
A Algorithms

Algorithm 1 PyTorch-style pseudo-code for the Iterative ContraCAM.

input: image (b, c, h, w)

masked_image = image # initial: original image

queues = []
for i in n_iters:

feature = get_features(masked_image) # spatial features
feature.requires_grad = True
output = get_projection(feature) # projection outputs

if i == 0:
key = output.detach() # original images

queues.append(output.detach()) # masked images

score = contrastive_score(output, key, queues) # See Algorithm 2
cam = compute_cam(feature, score, size=(h, w)) # See Algorithm 3

mask = max(mask, cam) if i > 0 else cam # union over iterations
masked_image = image * (1 - mask) + mask_color * mask # soft mask

return mask

Algorithm 2 PyTorch-style pseudo-code for the contrastive score.

input: query (b,d), key (b,d), queues List[(b,d)]

pos = einsum('nc,nc->n', [query, key])
neg = cat([einsum('nc,kc->nk', [query, q]) * (1 - query.size(0))

for q in queues], dim=1)

score = (pos.exp().sum(dim=1) / neg.exp().sum(dim=1)).log()
return score

Algorithm 3 PyTorch-style pseudo-code for the Class Activation Map (CAM).

input: feature (b,c,h,w), score (b), size=(H,W)

grad = autograd.grad(score.sum(), feature)[0]

weight = adaptive_avg_pool2d(grad, output_size=(1, 1))
weight = weight.clamp_min(0) # clamp negative weights

cam = sum(weight * feature, dim=1, keepdim=True).detach() # weighted sum
cam = interpolate(cam, size=(H,W)) # scale-up to image size
cam = normalize(relu(cam)) # normalize to [0,1]
return cam

15

B Implementation details

We build our code upon the PyTorch [52] and PyTorch Lightning5 library. Further implementation
details and additional libraries for each experiment are stated in the remaining subsections.

B.1 Implementation details for object localization results

We train MoCov2 under the ResNet-18 architecture on CUB, Flowers, COCO, and ImageNet-9
datasets for the segmentation results. We train the models with batch size 256, COCO, and ImageNet-
9 for 800 epochs and CUB and Flowers for 2,000 epochs since the latter has few samples. We follow
the augmentations of He et al. [1]: color jitter with strength (0.4,0.4,0.4,0.1), random grayscale with
probability 0.2, and Gaussian blur with kernel size 23 and standard deviation sampled from (0.1,2.0)
with probability 0.5; except random crop patches with size (0.08,1.0) instead of the original (0.2,1.0)
as it performed better for images with small objects. We use a learning rate of 0.03 with a cosine
annealing schedule. These training configurations are applied for all experiments.

We apply the expansion trick [48]: doubly expand the resolution of penultimate spatial activations by
decreasing the stride of the convolutional layer in the final residual block to detect small objects with
CAM. Note that we only apply this trick at inference time and do not change the training; namely, the
model is trained with the original 7×7 resolution but inferred with the expanded 14×14 of the spatial
activations. We also tried training the models using the modified 14×14 resolution but did not see
much gain. We run ten iterations for the Iterative ContraCAM and apply the conditional random field
following the default hyperparameters6 from the pydensecrf library [49]. We report the mask mean
intersection-over-union (mIoU) between the predicted and ground-truth segmentation masks.

For the comparison of the classifier CAM and ContraCAM, we use the publicly available supervised
classifier7 and MoCov28 trained on the ImageNet dataset under the ResNet-50 architecture. Here,
we do not apply the expansion trick and run a single iteration for the ContraCAM. We report the
MaxBoxAccV2 [48]: averages the ratios of the bounding boxes whose mean intersection-over-unions
(mIoUs) are larger than 30%, 50%, and 70% where the boxes for each mIoU percentages are
generated by the CAM binarized by the optimal thresholds, on the ImageNet, CUB, Flowers, VOC,
and OpenImages dataset following the official evaluation code.9 Recall that we report the transfer
performance of the predicted CAMs from the ImageNet-trained models for these experiments.

B.2 Implementation details for contextual bias results

We train MoCov2 and BYOL under the ResNet-18 and ResNet-50 architectures on the COCO dataset
for 800 epochs with batch size 256. We extract the bounding boxes from the binarized CAM masks
using the findContours function in the OpenCV library [50]. We compute the boxes with MoCov2
trained on ResNet-18 and ResNet-50 architectures and use them for the debiased MoCov2 and BYOL
using the same architectures. We found that giving some margin for the boxes slightly improves the
performance by observing more object boundaries. Specifically, we expand the boxes with 20% of
margins (width for left-and-right and height for up-and-down) found from the experiments using the
ground-truth boxes and use the same margins for the CAM boxes. We also remove the small boxes,
specifically smaller than 1% of the image size, to remove vague low-resolution objects.

We follow the linear evaluation scheme of Chen et al. [2]: train a `2-regularized multinomial logistic
regression classifier on top of the pre-computed representation using the L-BFGS [79] optimizer. We
compute the representation with the center cropped images and choose the `2-regularization parameter
from (10−6,105) spaced with a range of 45 logarithmically. We evaluate the transfer performance on
the COCO-Crop (crop objects of the COCO dataset with 20% of margins), CIFAR-10, CIFAR-100,
CUB, Flowers, Food, and Pets datasets using the linear classifier trained and tested on each dataset.
For detection experiments, we follow the fine-tuning configuration of He et al. [1] evaluated on the
COCO dataset. We use the Detectron10 library for the detection experiments.

