Citeseer 3 and PubMed 4. Due
to the derandomization we also hardly observe that the smoothed classifier abstains.

As discussed above, we avoid evaluating the base classifier f for equivalent receptive fields. To
represent the computations we avoid on average, we compute the mean of unique receptive fields
|S|/|B(d, k)| for all derandomized certificates. For example, out of all derandomized certificates for
krel = 0.1 on Cora-ML, we only have to evaluate 28% of all possibilities on average.

6As a disadvantage of this method, we have to process all receptive fields separately.
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