
A Proofs of propositions

In this section, we provide proofs of all results mentioned in the main paper. The results generally
follow from well-known facts about Gaussian distributions and information theory.

Proposition A.1. If r̂(s) is a GP, the difference in expected return between two fixed policies
π, π′ follows a Gaussian distribution N (µ, σ2) with

µ = E[Ĝ(π)− Ĝ(π′)] = 〈vπ,π′ , µr̂〉
σ2 = Var[Ĝ(π)− Ĝ(π′)] = vTπ,π′ · Σr̂ · vπ,π′

where vπ,π′ = fπ − fπ
′

is the difference between expected state-visitation frequencies of π and
π′ respectively, and µr̂ and Σr̂ are the mean and covariance of the joint Gaussian distribution
of the reward of all states π or π′ visit.

Proof. If a random variable X is Gaussian distributed X ∼ N (µ,Σ), µ ∈ Rn,Σ ∈ Rn×n, then
for a ∈ Rn, aTX is also Gaussian distributed aTX ∼ N (〈a,µ〉,aTΣa) (Wasserman, 2004,
Theorem 14.2).

We can directly apply this fact to r̂ ∼ N (µr̂,Σr̂) and Ĝ(π)− Ĝ(π′) = 〈vπ,π′ , r̂〉, resulting in

Ĝ(π)− Ĝ(π′) ∼ N (〈vπ,π′ , µr̂〉,vTπ,π′Σr̂vπ,π′).

Proposition 5.1. If r̂(s)|D is a GP, then P (Ĝ(π)− Ĝ(π′)|D) is Gaussian and:

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D) = argmax
π,π′∈Πc

Var[Ĝ(π)− Ĝ(π′)|D]

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D) = argmin
q∈Qc

Var[Ĝ(π1)− Ĝ(π2)|D ∪ {(q, ŷ)}]

Proof. If a random variable X is Gaussian distributed X ∼ N (µ, σ2), then the entropy H(X)
is given by (Cover and Thomas, 2006, Theorem 8.4.1)

H(X) =
1

2
log(2πeσ2). (3)

Proposition A.1 shows that the conditional distribution of Ĝ(π) − Ĝ(π′)|D is Gaussian, which
implies both statements.

For the first statement, observe that the entropy of Ĝ(π)− Ĝ(π′)|D is

H(Ĝ(π)− Ĝ(π′)|D) =
1

2
log(2πeVar[Ĝ(π)− Ĝ(π′)|D]), (4)

and that two policies that maximize the variance on the r.h.s. also maximize the entropy, because the
logarithm is a monotonic function.

To see the second statement, let ∆̂π1,π2
= Ĝ(π1)− Ĝ(π2). Then

argmax
q∈Qc

I(∆̂π1,π2
; (q, ŷ)|D)

= argmax
q∈Qc

(
H(∆̂π1,π2 |D)−H(∆̂π1,π2 |D ∪ {(q, ŷ)})

)
= argmin

q∈Qc
H(∆̂π1,π2

|D ∪ {(q, ŷ)})

= argmin
q∈Qc

1

2
log
(

2πeVar[∆̂π1,π2
|D ∪ {(q, ŷ)}]

)
= argmin

q∈Qc
Var[∆̂π1,π2 |D ∪ {(q, ŷ)}].
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Here we wrote the information gain in terms of conditional entropies (Cover and Thomas, 2006,
Theorem 2.4.1), and used that only one of the terms depends on q. This turns the maximization of
information gain into a minimization of a conditional entropy. As before, we can further simplify this
to minimizing conditional variance by using the entropy of a Gaussian and the fact that the logarithm is
a monotonic function.

Proposition 5.2. Let q be a linear reward query. If the prior belief about the reward r̂(s) is a
GP, then the posterior belief about the reward r̂(s)|(q, y) is also a GP.

Proof. Let q = (S,C) be a linear reward query, i.e., S = {s1, . . . , sN} ⊆ S is a set of states
and C = {c1, . . . , cN} a set of linear weights, and y =

∑N
j=1 cjr(sj) the corresponding observation.

Let S∗ = {s∗1, . . . , s∗n} ⊆ S be a set of states for which we want to compute the posterior belief.
We show that

P (r̂(s∗1), . . . , r̂(s∗n)|(q, y)) ∼ N (µ∗q ,Σ
∗
q)

for some µ∗q and Σ∗q . Because this holds for any set of states S∗, it shows that the posterior
reward model is a GP.

We define the following vector notation:

c = (c1, . . . , cN )T ∈ RN

r̂ = (r̂(s1), . . . , r̂(sN ))T ∈ RN

r̂∗ = (r̂(s∗1), . . . , r̂(s∗n))T ∈ Rn

such that y = 〈c, r̂〉.
The prior distribution of r̂ is Gaussian, i.e.,

P (r̂|S) ∼ N (µ,Σ),

with mean µ and covariance Σ.

