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A Coarse to Fine Detection Method for Prohibited Object in X-ray
Images Based on Progressive Transformer Decoder

Anonymous Authors

1 DETAILED DESCRIPTION OF SOME PARTS
IN EXPERIMENTAL RESULTS AND
ANALYSIS

1.1 Robustness Analysis

To validate the robustness of the method in this paper, the training
loss curve was compared with that of DAB DETR. Figure 6 shows
the comparison of the training loss curves of the method in this
paper and DAB DETR, where the first and second lines represent
regression loss, and the third and fourth lines represent classifica-
tion loss. (a) represents the overall regression loss, (b)-(f) represent
the regression loss for each category. (g) represents the overall clas-
sification loss, and (h)-(l) represent the classification loss for each
category. The red line represents the method of this paper, and the
blue line represents DAB DETR.

It can be seen that whether it is regression loss or classification
loss, the method in this paper can converge rapidly and maintain
a stable training state. For regression loss, although DAB DETR
can also converge quickly, the oscillation range is large in the later
training process, and the robustness is poor. As for the classification
loss, the advantages are more obvious, not only the convergence is
rapid, but also the training process is more stable in the later stage,
especially for each class of object. On the contrary, DAB DETR
maintains a large oscillation amplitude while converging slowly,
which fully demonstrates the excellent learning and generalization
ability of our method.

1.2 Effect of Different CTFF Parameters on
Model Performance

Different parameters are used during the coarse detection and fine
detection stages. To verify the impact of these parameters on model
performance, we conducted more detailed ablation experiments.
The experimental results are described below.

1.2.1  Effect of Different ot in Coarse Detection Stage. In order to re-
duce the computational complexity as much as possible and ensure
higher detection accuracy, in the coarse detection stage, this paper
uses the reduction coefficient  to reduce the size of the feature
map. The larger the value of «, the less information is lost. In this
paper, we tested three values, namely 1/3, 1/2, and 2/3. See Table 7
for the results.

It can be seen from the table that when « = 1/3, about 61% of the
objects can be correctly detected only through the coarse detection
stage. As the reduction coefficient increases, the detection accuracy
gradually increases as the features become richer. When a = 1/2,
the number of objects detected in the coarse detection stage tends
to be stable, and the rest of the complex objects should be sent to
the next stage for fine detection.
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Figure 6: Comparison of training loss curves of different
methods.

Table 7: Effect of Different « Values on Model Performance. o
denotes reduction coefficient, N.cd denotes the number that
passes the coarse detection.

a N.cd mAP Inference Time(s) GFLOPs
1/3 61% 90.31 0.0414 152.11
1/2 79% 92.39 0.0545 173.85
2/3 81% 92.41 0.0735 195.88

1.2.2  The Number of Large Regions Selected During the Fine De-
tection Stage. During the fine detection stage, more feature infor-
mation is utilized for the detection of complex prohibited objects.
Thus, the greater the number of large areas selected, the higher
the detection accuracy, but at the cost of increased complexity. To
achieve a balance between complexity and accuracy, we conducted
ablation experiments on the number of large areas selected, denoted
as N. The results of these experiments are presented in Table 8.

It can be seen from the table that as the number of large areas
selected increases, the detection accuracy also increases. When N
is greater than 4, the detection accuracy tends to be flat, while the
computational complexity continues to increase, which shows that
for X-ray images, choosing 4 large regions can achieve accurate
detection of prohibited object. Therefore, in order to achieve a
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Figure 7: The distribution of TP and FP at different confidence score.

Table 8: Effect of Different Number of Large Regions on
Model Performance. N denotes the number of large areas
selected.

N mAP Inference Time(s) GFLOPs
2 86.47 0.0418 155.12
3 90.90 0.0489 162.98
4 92.39 0.0545 173.85
5 92.43 0.0723 190.21
6 92.48 0.0883 201.11
7 92.48 0.1001 224.98
8 92.49 0.1318 266.10
ALL 92.49 0.1552 298.32

compromise between precision and complexity, N = 4 is set in this
paper.

1.3 Effect of different PTD parameters on model
performance

To determine the appropriate thresholds, when not using PTD, the
ratio of True Positives (TP) and False Positives (FP) to all predicted
boxes is calculated based on the output from the fourth Transformer
Decoder, as shown in Figure 7(a). It is evident that nearly all the
output bounding boxes are TP when the confidence score is greater
than 0.7. This implies that there is no need to continue refining the
bounding box through subsequent processes when the detector’s

confidence score exceeds 0.7. Hence, the first threshold is set at 0.7.

After introducing a shunt mechanism in the fourth Transformer
Decoder, the ratio of TP and FP to all predicted boxes is recalculated
based on the output from the fifth Transformer Decoder, as depicted
in Figure 7(b). For the fifth Transformer Decoder, it can be observed
that nearly all the detection boxes are TP when the confidence score
exceeds 0.6. Therefore, in order to protect the high-score queries

from the low-score queries, the second threshold value is set to 0.6.
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