5https://github.com/PyTorchLightning/pytorch-lightning
6https://github.com/lucasb-eyer/pydensecrf
7https://pytorch.org/vision/stable/models.html
8https://github.com/facebookresearch/moco
9https://github.com/clovaai/wsolevaluation

10https://github.com/facebookresearch/Detectron

16

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/lucasb-eyer/pydensecrf
https://pytorch.org/vision/stable/models.html
https://github.com/facebookresearch/moco
https://github.com/clovaai/wsolevaluation
https://github.com/facebookresearch/Detectron

B.3 Implementation details for background bias results

We provide the visual examples of the Background Challenge [23] in Figure 5 and distribution-shifted
datasets of ImageNet [51]: ImageNet-Sketch [29], Stylized-ImageNet [39], ImageNet-R [40], and
ImageNet-C [30] datasets in Figure 6. We train the models on the ImageNet-9 [23], i.e., the ORIGINAL
dataset of the Background Challenge, which contains 9 superclass (370 class) of the full ImageNet for
both background and distribution shifts experiments. Thus, we use the the corresponding 9 superclass
subsets of the distribution-shifted datasets, denoted by putting ‘-9’ at the suffix of the dataset names.

Figure 5: Visual examples of the Background Challenge [23]. Image from the original paper.

(a) ImageNet-Sketch [29] (b) Stylized-ImageNet [39] (c) ImageNet-R [40] (d) ImageNet-C [30]

Figure 6: Visual examples of the distribution-shifted datasets of ImageNet [51] for ‘dog’ class.

We train MoCov2 and BYOL under the ResNet-18 architecture on the ORIGINAL dataset of the
Background Challenge for 800 epochs with batch size 256. We use the ContraCAM masks from
MoCov2 to train debiased MoCov2 and BYOL for debiased BYOL. We threshold the CAM values
with a threshold of 0.2 to find the largest contour, find the largest rectangle outside the contour to create
the background patch and tile it for the background-only image. We train a linear classifier on the
ORIGINAL dataset and evaluate test accuracy on the Background Challenge and distribution-shifted
ImageNet 9 superclass subsets for the background and distribution shift results.

17

C Additional localization results

C.1 Visualization of ContraCAM without negative signal removal

Figure 7 shows the examples of ContraCAM without negative signal removal. The negative signals
from similar objects in different images disturb the localization results by canceling positive signals;
spread in random locations. Therefore, removing these signals improves the localization results.

(a) Original (b) ContraCAM w/o NSR (c) ContraCAM (ours)

Figure 7: Visualization of ContraCAM without negative signal removal (NSR).

C.2 Ablation study on the number of iterations

We present the ablation study on the number of iterations for the ContraCAM in Table 9. One needs a
sufficient number of iterations (e.g., 5) since too small numbers of iterations often detect subregions
or miss some objects. Also, note that the CAM shows stable results for large numbers (e.g., 20) of
iterations and converges to some stationary values, though it slightly harms the best value of 10.

Table 9: Mask mIoU of ContraCAM with various number of iterations.
Iteration CUB Flowers COCO ImageNet-9

1 0.249 0.374 0.081 0.090
2 0.402 0.662 0.182 0.220
3 0.447 0.738 0.256 0.328
5 0.461 0.753 0.308 0.417

10 0.460 0.776 0.319 0.427
20 0.458 0.737 0.318 0.419

18

C.3 Ablation study on the choice of negative batch

We study the effects of the negative batch for the ContraCAM. Recall that the ContraCAM finds
the most discriminative regions compared to the negative batch; it assumes that images have similar
backgrounds but different objects. For a sanity check, we construct a negative batch containing similar
objects. Figure 8 shows an example of the ContraCAM using a giraffe-only and random batch as the
negatives. ContraCAM highlights background when compared to the giraffe-only batch.

(a) Original (b) Giraffe-only batch (c) Random batch

Figure 8: Visualization of the similar-objects and random negative batches.

However, the pathological selection of the negative batch rarely occurs in practice; using a small
number of random samples can alleviate the issue. Table 10 shows the effects of the negative batch
size for the ContraCAM. Using a small batch (e.g., of size 4) almost match the performance of the
larger batch (e.g., of size 64). We use the random batch of size 64 for all our experiments.

Table 10: Mask mIoU of ContraCAM with various negative batch sizes.
Batch size CUB Flowers COCO ImageNet-9

4 0.451 0.731 0.315 0.428
16 0.455 0.731 0.317 0.429
64 0.460 0.776 0.319 0.427

19

C.4 Comparison with the Classifier CAM

We compare the ContraCAM and classifier CAM under the publicly available supervised classifier and
MoCov2 trained on the ImageNet dataset. Somewhat interestingly, the ContraCAM often outperforms
the classifier CAM on the transfer setting, e.g., when transferred to the CUB dataset, as shown in
Figure 9. This is because some samples of the CUB dataset are out-of-class of the ImageNet, and the
classifier fails to understand the important features unrelated to the original classes.

(a) Original (b) Classifier CAM (c) ContraCAM (ours)

Figure 9: Visualization of the Classifier CAM and ContraCAM.

To check whether the superiority of the ContraCAM comes from the score function or better backbone,
we also train a linear classifier on top of the MoCov2 backbone using the ImageNet dataset and test
the classifier CAM. Table 9 shows that the ContraCAM on MoCov2 even outperforms the classifier
CAM on the same backbone for the ImageNet to CUB transfer scenario.

On the other hand, the table shows that the double expansion trick [48] of the resolution of penultimate
spatial activations is more effective for MoCov2 while degrading the supervised classifier; MoCov2
is trained with stronger augmentations, making CAM robust to the modification of the architecture.
Thus, we only apply the expansion trick for the MoCov2 results in Table 2.