Because ŷ is a linear function of r̂ plus Gaussian noise, the prior distribution of ŷ is also Gaussian
(Wasserman, 2004, Theorem 14.2):

P (ŷ|S,C) ∼ N (〈c,µ〉, cTΣc + σ2
nI).

Further, r̂ and r̂∗ are jointly Gaussian distributed:

P
([

r̂
r̂∗
]
|S, S∗

)
∼ N

([
µ
µ∗
]
,
[

Σ Σ∗

(Σ∗)T Σ∗∗

])
where µ∗ is the mean of r̂∗, and Σ∗ = Cov[r̂, r̂∗] and Σ∗∗ = Cov[r̂∗, r̂∗] denote the components
of the joint covariance matrix.

Hence, r̂∗ and ŷ are also jointly Gaussian distributed:

P
([

r̂∗

ŷ

]
|S,C, S∗

)
∼ N

([
µ∗
〈c,µ〉

]
,
[

Σ∗∗ (Σ∗)T c

cTΣ∗ cTΣc+σ2
nI

])
where we used the linearity of the covariance function to find the covariance matrix:

Cov[ŷ, r̂∗] = Cov[〈c, r̂〉, r̂∗]
= cTCov[r̂, r̂∗] = cTΣ∗

Cov[r̂∗, ŷ] = (Σ∗)T c

Finally, we can use standard results on conditioning Gaussian distributions (cf. Rasmussen and
Williams, 2006, Chapter A.2) to find that the conditional distribution is still Gaussian:

P (r̂∗|(q, y)) = P (r̂∗|y, S, C, S∗) ∼ N (µ∗q ,Σ
∗
q)

with

µ∗q = µ∗ + ((Σ∗)T c)(cTΣc + σ2
nI)
−1

(y − 〈c,µ〉)

Σ∗q = Σ∗∗ − ((Σ∗)T c)(cTΣc + σ2
nI)
−1

(cTΣ∗).

When conditioning the distribution, we replaced our belief about the observation ŷ with its actual
realization y.
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B Linear reward queries

We consider linear reward queries for our implementation of IDRL with GP models, which makes all
computations analytically tractable (cf. Section 5). Linear reward queries can be used to model many
different observation types that are typical in practical settings. In this section, we recall the
definition of linear reward queries, and then present a few particularly common types of linear
reward queries, which include all query types used in our empirical evaluation of IDRL with a
GP model.
Definition 5.1. We call q = (S,C) a linear reward query, if it consists of states S = {s1, . . . , sN}
and linear weights C = {c1, . . . , cN}, and the response to query q is a linear combination of
rewards y =

∑N
j=1 cjr(sj) + ε, with Gaussian noise ε ∼ N (0, σ2

n).

Single state rewards. If N = 1, a query consists of a single state qi = si ∈ S, for which
the expert provides a noisy reward y = r(si) + ε.
Return of trajectories. For N > 1 and all ci = 1, the agent observes the sum of rewards
of multiple states. The set S could, e.g., contain the states in a trajectory or a sub-sequence of
it. Then, the queries ask about the return, i.e., sum of rewards, of this sequence or states.
Comparisons of states and trajectories. We can model a comparison of the reward in states sa
and sb by defining S = {sa, sb} and defining C = {1,−1}. Then the agent might observe
y = r(sa) − r(sb). In practice, comparison queries usually result in binary feedback, i.e., the
expert states that either sa or sb is prefered. We can model this, e.g., with a Bernoulli distribution
P (y = 1) = (1 + r(sa) − r(sb))/2, if all rewards are between 0 and 1. The observations from
this distribution have expectation r(sa) − r(sb) and the noise model is subgaussian, which we
can approximate with a Gaussian noise distribution (cf. Kirschner et al., 2020). Hence, we can model
such comparison queries as linear reward queries. We can model comparisons between two sets of
states, e.g., between two trajectories, analogously. Other observation models for comparisons
have been proposed in the literature, such as softmax (Sadigh et al., 2017), probit (Bıyık et al.,
2020a) or Bernoulli distributions with constant probability (Wilde et al., 2020). While we focus
on linear observations, IDRL could be extended to these alternatives by using approximate inference to
update the reward model, similar to Bıyık et al. (2020a).

C Connection to multi-armed bandits

In the main paper, we motivated IDRL from information-theoretic considerations. However, there
are close connections to related algorithms in multi-armed bandits (MAB) that can serve as additional
motivation.

Efficient exploration is extensively studied in MAB problems (Bubeck and Cesa-Bianchi, 2012).
Recent work successfully uses decision criteria based on information gain in various MAB problems
(Russo and Van Roy, 2014). However, our setting is no standard MAB problem, because we
do not directly observe the quantity we are optimizing for, i.e., the return of a policy.

