
Under review as a conference paper at ICLR 2022

A SUPPLEMENTARY EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS IN CONTINUOUS ROBOTICS BENCHMARKS

This part includes details necessary to reproduce results in the continuous robotics environments.
The code will be released with the camera-ready version of the paper.

Soft Actor Critic Details. Our algorithms are based on the Soft Actor Critic algorithm (Haarnoja
et al., 2018). Notably, we use the double Q-Networks trick to help tackle the overestimation bias
(Fujimoto et al., 2018). In our experiments, we do not automatically tune the entropy hyperparameter
α. In fact, we found that fixing its value to α = 0.2 is sufficient for the purpose of this paper.

Delayed Networks. As the results for the GSAC learned stationary policies show that the perfor-
mance tend to decrease for high values of delay D, we opt for D = 2 in the continuous robotics
experiments. Our main objective is to study the effect of shallow delayed geometric discounts on
classic robotics environments.

Networks Architecture. Each of the discount factors γ1 and γ2 is associated with a different critic
and target critics networks. All these networks, as well as the policy, are 1-hidden layer networks of
hidden size 256. They useReLU activations and the Xavier initialization. We use Adam optimizers,
with learning rates 3× 10−4. The list of hyperparameters is provided in Table 1.

Table 1: Sensorimotor learning hyperparameters used in DECSTR.

Hyperparam. Description Values.
lr actor Actor learning rate 3× 10−4

lr critic Critic learning rate 3× 10−4

τ Polyak coefficient for target critics smoothing 0.95
batch size Size of the batch during updates 256
hidden size Dimension of the networks’ hidden layers 256
γ0 Discount factor associated with the first delay 0.99
γ1 Discount factor associated with the second delay 0.99
delayed update ratio # of first critic updates before single second critic update 1
update per step # of networks updates loop per a single environment step 1
target update Target networks soft updates per step 1
α Entropy coefficient used in SAC 0.2
automatic entropy Automatically tune the entropy coefficient False

A.2 ABLATION ANALYSIS (DISCRETE CORRIDOR ENVIRONMENT)

In this section, we consider a simple 2000 states long corridor environment with a deceptive reward
of 0.9 on one extremity, a desirable reward of 1 on the other and an adversarial reward of −1 in
the middle (states 990 to 1010). For this environment, we consider that a policy is successful if it
ends up reaching the best reward and that it failed in any other scenario (including the case where it
reaches the deceptive reward). The success rate of a policy is consequently the proportion of states
from which it reaches the best reward.

we investigate the performances of the obtained policies using GSAC2 as we vary the delay param-
eter D ∈ {0, . . . , 14} and the discounts γi≤D = γ ∈ [1 − 10−1, 1 − 10−14]. For each couple of
values, we evaluate the best (Figure 7a) and the average (Figure 7b) success rate of the learned poli-
cies in 10 randomly initialised runs of GSAC. The obtained performances are reported in Figure 7 as
heat-maps where higher success rates (close to 1) are associated with red and lower ones with blue.

Naturally, for low discount parameter γ, the success rate is around 0.5 as states on each side of the
adversarial reward are encouraged to leave that area in the direction of the closest positive reward.
Interestingly, there is a limiting curve (continuous yellow line in Figure 7b) above which the best
stationary policy in the sense of LD has a success rate of 1, and a second line (dashed yellow line)
above which numerical instabilities induce poor numerical performances.

2A discrete version of the algorithm with down dynamics

12

Under review as a conference paper at ICLR 2022

Notice that if we consider the vertical line in Figure 7 corresponding to D = 0, we recover the
Blackwell criterion: there exist a critical value of the discount above of which agents are capable
to reach the desirable reward. Intuitively, these observations generalize this criterion to the delayed
geometrically discounted framework: There exists a critical frontier that depends on both the delay
D and the discounts γi≤D, above of which optimal stationary policies in the sense of the delayed
criterion LD is also optimal in the sense of the average criterion

(a) Max performance (b) Average performance

Figure 7: Success rate as a function of the Delay D and the discount values

A.3 ADDITIONAL RESULTS (CONTINUOUS HARD EXPLORATION NAVIGATION PROBLEMS)

In this section, we advance additional results in the continuous settings. We introduce two different
maze environments based on the MUJOCO robotics engine: SMaze-v0 and UMaze-v0 (Figure 8).
In both environment, the agent is a sphere whose action space is 2-dimensional. The attributes of
its state space correspond to both its positions and its velocity. The environment also contain two
rewarding states: a deceptive rewarding state of +0.8 (blue dot) and a maximal rewarding state of
+1.0 (red dot).

