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A APPENDIX

A.1 PROOF OF THEOREM 1

Let L ∈ RN×N denote the Laplacian matrix of an undirected graph, and ui denote the i-th eigen-
vector of L corresponding to the i-th eigenvalue λi that satisfies:

Lui = λiui, (15)

then we have the following eigenvalue perturbation analysis:

(L+ δL) (ui + δui) = (λi + δλi) (ui + δui) , (16)

where a perturbation δL = δwp,qep,qe
>
p,q that implies a new edge connection is applied to L, result-

ing in perturbed eigenvalues and eigenvectors λi + δλi and ui + δui for i = 1, ..., N , respectively.

Keeping only the first-order terms leads to:

Lδui + δLui = λiδui + δλiui. (17)

Write δui in terms of the original eigenvectors ui for for i = 1, ..., N :

δui =

N∑
i=1

αiui. (18)

Substituting (18) into (17) leads to:

L

N∑
i=1

αiui + δLui = λi

N∑
i=1

αiui + δλiui. (19)

Multiplying u>i to both sides of (19) results in:

u>i L

N∑
i=1

αiui + u>i δLui = λiu
>
i

N∑
i=1

αiui + δλiu
>
i ui. (20)

Since ui for for i = 1, ..., N are unit-length, mutually-orthogonal eigenvectors, we have:

u>i L

N∑
i=1

αiui = αiu
>
i Lui, λiu

>
i

N∑
i=1

αiui = αiu
>
i λiui. (21)

Substituting (15) into (21), we have:

αiu
>
i Lui = αiu

>
i λiui. (22)

According to (21), we have:

u>i

N∑
i=1

αiui = λiu
>
i

N∑
i=1

αiui. (23)

Substituting (23) into (20) leads to:

u>i δLui = δλiu
>
i ui = δλi. (24)

Then the eigenvalue perturbation due to δL is given by:

δλi = δwp,q
(
u>i ep,q

)2
. (25)
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Assume each edge weight is computed by wp,q = 1
zdata
p,q

where zdatap,q = ‖X>ep,q‖22. Since(
u>i ep,q

)2 ∝ zembp,q = ‖U>N ep,q‖22 ≈ ‖U>r ep,q‖22, as long as we can find an edge with large

wp,q
(
u>i ep,q

)2
or ηp,q =

Mzemb
p,q

zdata
p,q

, including this edge into the current graph will significantly per-

turb the Laplacian eigenvalue λi and eigenvector ui. When σ2 → +∞, the total (relative) spectral
perturbation of the first r eigenvalues due to the inclusion of edge (p, q) becomes:

∆r(ep,q) =

r∑
i=2

δλi
λi

= δwp,q‖U>r ep,q‖22. (26)

A.2 ALGORITHM FLOW

Algorithm 1 The GRASPEL Algorithm Flow
Input: A data matrix (X = [x1, ...xM ] ∈ RN×M ) with N data points in M -dimensional,
embedding distortion tolerance (1 ≤ tol), window size for edge sampling (0 < ε ≤ 50%), edge
sampling ratio (0 < ζ ≤ 1), and the number of edges to be selected in each iteration (0 < s).
Output: The spectrally-learned graph G.

1: Construct an initial 2NN graph G using approximate kNN algorithms.
2: while ηmax ≥ tol do
3: Embed the latest graph G using its Fiedler vector and sort the nodes into a 1D array Inode;
4: Obtain node set Ntop ( Nbot) by including only the top (bottom) dεNe nodes in Inode;
5: Sample each of the ds/ζe edges by randomly choosing one node from Ntop and another node

from Nbot;
6: Form an edge set Esel using edges with large distortions (η ≥ tol) and set the largest edge

embedding distortion as ηmax.
7: if |Esel| ≥ s then
8: Add the top s edges with largest η from Esel into G;
9: else

Add all the edges in Esel into G;
10: end if
11: end while
12: Return the learned graph G.

Algorithm 2 Spectral Clustering Algorithm
Input: A graph G = (V,E,w) and the number of clusters r.
Output: Clusters C1...Cr .

1: Compute the adjacency matrix A, and diagonal matrix D;
2: Obtain the unnormalized Laplacian matrix L=D-A;
3: Compute the eigenvectors u1,...ur that correspond to the bottom r nonzero eigenvalues of L;
4: Construct Ur ∈ RN×r , with r eigenvectors of L stored as columns;
5: Perform k-means algorithm to partition the rows of Ur into r clusters and return the result.

A.3 DATA SETS DESCRIPTION

COIL20: the data set contains 1, 440 gray-scale images of 20 objects, and each object on a turntable
has 72 normalized gray-scale images taken from different degrees. The image size is 32x 32 pixels.

PenDigits: the data set consists of 7,494 images of handwritten digits from 44 writers, using the
sampled coordination information. Each digit is represented by 16 attributes.