In this section, we discuss two settings that are more closely related to our setting: the linear
partial monitoring problem and transductive linear bandits.

C.1 Linear partial monitoring

Our setting is closely related to partial monitoring problems, which generalize the standard MAB to
cases where the agent’s observations provide only indirect information about the reward (Rustichini,
1999). For tabular MDPs, our setting can be interpreted as a linear partial monitoring problem.
Let r be a vector of all rewards in a tabular MDP. We consider observations that are a linear
function of the rewards r(si) = 〈c, r〉, and the optimization target is also a linear function of
the reward vector G(π) = 〈fπ, r〉. Kirschner et al. (2020) analyze linear partial monitoring problems
and propose an information gain based criterion for selecting observations. One criterion they propose
to measure information gain, called directed information gain, is equivalent to our information gain
criterion (Kirschner et al., 2020, App. B.2). However, they consider cumulative regret minimization,
and, therefore, their algorithm has to trade-off the information gain of an observation with its
expected regret. In our setting, minimizing cumulative regret would correspond to maximizing∑T
t=1G(π̄t), where π̄t is the policy that IDRL returns if it is stopped after t iterations. Instead,
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we just evaluate the final policy and aim to maximize G(π̄T ). Consequently, our algorithm directly
uses directed information gain as a selection criterion.

C.2 Transductive linear bandits

Our setting is a pure exploration problem (Bubeck et al., 2009): we only evaluate the performance of
the final policy after a fixed budget of queries and not the intermediary policies. Our problem is closely
related to pure exploration in transductive linear bandits that consider maximizing a linear reward
function in a set Z by making queries in a potentially different set X (Fiez et al., 2019). In
fact, for a tabular MDP, our problem is a special case of the transductive linear bandit setting.
Moreover, we can understand IDRL as an adaptive version of the RAGE algorithm introduced
by Fiez et al. (2019).

To see the connection between both settings, let us first define the transductive linear bandit problem.
Definition C.1 (Fiez et al., 2019). A transductive linear bandit problem is defined by two setsX ⊂ Rd
and Z ⊂ Rd, where the goal is to find argmaxz∈Z〈z,θ

∗〉 for some hidden parameter vector θ∗ ∈ Rd.
However, instead of observing this objective directly, the learning agent interacts with the bandit
at each time-step by selecting an arm x ∈ X to play, and then observing 〈x,θ∗〉 + η where
η is independent, zero-mean, subgaussian noise. The agent’s goal is to find the maximum in
Z by making as few queries in X as possible.

Proposition C.1. For finite state and action spaces, a fixed set of candidate policies Πc and a set of
linear reward queries Qc, our reward learning problem is a transductive linear bandit problem
with Z = {fπ|π ∈ Πc} ⊂ R|S| and X = {ci|i ∈ {1, . . . , |Qc|}} ⊂ R|S| a set of linear observations.

To see this, note that our goal is to maximize G(π) = 〈fπ, r〉 and we query linear combinations of
rewards in each round 〈cit , r〉. Here it is the index of the query that the agent selects at time
t, and cit is a vector of linear weights that defines query qit .

To understand the connection between IDRL and the RAGE algorithm proposed by Fiez et al. (2019), it
is helpful to assume that the reward function is a linear function of some features of the state, and to use
a linear kernel for the GP model, which is equivalent to Bayesian linear regression.

Let φ : S → Rd be a feature function, and the true reward function r(s) = 〈φ(s),θ∗〉. Similarly, we
can define a feature vector for each query q ∈ Qc and overload the notation φ(q) =

∑N
i=1 Ciφ(si).

Also, we can write the expected return of a policy as G(π) = 〈fπφ ,θ
∗〉 with fπφ = (fπ)TΦ and

Φ = (φ(s1), . . . ,φ(s|S|))
T .

To solve the transductive linear bandit problem, the RAGE algorithm proceeds in multiple rounds, in
each of which it follows an allocation rule

λ∗t = argmin
λ∈∆X

max
π1,π2∈Ẑt

‖fπ1

φ − fπ2

φ ‖
2
Aλ−1 (5)

where Aλ =
∑
qi∈Qc λiφ(qi)φ(qi)

T , and where ∆X is the probability simplex over candidate
queries, so this rule would select query qi at round t with probability (λ∗t )i. Additionally, RAGE
keeps track of a set of plausibly optimal arms Ẑt, i.e., plausibly optimal policies in our case. RAGE
ensures that the suboptimality gap of arms in this set shrinks exponentially as the algorithm proceeds.

The next proposition provides an alternative notation for IDRL that shows a formal similarity to RAGE.