Table 11: MaxBoxAccV2 of the Classifier CAM and ContraCAM using the supervised classifier and
MoCov2 trained on the ImageNet dataset under the ResNet-50 architecture. Res×2 denotes the usage
of the double expansion trick [48] of the resolution of penultimate spatial activations.

Model Method Res×2 ImageNet CUB Flowers VOC OpenImages

Supervised Classifier CAM 55.95 55.52 76.87 53.88 48.01
Supervised Classifier CAM X 55.01 43.23 73.31 52.27 47.23
MoCov2 Classifier CAM 57.79 63.84 74.29 59.45 51.99
MoCov2 Classifier CAM X 60.04 62.87 78.01 61.03 53.06

MoCov2 ContraCAM (ours) 54.57 60.33 74.29 58.64 48.84
MoCov2 ContraCAM (ours) X 55.88 64.07 75.64 59.40 49.89

20

C.5 Comparison with the gradient-based saliency methods

We compare the ContraCAM and gradient-based saliency methods using the contrastive score Eq. (1).
All methods use the same score function but only differ from localization: the weighted sum of
activations (i.e., CAM) or directly propagate the gradients to the input space (i.e., gradient-based
saliencies). We choose two representative gradient-based saliency methods: Integrated Gradients
(IntGrad) [53] and SmoothGrad [54], which ensembles multiple gradients for better saliency detection.
Specifically, IntGrad ensembles the gradients of the linear interpolation of the image and the zero
image, and SmoothGrad ensembles the gradients of the image added by random Gaussian noises. We
average ten gradients, either interpolation or Gaussian noises, for both methods.

Figure 10 and Table 12 present the visual examples and quantitative results measured by MaxBox-
AccV2, respectively. The gradient-based saliencies provide sparse points as outputs, which can be
hard to aggregate as segmentation masks. In contrast, ContraCAM provides smooth maps which are
more interpretable and easily used for applications, e.g., post-process to bounding boxes. Furthermore,
the gradient-based saliencies detect larger regions than ContraCAM. We think it is due to the negative
signals: unlike ContraCAM, it is non-trivial to remove them for the gradient-based saliencies.

(a) Original (b) IntGrad [53] (c) SmoothGrad [54] (d) ContraCAM (ours)

Figure 10: Visualization of various saliency methods using the contrastive score Eq. (1).

Table 12: MaxBoxAccV2 of various saliency methods using the contrastive score Eq. (1). We compute
the saliencies from the MoCov2 trained on the ImageNet dataset under the ResNet-50 architecture.

Method ImageNet CUB Flowers VOC OpenImages

IntGrad [53] 48.40 35.44 70.73 48.52 49.48
SmoothGrad [54] 51.70 51.50 72.83 57.26 48.67
ContraCAM (ours) 55.88 64.07 75.64 59.40 49.89

21

D Additional contextual bias results

D.1 Hard negative issue in MoCov2

We found that MoCov2 trained with the object-aware random crop (OA-Crop) using ground-truth
(GT) bounding boxes does not perform well, often worse than the original image (Baseline). This is
because the contrastive learning objective is hard to optimize and unstable during training for the
OA-Crop (GT), as shown in Figure 11. In contrast, OA-Crop using the ContraCAM boxes is much
stable, yet it is a little harder to optimize than the original image.

(a) Baseline (b) OA-Crop (CAM) (c) OA-Crop (GT)

Figure 11: Training loss curve of MoCov2 trained under the COCO dataset.

The reason behind this phenomenon is that the ground-truth boxes often contain objects that are hard
to distinguish from each other, i.e., hard negatives for contrastive learning. In contrast, ContraCAM
finds more discriminative objects as defined in Eq. (1). Figure 12 shows the histogram of the number
of ContraCAM and ground-truth boxes, and Figure 13 shows a visual example of them. ContraCAM
finds the most recognizable 1∼3 objects from the full ground-truth boxes.

(a) CAM boxes (b) GT boxes

Figure 12: Histogram of the number of ContraCAM and ground-truth boxes.

(a) CAM boxes (b) GT boxes

Figure 13: Visualization of the ContraCAM and ground-truth boxes.

22

D.2 Analysis on the contextual bias

We analyze whether the object-aware random crop (OA-Crop) actually relieves the contextual bias.
To verify this, we visualize the embeddings of correlated classes under the original MoCov2 and the
debiased model using the OA-Crop with the ContraCAM boxes. Specifically, we choose giraffe and
zebra, which frequently co-occurs in the safari scene (see Figure 1a). Figure 14 shows the t-SNE [80]
visualization of the giraffe and zebra embeddings of the original and debiased models. The debiased
OA-Crop (CAM) model less entangles the features of giraffe and zebra. However, even the debiased
model using the ground-truth boxes, i.e., OA-Crop (GT), does not perfectly disentangle the features;
since the bounding boxes often contain nearby or occluded objects.

We also quantitatively measure the contextual bias of the models in Table 13. Specifically, we compute
the average minimum `2-distance of the features, i.e.,

1

|X |
∑
x∈X

min
y∈Y

d(x, y) +
1

|Y|
∑
y∈Y

min
x∈X

d(x, y), (5)

where X ,Y ⊂ Rm are the penultimate embeddings of each class (giraffe and zebra) and d denotes
a `2-distance function, under the MoCov2 using the ResNet-50 architecture. The model trained by
OA-Crop (CAM) has a larger distance between the embeddings than the original image.

(a) Baseline (b) OA-Crop (CAM)

Figure 14: t-SNE [80] visualization of the giraffe and zebra embeddings.