USPS: the data set includes 9, 298 scanned hand-written digits on the envelops from U.S. Postal
Service with 256 attributes.

MNIST: the data set consists of 70,000 images of handwritten digits. Each image has 28-by-28
pixels in size. This database can be found at website (http://yann.lecun.com/exdb/mnist/).
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A.4 COMPARED ALGORITHMS

Standard kNN: the most widely used affinity graph construction method. Each node is connected
to its k nearest neighbors.

Consensus of kNN (cons-kNN) (Premachandran & Kakarala, 2013): adopts the state-of-the-art
neighborhood selection methods to construct the affinity graphs. It selects strong neighborhoods to
improve the robustness of the graph by using the consensus information from different neighbor-
hoods in a given kNN graph.

LSGL (Kalofolias & Perraudin, 2019): a method to automatically select the parameters of the model
introduced in (Kalofolias, 2016) given a desired graph sparsity level. The default settings have been
used in our experiments.

A.5 EVALUATION METRIC

(1) The ACC metric measures the agreement between the clustering results generated by clustering
algorithms and the ground-truth labels. A higher value of ACC indicates better clustering quality.
The ACC can be computed by:

ACC =

n∑
j=1

δ(yi,map(ci))

n
, (27)

where n is the number of samples in the data set, yi is the ground-truth label provided by the data
sets, and ci is clustering result obtained from the algorithm. δ(x, y) is a delta function defined
as: δ(x, y)=1 for x = y, and δ(x, y)=0, otherwise. map(•) is a permutation function that maps
each cluster index ci to a ground truth label, which can be realized using the Hungarian algorithm
(Papadimitrou & Steiglitz, 1982).

(2) The NMI metric is in the range of [0, 1], while a higher NMI value indicates a better matching
between the algorithm generated result and ground truth result. For two random variables P and Q,
normalized mutual information is defined as (Strehl & Ghosh, 2002):

NMI =
I(P,Q)√
H(P )H(Q)

, (28)

where I(P,Q) denotes the mutual information between P and Q, while H(P ) and H(Q) are en-
tropies of P and Q. In practice, the NMI metric can be calculated as follows (Strehl & Ghosh,
2002):

NMI =

k∑
i=1

k∑
j=1

ni,j log(
n·ni,j

ni·nj
)√

(
k∑
i=1

nilog ni

n )(
k∑
j=1

nj log
nj

n )

, (29)

where n is the number of data points in the data set, k is the number of clusters, ni is the number of
data points in cluster Ci according to the clustering result generated by algorithm, nj is the number
of data points in class Cj according to the ground truth labels provided by the data set, and ni,j
is the number of data points in cluster Ci according to the clustering result as well as in class Cj
according to the ground truth labels.

A.6 ADDITIONAL EXPERIMENTAL RESULTS

A.6.1 GRAPH LEARNING FOR SPECTRAL CLUSTERING (SC)

The classical spectral clustering (SC) algorithm (see Algorithm 2 in the Appendix) first constructs
a kNN graph where each edge weight encodes similarities between different data points (entities);
then SC calculates the eigenvectors of the graph Laplacian matrix and embeds data points into low-
dimensional space (Belkin & Niyogi, 2003); in the last, k-means algorithms are used to partition
the data points into multiple clusters. The performance of SC strongly depends on the quality of
the underlying graph (Guo, 2015). In this section, we apply GRASPEL for graph construction, and
show the learned graphs can result in drastically improved efficiency and accuracy in SC tasks.
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Table 1: Spectral Clustering Results
ACC(%)/ NMI/ Time-C (seconds)/Time-S (seconds)

Data Set Standard KNN (k = 10) ConskNN (Premachandran & Kakarala, 2013) LSGL (Kalofolias & Perraudin, 2019) GRASPEL
COIL-20 78.80/ 0.86/ 0.36/0.37 79.86/ 0.86/ 0.54/0.28 65.48/0.77/60.22/1.02 90.27/ 0.96/ 0.40/0.19
PenDigits 81.12/ 0.80/ 1.25/0.47 84.17/ 0.81/ 8.59/46.41 75.01/0.72/1,622/15.64 85.96/ 0.82/ 4.51/0.27

USPS 68.22/ 0.77/ 2.66/1.02 78.94/ 0.82/ 19.82/74.57 72.35/0.71/2,598/29.37 92.59/ 0.87/ 5.19/0.21
MNIST 71.95/ 0.72/ 242.38/6,785 - - 81.67/ 0.75/ 59.27/2.90

- indicates that the method is not capable for handling data sets of this scale.
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Figure 4: The first 20 Laplacian eigenvalues (top) and 3D spectral drawings (bottom) of the 2NN
graph in figures (a) and (b), and the GRASPEL-learned graphs in figures (c) to (f).