Proposition C.2. Assume we estimate θ̂ with Bayesian linear regression with noise variance σ2,
and prior θ̂ ∼ N (0, α−1I) after collecting data

D = ((φ(qi1), yi1), . . . , (φ(qit−1
), yit−1

)).

Also, assume an infinitely wide prior α−1 →∞.

We can then write the maximization in the first step of IDRL as

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D) = argmax
π,π′∈Πc

‖fπφ − fπ
′

φ ‖2AD−1

where AD =
∑
qi∈Qc Niφ(qi)φ(qi)

T .
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Furthermore, for a given pair of policies, π1 and π2, we can write the maximization in the second step
of IDRL as

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D)

= argmin
q∈Qc

‖fπ1

φ − fπ2

φ ‖
2
AD,q−1

where AD,q = φ(q)φ(q)T +
∑
qi∈Qc Niφ(qi)φ(qi)

T and Ni is the number of times qi occurs in D.

Proof. In the Bayesian linear regression setting (cf. Bishop, 2006, Chapter 3.3) with prior weight
distribution w ∼ N (0, α−1), the posterior weight distribution is a Gaussian with covariance matrix

Σθ =

αI + σ−2
∑
q∈D

φ(q)φ(q)T

−1

=
(
αI + σ−2AD

)−1

AD =
∑
q∈D

φ(q)φ(q)T

=
∑
qi∈Qc

Niφ(qi)φ(qi)
T

For an infinitely wide prior (α−1 →∞): Σθ → σ2AD
−1.

Using the linear mapping from θ̂ to the expected return of a policy Ĝ(π), the posterior variance
of the difference in return between two policies is

Var[Ĝ(π1)− Ĝ(π2)|D] = σ2(vφπ1,π2
)TAD

−1vφπ1,π2
(6)

where vφπ1,π2
= fπ1

φ − fπ2

φ

The first part of the statement follows using Proposition 5.1:

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D)

= argmax
π,π′∈Πc

Var[Ĝ(π)− Ĝ(π′)|D] (Proposition 5.1)

= argmax
π,π′∈Πc

σ2(vφπ,π′)
TAD

−1vφπ,π′ (Equation (6))

= argmax
π,π′∈Πc

(vφπ,π′)
TAD

−1vφπ,π′

= argmax
π,π′∈Πc

‖vφπ,π′‖AD−1

= argmax
π,π′∈Πc

‖fπφ − fπ
′

φ ‖AD−1

After defining

AD,q = AD∪{(q,y)}

= φ(q)φ(q)T +
∑
qi∈Qc

Niφ(qi)φ(qi)
T ,
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the second part of the statement follows analogously to the first one after applying Proposition 5.1:

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D)

= argmin
q∈Qc

Var[Ĝ(π1)− Ĝ(π2)|D ∪ {q, y}] (Prop. 5.1)

= argmin
q∈Qc

σ2(vφπ1,π2
)TAD,q

−1vφπ1,π2
(Equation (6))

= argmin
q∈Qc

(vφπ1,π2
)TAD,q

−1vφπ1,π2

= argmin
q∈Qc

‖vφπ1,π2
‖AD,q−1

= argmin
q∈Qc

‖fπ1

φ − fπ2

φ ‖AD,q−1

Comparing this proposition with equation (5) shows a formal similarity between both algorithms. In
particular, we can understand IDRL as a version of equation (5) that adapts to the data seen so
far and selects the next observation that would minimize this objective. Instead of the matrix
Aλ that is induced by the allocation rule λ, IDRL computes the variances using AD, i.e., based
on data observed in the past, and using AD,q, i.e., evaluating the effect of an additional observation.
Additionally, IDRL performs two separate optimizations which one can consider as an approximation
to the min-max problem in equation (5), which would be infeasible to evaluate in our setting.
Similar to RAGE, IDRL keeps track of a set of plausibly optimal policies. However, IDRL uses
Thompson sampling, while RAGE uses suboptimality gaps to build this set.

D Implementation details of IDRL with GP reward models

In this section we describe our implementation of IDRL, the baselines we compare to, and our
environments in more detail. For the choice of hyperparameters and additional implementation
details we refer to the code of our experiments.

D.1 Thompson sampling

For some environments, a set of potentially optimal policies Πc might be available. In other cases, we
use Thompson sampling (TS) to generate Πc. Our TS approach is shown in Algorithm 2. We
select N policies by sampling reward functions from the posterior belief of the reward model
and then finding optimal policies for them using some RL algorithm (RL in the pseudocode).

The set of candidate policies Πc should be updated regularly during IDRL to reflect the current
posterior belief on optimal policies. In our experiments, we use N = 5 policies, and update
them in each iteration, if not stated differently in the text.