Table 13: Average minimum `2-distance of giraffe and zebra embeddings.
Baseline OA-Crop (CAM) OA-Crop (GT)

0.2441 0.2790 0.3824

To further verify that the contextual bias harms the discriminability, we report the classification error
of co-occurring classes (giraffe vs. zebra) over epochs. Upon the fixed representation, we compute
the 5 seed average of 1-shot binary classification error. The classification error of vanilla MoCov2
increases for later epochs while the object-aware random crop shows consistent results.

Table 14: Error rate (%) of the binary classifier of giraffe vs. zebra over epochs.
Epoch 100 200 300 400 500 600 700 800

MoCov2 22.5 1.9 3.8 2.7 7.7 4.6 6.6 8.5
+OA-Crop 1.6 1.7 2.4 2.4 5.2 2.9 1.6 1.3

23

D.3 Comparison with supervised models

We provide the linear evaluation and detection/segmentation results of supervised models. Specificlaly,
we consider two representative supervised learning model: Faster R-CNN [58] and Mask R-CNN
[59], which are trained on bounding boxes and instance segmentations, respectively. We use the
publicly available PyTorch models11 trained on the COCO dataset using the ResNet-50 architecture.
We use the pretrained weights for detection/segmentation experiments (Table 16) and trained a linear
classifier upon the pretrained weights for linear evaluation experiments (Table 15).

Table 15 and Table 16 show that the supervised Faster R-CNN and Mask R-CNN learns better
representation than the self-supervised models. However, BYOL trained with ground-truth object
boxes matches the supervised models’ linear evaluation performance, implying the self-supervised
methods’ potentials. While ContraCAM significantly improves the vanilla MoCov2/BYOL, it would
be an interesting future direction to reduce the gap between the supervised models further.

Table 15: Linear evaluation (%) of MoCov2 and BYOL under the ResNet-50 architecture, following
the setting of Table 4. We compare the self-supervised and supervised models.

Model OA-Crop Test dataset

COCO-Crop CIFAR10 CIFAR100 CUB Flowers Food Pets

MoCov2 - 74.30 77.58 53.26 22.90 72.09 59.70 59.25
BYOL - 73.36 76.62 51.79 21.95 73.77 59.49 60.72
MoCov2 CAM 76.37 84.10 62.72 25.46 77.33 62.01 60.97
BYOL CAM 74.92 82.79 61.13 24.34 77.83 61.83 61.27
MoCov2 GT 76.44 84.03 62.81 22.59 75.09 57.47 57.67
BYOL GT 80.69 85.92 65.06 28.68 77.95 64.63 65.69

Faster R-CNN - 81.25 88.92 67.79 30.77 77.59 66.82 66.07
Mask R-CNN - 81.45 88.59 67.72 29.05 77.57 66.27 64.40

Table 16: Mean AP (%) of MoCov2 and BYOL fine-tuned on the COCO detection and segmentation
tasks, following the setting of the table above, using the ResNet-50 architecture.

MoCov2 BYOL Faster R-CNN Mask R-CNN

- CAM GT - CAM GT

COCO Detection 36.3 36.6 35.7 35.1 35.6 35.1 37.0 37.9
COCO Segmentation 32.0 32.4 31.5 31.1 31.4 31.1 - 34.6

11https://pytorch.org/vision/stable/models.html

24

https://pytorch.org/vision/stable/models.html

D.4 Class-wise accuracy on CIFAR-10

We check if our debiased models suffer from the over-reliance on conspicuous objects as concerned
in the potential negative effects section. Table 17 shows the class-wise accuracy of the original and
our debiased models on CIFAR-10. OA-Crop does not degrade the performance on certain classes,
implying that the concerned bias issue does not occur for our considered transfer scenario.

Table 17: Class-wise linear evaluation (%) of MoCov2 and BYOL on CIFAR-10 under the ResNet-50
architecture, following the setting of Table 4. OA-Crop is not biased to the certain classes.

Model OA-Crop Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

MoCov2 - 79.5 86.9 67.2 61.6 74.0 68.1 82.1 79.2 89.4 87.8
MoCov2 CAM 88.9 (+9.4) 92.8 (+5.9) 74.8 (+7.6) 70.0 (+8.4) 78.6 (+4.6) 76.6 (+8.5) 88.6 (+6.5) 85.1 (+5.9) 93.8 (+4.4) 91.8 (+4.0)
MoCov2 GT 89.0 (+9.5) 94.0 (+7.1) 76.5 (+9.3) 70.9 (+9.3) 78.2 (+4.2) 73.9 (+5.8) 87.0 (+4.9) 86.5 (+7.3) 92.5 (+3.1) 91.8 (+4.0)

BYOL - 78.6 87.8 64.1 62.3 68.8 68.4 83.8 78.7 87.2 86.8
BYOL CAM 86.2 (+7.6) 93.2 (+5.4) 73.4 (+9.3) 69.4 (+7.1) 76.2 (+7.4) 74.7 (+6.3) 87.5 (+3.7) 83.6 (+4.9) 92.1 (+4.9) 91.6 (+4.8)
BYOL GT 90.2 (+11.6) 94.6 (+6.8) 76.7 (+12.6) 73.0 (+10.7) 80.1 (+11.3) 79.8 (+11.4) 89.4 (+5.6) 88.6 (+9.9) 93.6 (+6.4) 93.2 (+6.4)

D.5 Comparison with the ImageNet-trained models

We compare the models trained under the COCO dataset (original or with OA-Crop) with the 10%
subset of the ImageNet dataset (i.e., ImageNet 10%) under the ResNet-18 architecture in Table 18.
We randomly choose 10% of samples to make a similar size (∼100,000) with the COCO dataset.
While the models trained under COCO performing better on the COCO-Crop, ImageNet significantly
outperforms the other datasets, implying ImageNet has fewer distribution shifts with them.