(a) SMaze-v0 (b) UMaze-v0

Figure 8: Continuous Maze Environments

Evaluation. To evaluate ours agents, we discretize the considered mazes into many cells (See
Figure 9 for an illustration). At the beginning on each test episode, we initialize the agents in
all the discretized cells. Following the experimental section of the main paper, we compare our
proposed GSAC algorithm to the classic SAC algorithm. Our goal is to see if these agents are able
to distinguish deceptive from real rewards from the cell they were initialized in.

Results. The grid plot on Figure 9 highlights the average rewards obtained by the agents when
initialized in different cells. Experiments were conducted over 5 seeds. Depending on the cell in

13

Under review as a conference paper at ICLR 2022

which they were initialized, both agents choose to opt either for the deceptive or the real reward.
However, the GSAC agent is capable of choosing the real reward even if it was initialized close to
the deceptive one. Meanwhile, the SAC agent is more myopic, as the number of cells that leads it to
the deceptive rewards are more than the ones encountered in GSAC.

(a) (b)

(c) (d)

Figure 9: Grid plot of the average rewards per cell initialization for SAC within (a) the SMaze-v0 environment,
(b) the UMaze-v0 environment; GSAC within (c) the SMaze-v0 environment and (d) the UMaze-v0 environment

B PROOFS OF THE TECHNICAL RESULTS

B.1 USEFUL INTERMEDIATE RESULTS

We start by introducing some useful intermediate results that will be used later on to prove proposi-
tions 1 and 2.

USEFUL RESULTS FOR PROPOSITION 1

To derive the desired property of the value function, it is useful to derive a relationship between the
coefficients ΦD(t):

Lemma 1 For any integer D > 0 , the following equalities hold:

ΦD(t) =

t∑
k=0

γkDΦD−1(t− k) = ΦD−1(t) + γDΦD(t− 1) =

D∑
d=0

γdΦd(t− 1)

Now, consider the state-value function V πd (s) defined as:

V πD(s) := Eπ

[∞∑
t=0

ΦD(t)rt|s0 = s
]

Lemma 1 can be used to derive a relationship between the value functions (V πd)Dd=0 for any depth
parameter D ∈ N:

Proposition 3 For any state s ∈ S and for any integer D ∈ N, we have:

V πD(s) = E a∼π(s)
s′∼P(s,a)

[
c(s, a) +

D∑
d=0

γdV
π
d (s′)

]

14

Under review as a conference paper at ICLR 2022

USEFUL RESULTS FOR PROPOSITION 2

This proposition is proved using an induction reasoning. For this reason, we start by consider the
simpler case of H = 1:

Proposition 4 For any state s0 ∈ S, the following identity holds:

V ∗η (s0) = max
a0

{[D∑
d=0

wd
]
c(s0, a0) + Es1

[
V ∗f(η)(s1)

]}
(11)

B.2 PROOFS

In this section we provide the proofs of the technical results

PROOF OF PROPOSITION 1

Recall that:

QπD(s, a) = Es′∼P(s,a)

[
V πD(s′)

]
Then the statement from Proposition 3 can be reformulated as

QπD(s, a) = Es′∼P(s,a)
a′∼π(s′)

[
c(s, a) +

D∑
d=0

γdQ
π
d (s′, a′)

]
(12)

Which means that QπD is a fixed point of TDπ . Given that this operator is a γD contraction with
γD ∈ (0, 1), it follows that it is the unique fixed point.