Depending on the environment, we use different RL algorithms. For Chain, Junction, and Gridworld
environments, we use an exact solver (using linear programming, or a lookup table of all deterministic
policies). For the Driver environment, we use the L-BFGS-B solver provided by Sadigh et al.
(2017). However, we combine it with a lookup table of pre-computed policies to reduce noise,
as suggested by Wilde et al. (2020). Whenever the lookup table contains a policy that is better
than the one returned by the solver, we use the policy from the table instead. In the MuJoCo
environment, we use augmented random search with linear policies (Mania et al., 2018) as RL.

D.2 Details on the baselines

In this section, we discuss the baselines in more detail. In Algorithm 3 we present pseudocode for the
general reward learning algorithm that all of our baselines implement. They only differ in the choice of
acquisition function in line 5. In the following, we discuss the different choices.

D.2.1 Uniform sampling

The uniform sampling baseline runs Algorithm 3 with q∗ sampled uniformly fromQc instead of line 5.
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Algorithm 2 Thompson sampling for creating a set of candidate policies Πc.
Πc ← {}
for i ∈ {1, . . . , N} do

sample reward function ri ∼ P (r̂|D)
π∗i ← RL(ri)
Πc ← Πc ∪ {π∗i }

end for
return Πc

Algorithm 3 Generic reward learning algorithm using an acquisition function u(q,D). Our baselines
use information gain and expected improvement for u. Uniform sampling samples q∗ uniformly
from Qc instead of line 5.

1: D ← {}
2: Initialize reward model with prior distribution P (r̂)
3: while not converged do
4: Select a query:
5: q∗ ∈ argmaxq∈Qc u(q,D)
6: Query q∗ and update reward model:
7: y∗ ← Response to query q∗
8: P (r̂|D ∪ {(q∗, y∗)}) ∝ P (y∗|r̂,D, q∗)P (r̂|D)
9: D ← D ∪ {(q∗, y∗)}

10: end while
11: r̄ ← mean estimate of the reward model
12: π̄∗ ← RL(r̄)
13: return π̄∗

D.2.2 Information gain on the reward

Another baseline uses information gain on the reward as acquisition function for Algorithm 3,
that is u(q,D) = I((q, ŷ); r̂|D). Note that we can write this information gain in terms of conditional
entropies (Cover and Thomas, 2006, Theorem 2.4.1):

I((q, ŷ); r̂|D) = H(ŷ|D, q)−H(ŷ|r̂,D, q). (7)

If we assume that q is a linear reward query, it is described by a set of states S = {s1, . . . , sn} and a set
of linear weights C = {c1, . . . , cn}, such that ŷ =

∑n
i=1 cir̂(si) + ε. Then, the second term of

equation (7) is constant because r̂ contains all information about ŷ. Further, the distribution P (ŷ|D, q)
is Gaussian, and its entropy is (Cover and Thomas, 2006, Theorem 8.4.1):

H(ŷ|D, q) =
1

2
log (2πeVar[ŷ|D, q]) .

Because the logarithm is a monotonic function, we can show, analogously to Proposition 5.1, that

argmax
q∈Qc

I((q, ŷ); r̂|D) = argmax
q∈Qc

Var[ŷ|D, q].

Hence, for a GP reward model with linear reward observations, using u(q,D) = I((q, ŷ); r̂|D)
is equivalent to using u(s,D) = Var[ŷ|D, q], which is what we do in practice.

D.2.3 Expected improvement

We define the expected improvement (EI) acquisition function as:

u(s,D) = L · Φ(M) + Var[ŷ|D, q] · ρ(M),

M =
L

Var[ŷ|D, q]
,

L = E[ŷ|D, q]− ymax − ξ,

where ρ and Φ are the probability density function, and the cumulative density function of the standard
normal distribution, respectively. ymax is the highest observation made so far. If Var[ŷ|D, q] = 0
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Algorithm 4 The expected policy divergence (EPD) acquisition function, introduced by Daniel
et al. (2015), adapted to our setting. The algorithm computes EPD for a given query q.
r̄ ← mean estimate of the model P (r̂|D)
π̃ ← RL(r̄)
ỹ ← E[ŷ|D, q] + Var[ŷ|D, q]
P (r̂|D ∪ {(q, ỹ)}) ∝ P (ỹ|r̂,D, q)P (r̂|D)
r̄∗ ← mean estimate of the model P (r̂|D ∪ {(q, ỹ)})
π∗ ← RL(r̄∗)
u(q,D)← d(π̃, π∗)
return u(q,D)

we define u(s,D) = 0. ξ is a hyperparameter, that we set to 0.001. EI quantifies how much
higher a new observation is expected to be than the highest observation made so far. In our setting, EI is
only applicable if observations are numerically, e.g., if the observations are rewards of individual states
or trajectories. In particular, we cannot use EI if the queries are comparisons of states or trajectories.