Table 18: Linear evaluation (%) of MoCov2 and BYOL on various image classification tasks under
the ResNet-18 architecture, following the setting of Table 4. We additionally compare with the models
trained under the 10% subset of the ImageNet dataset (i.e., ImageNet 10%).

Model Dataset OA-Crop Test dataset

COCO-Crop CIFAR10 CIFAR100 CUB Flowers Food Pets

MoCov2 COCO - 67.38 66.83 41.85 15.36 58.81 45.88 45.37
MoCov2 COCO CAM 69.92 76.73 53.25 16.26 64.77 48.56 47.37
MoCov2 COCO GT 71.60 77.99 53.32 18.19 65.43 46.41 48.68
MoCov2 ImageNet 10% - 66.28 75.28 48.64 23.75 67.99 48.70 64.16

BYOL COCO - 67.74 67.82 41.96 17.24 64.79 49.58 52.90
BYOL COCO CAM 70.85 77.37 54.79 18.24 70.56 53.16 54.27
BYOL COCO GT 76.59 81.23 58.11 22.99 73.25 55.33 59.80
BYOL ImageNet 10% - 68.96 78.51 55.40 29.89 78.14 55.10 70.16

D.6 Second iteration using the CAM from the debiased models

We compare the models trained with the ContraCAM inferred from the original models (Iter. 1) and
the debiased models (Iter. 2) in Table 19. Using the debiased models has no additional gain from the
original models. Thus, we use the single iteration version for all experiments.

Table 19: Linear evaluation (%) of MoCov2 and BYOL on various image classification tasks under
the ResNet-18 architecture, following the setting of Table 4. We compare the models trained with the
ContraCAM inferred from the original models (Iter. 1) and debiased models (Iter. 2).

Model OA-Crop Iter. Test dataset

COCO-Crop CIFAR10 CIFAR100 CUB Flowers Food Pets

MoCov2 - - 67.38 66.83 41.85 15.36 58.81 45.88 45.37
MoCov2 CAM 1 69.92 (+2.54) 76.73 (+9.90) 53.25 (+11.40) 16.26 (+0.90) 64.77 (+5.96) 48.56 (+2.68) 47.37 (+2.00)
MoCov2 CAM 2 68.53 (+1.15) 76.54 (+9.71) 52.64 (+10.79) 16.62 (+1.26) 64.89 (+6.08) 47.34 (+1.46) 46.77 (+1.40)

BYOL - - 67.74 67.82 41.96 17.24 64.79 49.58 52.90
BYOL CAM 1 70.85 (+3.11) 77.37 (+9.55) 54.79 (+12.83) 18.24 (+1.00) 70.56 (+5.77) 53.16 (+3.58) 54.27 (+1.37)
BYOL CAM 2 70.96 (+3.22) 77.62 (+9.80) 54.78 (+12.82) 20.14 (+2.90) 71.31 (+6.52) 53.38 (+3.80) 53.50 (+0.60)

25

E Additional background bias results

E.1 Comparison with the copy-and-paste augmentation

We compare the background mixup using the ContraCAM (BG-Mixup) with the copy-and-paste
augmentation using the binarized CAM (BG-HardMix) in Table 20. BG-Mixup (CAM) shows better
accuracy (e.g., ORIGINAL) and better generalization (e.g., MIXED-RAND) than the BG-HardMix,
implying that the soft blending of foreground and background images performs better than the hard
copy-and-paste. Indeed, one should consider the confidence of the predicted CAM masks as they are
inaccurate. Also, the soft blending gives a further regularization effect of mixup [41].

Table 20: Test accuracy (%) on background shifts following the setting of Table 7. We compare the
background mixup using the ContraCAM (BG-Mixup) and the copy-and-paste version using the
binarized CAM (BG-HardMix). Bold denotes the best results among the same model.

MoCov2 BYOL

Dataset Baseline BG-Mixup (CAM) BG-HardMix (CAM) Baseline BG-Mixup (CAM) BG-HardMix (CAM)

Original ↑↑↑ 89.17±0.49 90.73±0.05 (+1.56) 88.96±0.50 (-0.21) 87.30±0.61 89.30±0.02 (+2.00) 88.71±0.28 (+1.41)
Only-BG-B ↓↓↓ 31.29±2.46 29.60±0.89 (-1.69) 31.28±2.03 (-0.01) 25.59±0.78 25.70±3.46 (+0.11) 26.67±1.32 (+1.08)
Only-BG-T ↓↓↓ 44.91±0.16 41.95±0.38 (-2.96) 44.36±1.40 (-0.55) 42.83±0.51 39.94±0.52 (-2.89) 42.02±0.45 (-0.81)
Only-FG ↑↑↑ 63.62±4.71 70.55±1.71 (+6.93) 67.75±0.89 (+4.13) 61.04±0.94 67.53±0.30 (+6.49) 63.61±1.65 (+2.57)
Mixed-Same ↑↑↑ 80.98±0.34 84.13±0.33 (+3.15) 82.19±0.61 (+1.21) 79.30±0.31 81.28±0.53 (+1.98) 81.25±0.48 (+1.95)
Mixed-Rand ↑↑↑ 60.34±0.66 66.89±0.54 (+6.55) 63.46±0.84 (+3.12) 58.03±0.85 63.83±0.53 (+5.80) 61.93±0.17 (+3.90)
Mixed-Next ↑↑↑ 55.50±0.71 63.64±0.41 (+8.14) 59.19±0.94 (+3.69) 53.35±0.36 63.05±3.54 (+9.70) 58.13±1.22 (+4.78)