PROOF OF LEMMA 1:

The proof relies on algebraic manipulations of the indices:

ΦD(t) :=
∑

{ad∈N}Di=0

such that
∑
d ad=t

D∏
d=0

γadd

=

t∑
k=0

γkD

[∑
{ad∈N}D−1

i=0

such that
∑
d ad=t−k

D−1∏
d=0

γadd

]
=

t∑
k=0

γkDΦD−1(t− k)

This concludes the proof of the first equality. Similarly, the second equality is achieved through
similar algebraic treatments:

ΦD(t) =

t∑
k=0

γkDΦD−1(t− k)

= ΦD−1(t) +

t∑
k=1

γkDΦD−1(t− k)

= ΦD−1(t) + γD

t−1∑
k=0

γkDΦD−1((t− 1)− k) = ΦD−1(t) + γDΦD(t− 1)

This concludes the proof of the second equality. The last one can be deduced directly using in-
duction. In fact, the induction is a direct consequence of the second equality, and the basis case is
trivially verified as:

Φ0(t) = γt0 = γ0Φ0(t− 1)

15

Under review as a conference paper at ICLR 2022

PROOF OF PROPOSITION 3:

The proof relies on some algebraic manipulation as well as the last equality from Lemma 1.

V πD(s) = Eπ

[∞∑
t=0

ΦD(t)c(st, at)|s0 = s
]

= Eπ

[
c(s0, a0) +

∞∑
t=1

ΦD(t)c(st, at)|s0 = s
]

= Eπ

[
c(s0, a0) +

D∑
d=0

γd

∞∑
t=1

Φd(t− 1)c(st, at)|s0 = s
]

= Eπ

[
c(s0, a0) +

D∑
d=0

γd

∞∑
t=0

Φd(t)c(st+1, at+1)|s0 = s
]

= E a∼π(s)
s′∼P(s,a)

[
c(s, a) +

D∑
d=0

γdV
π
d (s′)

]
where the last equality relies on the Markov property of MDPs.

PROOF OF PROPOSITION 4:

The proof relies on the linearity of the expectation as well as proposition 3. Let’s denote in this
proof with the policy π the sequence of action a0, a1, . . . , a∞ and with the transposed policy Tπ the
sequence of actions a1, a2, . . . , a∞. The following property then holds

V πη (s) =

D∑
d=0

wdV
π
d (s) =

D∑
d=0

wdE a∼π(s)
s′∼P(s,a)

[
c(s, a) +

d∑
i=0

γiV
Tπ
i (s′)

]
= Ea∼π(s)

[(D∑
d=0

wd
)
c(s, a)

]
+ E a∼π(s)

s′∼P(s,a)

[D∑
d=0

wd

d∑
i=0

γiV
Tπ
i (s′)

]
= Ea∼π(s)

[(D∑
d=0

wd
)
c(s, a)

]
+ E a∼π(s)

s′∼P(s,a)

[D∑
d=0

γd
(D∑
i=d

wi
)
V Tπd (s′)

]
= E a∼π(s)

s′∼P(s,a)

[(D∑
d=0

wd
)
c(s, a) +

D∑
d=0

γd
(D∑
i=d

wi
)
V Tπd (s′)

]
= E a∼π(s)

s′∼P(s,a)

[(D∑
d=0

wd
)
c(s, a) + V Tπf(η)(s

′)
]

Using this equality and the Bellman property, it follows that the maximum value function V ∗η verifies
the following:

V ∗η (s0) = max
π

V πη (s0) = max
π
Es1∼P(s0,a0)

[(D∑
d=0

wd
)
c(s0, a0) + V Tπf(η)(s1)

]
= max
a0,Tπ

{(D∑
d=0

wd
)
c(s0, a0) + Es1∼P(s0,a0)

[
V Tπf(η)(s1)

]}
= max

a0

{(D∑
d=0

wd
)
c(s0, a0) + max

Tπ
Es1∼P(s0,a0)

[
V Tπf(η)(s1)

]}
= max

a0

{[D∑
d=0

wd
]
c(s0, a0) + Es1∼P(s0,a0)

[
V ∗f(η)(s1)

]}

16