D.2.4 Expected policy divergence

Daniel et al. (2015) introduce the expected policy divergence (EPD) acquisition function. EPD
compares two policies: π̃ is trained from a reward model conditioned on the current datasetD, and π∗
estimates a policy trained from a reward model conditioned onD∪{(q, y)}. EPD aims to quantify the
effect of making a query q and observing response y on the currently optimal policy. For each potential
query it assumes an observation at an upper confidence bound conditioned on the current model,
and then selects observations that maximize some distance measure between policies d(π̃, π∗).
Algorithm 4 shows how EPD is computed in our setting, which our implementation combines
with Algorithm 3. EPD requires solving an RL problem for each potential observation, which
makes it computationally infeasible for bigger environments.

Daniel et al. (2015) introduce EPD using the KL divergenceDKL(π̃‖π∗) as distance measure d(π̃, π∗).
However, in most of our experiments, the policies are deterministic, in which case the KL divergence is
not well-defined. For tabular environments, we define d to count the number of states in which the
policies differ. For the Driver environment we use an `2-distance between the policy representations.

D.2.5 Maximum regret

Wilde et al. (2020) introduce the Maximum Regret (MR) acquisition function for selecting queries that
compare two policies. They assume a set of candidate reward functions Rc = {r1, . . . , rn} to
be given and then consider a set of candidate policies Πc = {π1, . . . , πn}, where each policy
πi is optimal for one of the reward functions ri.

MR can be used to select comparison queries of the form q = (πi, πj). In practice, we use
MR for queries that compare trajectories sampled from πi and πj .

MR aims to compare policies πi and πj that perform poorly when evaluated under each other’s
reward function rj and ri respectively. To formalize this in our notation, let us introduce the
notation Gri(πj) to indicate the return of policy πj evaluated using reward function ri. MR is
defined as

u((πi, πj),D) = P (ri|D) · P (rj |D) · (R(ri, rj) +R(rj , ri))

where R(ri, rj) is a measure of regret of a policy optimized for reward function ri when evaluated
under reward function rj . Wilde et al. (2020) use a regret measure based on a ratio of returns:
R(ri, rj) = 1 − Grj (πi)/G(πj). However, this measure is only meaningful if all rewards are
positive, which is not the case in our experiments. Therefore, we instead use a regret measure
based on differences of returns: R(ri, rj) = G(πj)−Grj (πi).5

5This change was suggested by the authors of Wilde et al. (2020) in personal communication to deal
with negative rewards.
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For computing the probabilities P (ri|D), Wilde et al. (2020) use a simple Bayesian model that
assumes a uniform prior and a likelihood of making an observation of the form

P (y = +1|q = (πi, πj)) =

{
p if G(πi) > G(πj)

1− p else
(8)

with 0.5 < p ≤ 1. In the main paper we report results for MR using a GP reward model. We tested the
simple Bayesian model in equation (8) in preliminary experiments, and found it to result in comparable
results to the GP model with observations simulated using a linear observation model.

In our experiments, MR performed worse than reported by Wilde et al. (2020). This difference
is likely explained by differences in the implementation of the reward model, the environment, or the
acquisition function. Unfortunately, Wilde et al. (2020) did not publicly release code for their
implementation of MR. Therefore, we were unable to reproduce their exact setup and results,
and could not investigate differences between our implementation and theirs in detail.

D.3 Details on the environments

This section provides more details on the environments we test IDRL with a GP model on. We start by
introducing two additional environments: Chain and Junction, which are not presented in the
main paper. Then, we discuss the Gridworld, Driver, and MuJoCo Corridor experiments from
the main paper. Appendix F provides more detailed results for all environments.

D.3.1 Chain

Figure 5a shows the Chain environment. It has a discrete state space with N states, and a discrete
action space with 2 actions ar and al. In the first M states of the chain both actions moves the
agent right, whereas in the last N − M states al moves the agent left and ar moves the agent
right. The dynamics are deterministic. The initial state distribution is uniform over the state space.

For the GP model of the reward, we choose a squared-exponential (SE) kernel

k(s, s′) = σ2 exp

(
−d(s, s′)2

2l2

)
with variance σ = 2 and lengthscale l = 3. The distance d counts the number of states between
s and s′ on the chain.

The Chain environment shows that, to select informative queries, it is important to consider in
which states the agents actions change the transition probabilities. Queries about the first M states are
less informative, because in these states the agent cannot choose how to move.