BG-Gap ↓↓↓ 20.64±0.36 17.24±0.31 (-3.40) 18.73±0.54 (-1.91) 21.27±0.64 17.45±0.15 (-3.82) 19.32±0.42 (-1.95)

E.2 Ablation study on the mixup probability

We study the effect of the mixup probability pmix, a probability of applying BG-Mixup augmentation.
Table 21 shows the BG-Mixup results with varying pmix ∈ {0.2, 0.3, 0.4, 0.5} applied on MoCov2
and BYOL. We first remark that BG-Mixup gives a consistent gain regardless of pmix. Despite of
the insensitivity on the hyperparameter pmix, we choose pmix = 0.4 for MoCov2 and pmix = 0.3 for
BYOL since they performed best for the most datasets in Background Challenge. MoCov2 permits
the higher mixup probability since finding the closest sample from the finite batch (i.e., contrastive
learning) is easier than clustering infinitely many samples (i.e., positive-only methods).

Table 21: Test accuracy (%) on background shifts following the setting of Table 7. We study the effect
of the mixup probability pmix. Bold denotes the best results among the same model.

Model pmix Test dataset

Original ↑↑↑ Only-BG-B ↓↓↓ Only-BG-T ↓↓↓ Only-FG ↑↑↑ Mixed-Same ↑↑↑ Mixed-Rand ↑↑↑ Mixed-Next ↑↑↑ BG-Gap ↓↓↓

MoCov2 0.0 88.67 28.47 44.99 58.25 81.21 60.57 56.22 20.64
MoCov2 0.2 90.52 (+1.85) 26.32 (-2.15) 43.73 (-1.26) 69.01 (+10.76) 82.91 (+1.70) 64.89 (+4.32) 62.12 (+5.90) 18.02 (-2.62)
MoCov2 0.3 91.09 (+2.42) 31.53 (+3.06) 42.91 (-2.08) 68.42 (+10.17) 84.25 (+3.04) 66.72 (+6.15) 63.68 (+7.46) 17.53 (-3.11)
MoCov2 0.4 90.72 (+2.05) 28.69 (+0.22) 42.05 (-2.94) 72.35 (+14.10) 84.42 (+3.21) 67.51 (+6.94) 64.04 (+7.82) 16.91 (-3.73)
MoCov2 0.5 90.81 (+2.14) 30.07 (+1.60) 42.20 (-2.79) 68.96 (+10.71) 83.26 (+2.05) 66.27 (+5.70) 64.15 (+7.93) 16.99 (-3.65)

BYOL 0.0 86.72 26.32 43.41 60.22 78.96 57.11 53.01 21.85
BYOL 0.2 88.40 (+1.68) 22.72 (-3.60) 41.38 (-2.03) 63.78 (+3.56) 81.53 (+2.57) 62.86 (+5.75) 59.09 (+6.08) 18.67 (-3.18)
BYOL 0.3 89.31 (+2.59) 22.47 (-3.85) 39.68 (-3.73) 67.36 (+7.14) 80.89 (+1.93) 63.58 (+6.47) 61.01 (+8.00) 17.31 (-4.54)
BYOL 0.4 88.47 (+1.75) 29.04 (+2.72) 40.77 (-2.64) 66.20 (+5.98) 81.33 (+2.37) 62.77 (+5.66) 59.09 (+6.08) 18.56 (-3.29)
BYOL 0.5 88.02 (+1.30) 29.48 (+3.16) 40.20 (-3.21) 69.09 (+8.87) 81.53 (+2.57) 62.40 (+5.29) 59.04 (+6.03) 19.13 (-2.72)

26

E.3 ContraCAM vs. GT masks on the distribution shifts

We provide distribution shift results of the copy-and-paste augmentation using ground-truth masks
(BG-HardMix (GT)) in Table 22. BG-HardMix also improves the performance on distribution shifts
by enforcing object-centric learning, but BG-Mixup performs better due to both object-centricness
and input interpolation. Recall that BG-HardMix (GT) uses ground-truth masks and thus performs
better for background shifts; yet, BG-Mixup is better for the distribution shifts.

Table 22: Test accuracy (%) on distribution shifts following the setting of Table 8. We compare the
copy-and-paste version using the ground-truth masks (BG-HardMix (GT)) and the background mixup
using the ContraCAM masks (BG-Mixup (CAM)). Bold denotes the best results.

Model Augmentation Test dataset

ImageNet-Sketch-9 Stylized-ImageNet-9 ImageNet-R-9 ImageNet-C-9

MoCov2 Baseline 46.70±0.67 25.66±0.54 37.51±0.80 31.82±0.40
MoCov2 +BG-Mixup (CAM) 52.15±0.93 (+5.45) 33.36±0.61 (+7.70) 41.50±0.45 (+3.99) 44.39±0.89 (+12.57)
MoCov2 +BG-HardMix (GT) 51.60±0.91 (+4.90) 29.95±2.64 (+4.09) 40.15±0.34 (+3.39) 31.45±1.20 (-0.37)

BYOL Baseline 45.15±1.12 23.80±0.45 36.21±0.31 28.62±0.06
BYOL +BG-Mixup (CAM) 52.40±0.70 (+7.25) 27.01±0.74 (+3.21) 39.62±0.21 (+3.41) 33.83±0.28 (+5.21)
BYOL +BG-HardMix (GT) 51.57±1.68 (+6.42) 26.72±0.38 (+2.92) 40.09±0.41 (+3.88) 31.04±0.52 (+2.42)

E.4 Mixup and CutMix on the background shifts

We provide background shift results of Mixup and CutMix in Table 23. Since they are not designed
for addressing the background bias, they are not effective on the Background Challenge benchmarks.
In contrast, the background mixup is effective on both background and distribution shifts.