Table 1 shows the ACC and NMI results of SC with graphs constructed by different methods with
the best numbers highlighted, where graph construction time (Time-C) and spectral clustering time
(Time-S) that involves eigendecomposition and kmeans clustering have also been reported. Note
that the high computational and memory cost of recent GSP-based graph learning methods, such as
GL-SigRep (Dong et al., 2016), GL-Logdet (Dong et al., 2016) and GLSC (Egilmez et al., 2017) do
not allow for processing data sets with more than a few thousands data points, thus can not be used
for real-world SC tasks. As observed, GRASPEL can consistently lead to dramatic performance
improvement in SC, beating all competitors in clustering accuracy (ACC) across all data sets. Note
that when starting with uNN graphs, the graphs learned by GRASPEL are ultra sparse, thereby
allowing much faster eigendecompositions in SC when comparing with other methods (Wang &
Feng, 2017): the SC of the MNIST data set with standard kNN (k = 10) takes over 6, 000 seconds,
which will be dramatically improved to require less than three seconds (over 2, 000X speedup) using
the graph learned by our method (GRASPEL).

In Figures 4 and 5, additional SC results have been provided for the USPS and the Pendigit data sets
by comparing two embedding distortion tolerance levels (tol = 100 and tol = 10). Not surpris-
ingly, when starting with initial 2NN graphs a few GRASPEL iterations have already dramatically
improved SC results: the normalized mutual information (NMI) has been improved from 0.612 to
0.888 for the USPS data set, and from 0.04 to 0.840 for the Pendigit data set; The spectral clustering
accuracy (ACC) has been improved from 40.4% to 91.5% for the USPS data set, and from 15.2% to
89.4% for the Pendigit data set.

Since the number of zero Laplacian eigenvalues equals to the connected components in the learned
graph, we observe that GRASPEL can always identify O(q) spectrally-critical edges added to the
initial 2NN graph so that its q connected components immediately get stitched into a connected
graph for both test cases.

Discussion. The superior performance of GRASPEL is due to the following reasons: 1) In tradi-
tional kNN graphs, all the nodes have the same degrees; as a result, the clustering may strongly
favor balanced cut, which may lead to improper cuts in high-density regions of the graph. In con-
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Figure 5: The first 50 Laplacian eigenvalues (top) and 3D spectral drawings (bottom) of the 2NN
graph in figures (a) and (b), and the GRASPEL-learned graphs in figures (c) to (f).

trast, GRASPEL always learns ultra-sparse graphs that only include edges with the largest impact to
graph spectral (structural) properties; as a result, the corresponding cuts will always occur in proper
regions of the graph, which enables to handle even unbalanced data. 2) Recent work (Garg et al.,
2018) shows the fundamental connections between spectral properties of graphs associated with data
and the inherent robustness to adversarial examples. Since GRASPEL identifies candidate edges by
leveraging spectral graph properties, the learned graph structure will also be robust to input noises
(perturbations).

A.6.2 GRAPH LEARNING FOR DIMENSIONALITY REDUCTION (DR)

The t-Distributed Stochastic Neighbor Embedding (t-SNE) has become one of the most popular vi-
sualization tools for high-dimensional data analytic tasks (Maaten & Hinton, 2008; Linderman &
Steinerberger, 2017). However, its high computational cost limits its applicability to large scale
problems. An substantially improved t-SNE algorithm has been introduced based on tree approxi-
mation (Van Der Maaten, 2014). However, for large data set the computational cost can still be very
high.

A multilevel t-SNE algorithm has been proposed in (Zhao et al., 2018) leveraging spectral graph
coarsening as a pre-processing step applied to the original kNN graph. A much smaller set of
representative data points can be then selected from the coarsened graph for t-SNE visualization. In
this work, we use GRASPEL to learn sparse graphs that can be further reduced into much smaller
ones using spectral graph coarsening. Then more efficient t-SNE visualization can be achieved based
on the sampled data points corresponding to the nodes in the coarsened graphs.

In our experiments, we first construct initial graphs by applying a spectral sparsification procedure
to the 5NN graphs of both the MNIST and USPS data sets. Then a spectral graph coarsening
procedure (Zhao et al., 2018) has been applied to create a hierarchy of coarse-level graphs. The
t-SNE visualization can be obtained by directly using the data points corresponding to the nodes on
the coarsest graph. Figure 6 shows the visualization and runtime results of the standard t-SNE (with
tree-based acceleration) (Van Der Maaten, 2014) and the multilevel t-SNE algorithm (Zhao et al.,
2018) based on graphs learned by GRASPEL. When using a 5X graph reduction ratio, t-SNE can
be dramatically accelerated (12.8X and 7X speedups for MNIST and USPS data sets, respectively)
without loss of visualization quality.
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Figure 6: Multilevel t-SNE visualization results.
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