D.3.2 Junction

Figure 5b shows the Junction environment. It has a discrete state space with N + 2M states, and
a discrete action space with 2 actions a1 and a2. In the firstN states either action moves the agent right.
From state sN action a1 moves the agent to sA1

and action a2 moves the agent to sB1
. In either of

the two paths the agent moves to one of the adjacent states with probability 0.5, independent
of the action it took. The reward of states s1, . . . , sN is 0, the reward of states sB1

, . . . , sBM
is 0.8, and the reward of state sAi is

r(sAi) = 1−
(

0.7 · i
M
− 1

)2

This reward function ensures that the average reward in the upper chain is smaller than 0.8 but
the maximum reward is bigger than 0.8. The initial state distribution is uniform over the state space.

For the GP model of the reward, we choose a SE kernel with variance σ = 2 and lengthscale
l = 3. The distance d measures the shortest path between s and s′ on graph that defines the
Junction (disregarding the transition function).

The Junction environment shows that it is not sufficient to select queries that are informative about the
maximum of the reward function. Instead, it is important to consider the specifics of the environment
to determine informative queries. In the Junction environment, the agent has to find the path
with the higher average reward instead of the one with the higher maximum reward.
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D.3.3 Gridworld

The Gridworld environment consists of a 10×10 grid in which 2 objects of each of 10 different types
are placed, so 20 objects in total. Each object type gives a reward uniformly sampled from [−1, 1]
when standing on it, while floor tiles give 0 reward. Between each two cells, with probability
0.3 there is a wall. The environment has a discrete states space with 100 states and a discrete
action space with 5 actions: north, east, south, west, and stay. The dynamics are deterministic.
The initial position of the agent is randomly selected but fixed for one instance of the environment.

For the GP model of the reward we choose a kernel

k(s, s′) =

1
if in s and s′ the agent is standing on
the same object type

0 else

so that the model learns a reward for each of the object types independently.

The Gridworld environment shows that to select informative queries it is important to consider the
reachable space in the environment. Queries of objects that are not reachable from the agent’s
initial position are not informative.

D.3.4 Driver

We implement the Driver environment based on code provided by Sadigh et al. (2017) and Bıyık et al.
(2020b). Here, we provide a brief description of the dynamics and features of the environment.
For more details, refer to our implementation, or Sadigh et al. (2017).

The Driver environment uses point-mass dynamics with a continuous state and action space. The state
s = (x, y, θ, v) consists of the agent’s position (x, y), its heading θ, and its velocity v. The actions
a = (a1, a2) consist of a steering input and an acceleration. The environment dynamics are defined as

st+1 = (xt+1, yt+1, θt+1, vt+1)

= (xt + ∆x, yt + ∆y, θt + ∆θ, clip(vt + ∆v,−1, 1))

(∆x,∆y,∆θ,∆v) = (v cos θ, v sin θ, va1, a2 − αv)

where α = 1 is a friction parameter, and the velocity is clipped to [−1, 1] at each timestep.

The environment contains a highway with three lanes. In addition to the agent, the environment
contains a second car that changes from the right to the middle lane, moving on a predefined
trajectory. The reward function is linear in a set of features

f(s) = (f1(s), f2(s), f3(s), f4(s), 1)

where f1(s) ∝ exp(d2
1), d1 is the distance to the closest lane center, f2(s) ∝ (v−1)2, f3(s) ∝ sin(θ),

and f4(s) ∝ exp
(
−d2

2 − cd2
3

)
where d2 and d3 are the distance between the agent’s car and the

other car along the x and y directions respectively, and c is a constant. Note that these features
correspond to the version of the environment that Bıyık et al. (2020b) use and differ slightly from
Sadigh et al. (2017). Reward functions for the environment are sampled from a Gaussian with
zero mean and unit covariance. The first 4 features are normalized before the constant is appended.

The Driver environment uses a fixed time horizon T = 50, and policies are parameterized by
5 actions that are each applied for 10 time steps. For solving the environment we optimize over these
policies using an L-BFGS-B solver as proposed by Sadigh et al. (2017). We additionally use
the set of candidate policies Πc as a lookup table to reduce the variance of this solver. Whenever Πc

contains a policy that is better for a given reward function than the one returned by the solver,
we choose this one instead. This was first proposed by Wilde et al. (2020).

D.3.5 MuJoCo Corridor

Our MuJoCo Corridor environments are based on code of the maze environments by Duan et al.
(2016). Our “maze” is a corridor of 13 cells. The robot starts in the leftmost cell and one of the
cells is a fixed goal cell. The true reward function, that is not directly available to the agent,
rewards the agent proportional to its velocity in positive x-direction if the agent is before the
goal, and rewards the agent proportionally to its velocity in negative x-direction if the agent is
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Figure 5: Illustration of the Chain and Junction MDPs. In the Chain MDP (a), the agent moves right
with probability 1 from state s1 to sM , and the agent can move deterministically left and right
from state sM to state sN with N > M . The reward function is sampled from the GP prior
with a square-exponential kernel. We choose M = 10 and N = 20. In the Junction MDP
(b), the agent moves right with probability 1 from state s1 to sN . In sN , the agent can take
the upper or lower path, denoted withA andB, respectively. Along both paths, the agent moves either
left or right with probability 0.5. In the lower path, the reward of all states is 0.8. In the upper
path, the highest reward is greater than 0.8, but the average reward is less than 0.8. We chooseN = 15
and M = 5. For both environments, the initial state distribution is uniform over the state space.