Table 23: Test accuracy (%) on background shifts following the setting of Table 7. We additionally
compare with the Mixup and CutMix. Bold denotes the best results.

Model Augmentation Test dataset

Original ↑↑↑ Only-BG-B ↓↓↓ Only-BG-T ↓↓↓ Only-FG ↑↑↑ Mixed-Same ↑↑↑ Mixed-Rand ↑↑↑ Mixed-Next ↑↑↑ BG-Gap ↓↓↓
MoCov2 Baseline 89.17 31.29 44.91 63.62 80.98 60.34 55.50 20.64
MoCov2 +Mixup [41] 88.51 (-0.66) 28.54 (-2.75) 44.41 (-0.50) 69.53 (+5.91) 80.85 (-0.13) 60.68 (+0.34) 57.25 (+1.75) 20.17 (-0.47)

MoCov2 +CutMix [42] 88.72 (-0.45) 32.47 (+1.18) 47.99 (+3.08) 63.76 (+0.14) 81.48 (+0.50) 59.05 (-1.29) 53.75 (-1.75) 22.43 (+1.79)

MoCov2 +BG-Mixup (ours) 90.73 (+1.56) 29.60 (-1.69) 41.95 (-2.96) 70.55 (+6.93) 84.13 (+3.15) 66.89 (+6.55) 63.64 (+8.14) 17.24 (-3.40)

BYOL Baseline 87.30 25.59 42.83 61.04 79.3 58.03 53.35 21.27
BYOL +Mixup [41] 85.70 (-1.60) 25.95 (+0.36) 41.00 (-1.83) 61.79 (+0.75) 78.61 (-0.69) 56.27 (-1.76) 51.75 (-1.60) 22.34 (+1.07)

BYOL +CutMix [42] 86.52 (-0.78) 28.52 (+2.93) 45.88 (+3.05) 61.30 (+0.26) 79.74 (+0.44) 56.46 (-1.57) 51.44 (-1.91) 23.28 (+2.01)

BYOL +BG-Mixup (ours) 89.30 (+2.00) 25.70 (+0.11) 39.94 (-2.89) 67.53 (+6.49) 81.28 (+1.98) 63.83 (+5.80) 63.05 (+9.70) 17.45 (-3.82)

E.5 Corruption-wise results on ImageNet-C-9

We provide the corruption-wise results on the ImageNet-C-9 dataset in Table 24. Background mixup
using the ContraCAM masks (BG-Mixup (CAM)) shows the overall best performance. Especially, the
BG-Mixup performs well for the ‘weather’ and ‘digital’ class, e.g., improves 24.41% of the baseline
to 54.30% (+29.89%), while less performs for the ’noise’ class. Indeed, the ‘weather’ and ‘digital’
classes require more understanding of the objects (i.e., shape bias) than the ‘noise’ class.

27

Table
24:C

orruption-w
ise

testaccuracy
(%

)on
the

Im
ageN

et-C
-9

dataset.B
old

denotes
the

bestresults.

M
odel

A
ugm

entation
Testdataset

N
oise

B
lur

W
eather

D
igital

G
aussian

Shot
Im

pulse
D

efocus
G

lass
M

otion
Z

oom
Snow

Frost
Fog

B
rightness

C
ontrast

E
lastic

Pixel
JPE

G

M
oC

ov2
B

aseline
9.24

±
1.90

9.66
±

1.65
9.11

±
1.56

19.32
±

1.97
19.63

±
1.55

29.92
±

1.10
46.42

±
1.16

43.56
±

1.98
29.94

±
0.73

24.41
±

1.08
72.43

±
1.80

16.39
±

1.80
63.64

±
1.02

25.19
±

1.82
58.37

±
1.70

M
oC

ov2
M

ixup
[41]

18.59
±

4.42
16.62

±
3.74

17.9
±

5.69
19.63

±
3.76

23.94
±

6.62
37.17

±
2.39

50.48
±

1.44
49.10

±
2.87

45.11
±

3.52
32.28

±
5.57

76.18
±

0.71
27.10

±
4.12

65.55
±

0.36
58.97

±
0.88

63.59
±

1.51

M
oC

ov2
C

utM
ix

[42]
8.52

±
3.04

8.51
±

2.89
8.53

±
3.01

17.97
±

5.86
19.12

±
1.97

32.45
±

3.09
45.51

±
1.11

44.82
±

3.56
30.93

±
0.51

26.86
±

1.47
73.24

±
0.05

16.11
±

3.15
64.64

±
2.97

33.85
±

4.16
53.31

±
1.87

M
oC

ov2
B

G
-M

ixup
(C

A
M

)
31.86

±
6.58

25.19
±

4.03
31.42

±
7.82

20.13
±

2.05
24.89

±
3.99

35.92
±

1.79
49.54

±
0.36

50.45
±

1.49
50.56

±
1.63

54.30
±

2.35
78.35

±
0.93

35.76
±

4.88
65.85

±
1.16

49.37
±

4.00
62.25

±
1.12

M
oC

ov2
B

G
-H

ardM
ix

(G
T

)
10.42

±
1.41

12.54
±

1.92
10.27

±
1.24

16.90
±

0.97
21.49

±
4.85

31.36
±

2.50
44.26

±
1.47

44.08
±

0.49
29.19

±
1.34

27.62
±

3.02
74.18

±
0.54

14.03
±

1.05
64.81

±
1.37

21.28
±

1.12
49.41

±
0.53

B
Y

O
L

B
aseline

6.50
±

0.50
7.27

±
0.78

6.51
±

0.55
12.54

±
1.47

18.23
±

0.45
27.54

±
3.35

41.57
±

0.52
36.67

±
0.69

26.89
±

1.87
24.42

±
0.76

69.59
±

0.56
14.53

±
0.35

60.55
±

0.94
20.65

±
0.72

55.82
±

1.87

B
Y

O
L

M
ixup

[41]
14.73

±
4.59

13.85
±

6.30
13.39

±
3.57

12.41
±

1.29
18.48

±
9.29

26.17
±

3.00
38.52

±
1.27

47.55
±

0.48
34.23

±
1.39

29.18
±

3.15
71.33

±
0.98

12.02
±

2.44
62.25

±
0.58

34.39
±

3.36
58.73

±
1.12

B
Y

O
L

C
utM

ix
[42]

7.01
±

0.55
7.46

±
0.64

7.26
±

0.68
12.88

±
0.31

22.27
±

2.61
28.71

±
3.56

42.17
±

2.75
40.85

±
0.76

27.24
±

0.95
26.67

±
3.33

69.30
±

0.62
15.03

±
1.10

62.24
±

0.37
21.89

±
1.13

54.17
±

2.20

B
Y

O
L

B
G

-M
ixup

(C
A

M
)

8.39
±

1.57
9.20

±
0.73

7.86
±

1.76
12.37

±
0.05

18.55
±

1.62
26.99

±
2.97

43.17
±

2.96
41.48

±
0.47

35.26
±

0.40
43.37

±
2.23

73.24
±

0.20
20.58

±
0.77

60.92
±

0.45
41.51

±
5.35

64.59
±

0.58

B
Y

O
L

B
G

-H
ardM

ix
(G

T
)

8.20
±

0.15
9.43

±
0.93

7.74
±

0.44
10.14

±
1.26

22.97
±

2.96
26.86

±
2.71

42.44
±

1.24
41.38

±
0.29

32.01
±

1.10
30.89

±
1.19

76.58
±

0.70
16.17

±
0.92

62.87
±

0.34
18.24

±
2.87

59.76
±

3.69

28

E.6 Results on additional datasets

We additionally evaluate the generalization performance of background mixup on ObjectNet [60] and
SI-Score [61], datasets for distribution shift and background shift, respectively. Following previous
experiment settings, we train a linear classifier on ImageNet-9 and evaluate the 9-superclass subset of
ObjectNet and SI-Score, denoted by adding ‘-9’ in suffix. Table 25 shows that background mixup
outperforms the vanilla MoCov2/BYOL (and also Mixup and CutMix) for both datasets. Note that
BG-Mixup (CAM) performs better than BG-HardMix (GT) for ObjectNet-9 (distribution-shifted) but
less effective for SI-Score-9 (background-shifted).

Table 25: Test accuracy (%) of a linear classifier trained on ImageNet-9 and evaluated on additional
distribution-shifted and background-shifted datasets, following the setting of Table 7.

Model Augmentation Test dataset

ObjectNet-9 SI-Score-9

MoCov2 Baseline 24.96±2.81 59.04±2.33
MoCov2 +Mixup [41] 28.53±0.52 (+3.57) 58.60±1.70 (–0.44)
MoCov2 +CutMix [42] 26.87±5.22 (+1.91) 56.33±1.57 (–2.71)
MoCov2 +BG-Mixup (CAM) 29.28±3.84 (+4.32) 63.50±0.52 (+4.46)
MoCov2 +BG-HardMix (GT) 27.48±4.30 (+2.52) 68.70±0.48 (+9.66)

BYOL Baseline 25.38±1.59 55.70±1.24
BYOL +Mixup [41] 25.97±2.90 (+0.59) 58.15±0.78 (+2.45)
BYOL +CutMix [42] 22.22±5.02 (–3.16) 55.78±1.79 (+0.08)
BYOL +BG-Mixup (CAM) 31.38±0.52 (+6.00) 62.77±1.04 (+7.07)
BYOL +BG-HardMix (GT) 30.78±4.29 (+5.40) 69.00±0.48 (+13.30)

29

	Introduction
	Object-aware Contrastive Learning
	Contrastive learning
	ContraCAM: Unsupervised object localization via contrastive learning
	Object-aware augmentations for debiased contrastive learning

	Experiments
	Unsupervised object localization
	Reducing contextual bias: Representation learning from multi-object images
	Reducing background bias: Generalization on background and distribution shifts

	Related work
	Conclusion and Discussion
	Algorithms
	Implementation details
	Implementation details for object localization results
	Implementation details for contextual bias results
	Implementation details for background bias results

	Additional localization results
	Visualization of ContraCAM without negative signal removal
	Ablation study on the number of iterations
	Ablation study on the choice of negative batch
	Comparison with the Classifier CAM
	Comparison with the gradient-based saliency methods

	Additional contextual bias results
	Hard negative issue in MoCov2
	Analysis on the contextual bias
	Comparison with supervised models
	Class-wise accuracy on CIFAR-10
	Comparison with the ImageNet-trained models
	Second iteration using the CAM from the debiased models

	Additional background bias results
	Comparison with the copy-and-paste augmentation
	Ablation study on the mixup probability
	ContraCAM vs. GT masks on the distribution shifts
	Mixup and CutMix on the background shifts
	Corruption-wise results on ImageNet-C-9
	Results on additional datasets