past the goal. This provides a reward function that is harder to learn than just moving in one
direction. We encode this reward function as a linear function of a set of features

f(s) = (vxI1, vyI1, I1, . . . , vxI13, vyI13, I13)T ∈ R39

where Ik are indicator features that are 1 if the agent is in cell k and 0 otherwise, and vx and
vy are the x- and y-velocity of the center of mass of the Swimmer.

We use augmented random search (Mania et al., 2018) with linear policies to solve the environment for
a given reward function. The policy is linear in a seperate set of features than the reward function. The
features for the policy are based on the standard features provided by the Swimmer environment,
extended by an indicator feature for the Swimmer being in each of the cells.

E Implementation details of IDRL with neural network reward models

This section provides more details on our implementation of IDRL using DNN reward models.
Algorithm 5 shows pseudocode of the full algorithm.

E.1 Training the reward model

We represent the reward function as a function of observations o and actions a, using a DNN
model which we can write as µr̂(o, a) = θT fφ(o, a). We conceptually separate the model into a
feature representation fφ(o, a) parameterized by weights φ and a linear function θ. In practice
θ is the last layer of the DNN and φ and θ are trained jointly.

We train the model on a dataset of pairwise comparisons of clips of trajectories. Let σ =
(s1, a1, . . . , sL, aL) denote a sequence of state-action pairs of lengths L, and let r(σ) =∑L

i=1 r(si, ai) be the sum of rewards over the sequence. We make queries qi = (σi1, σi2),
yi ∈ {−1, 1} that compare two such sequences of state-action pairs. Similar to Christiano et al. (2017),
we choose the Bradley-Terry observations model for the comparisons:

p(σ1 > σ2|θ, φ) =
exp(r̂(σ1))

exp(r̂(σ1)) + exp(r̂(σ2))
=

1

1 + exp(−(r̂(σ1)− r̂(σ2)))

which is equivalent to Logistic regression on r̂(σ1)− r̂(σ2). We use gradient descent to minimize the
negative log-likelihood of the data under this observation model

φ̂, θ̂ ∈ argminL(θ, φ)

L(θ, φ) = −log p(D|φ, θ) + λ(||θ||2 + ||φ||2)

where we use `2-regularization which corresponds to a Gaussian prior on the weights. Because
the Bradley-Terry model is invariant to shifting the reward function, we use DNN layers without biases.
Additionally, we normalize the output of the model when using it to train policies.
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Algorithm 5 Information Directed Reward Learning (IDRL) using DNNs and SAC to train policies.
The algorithm maintains a currently optimal policy π̄∗ as well as a set of candidate policies Πc.
The reward function is represented with a neural network feature function parameterized by φ,
and a Bayesian linear model given by mean θ and covariance H−1. The main training loop alternates
between updating π̄∗, querying new samples and updating the candidate policies. To select queries, the
algorithm implements the IDRL objective, where line 21 corresponds to equation (1) and line 27
corresponds to equation (2). Line 32 updates the feature representation and estimates the MAP
of the posterior, and line 33 approximates the posterior using a Laplace approximation. This
pseudocode omits all hyperparameters that control how often new samples are queried, how many
samples are queries, and how often and for how many steps all models are updated.

1: Initialize policy π̄∗
2: Initialize candidate policies Πc ← {πc1, . . . , πcn}
3: D ← initial dataset
4:
5: Initialize DNN reward model µr̂(o, a) = θT fφ(o, a) with φ random weights, and θ = 0
6: Update DNN parameters, φ and θ, via supervised learning on D
7: H ←

[
∇2 log p(θ|D, φ)

]∣∣∣
θ

8:
9: while not done do

10: Train policy π̄∗ on reward ri(o, a) = θT fφ(o, a) using SAC
11:
12: if update candidate policies then
13: Sample ω1, . . . ,ωn from N (θ,H−1)
14: for i ∈ {1, . . . , n} do
15: Train policy πci on reward ri(o, a) = ωTi fφ(o, a) using SAC
16: Estimate state visitation frequency fπ

c
i using Monte-Carlo rollouts

17: end for
18: end if
19:
20: if query samples then
21: π1, π2 ∈ argmaxπ,π′∈Πc(f

π − fπ
′
)TH−1(fπ − fπ

′
)

22: vπ1,π2
← fπ1 − fπ2

23: Roll out policy π̄∗ and collect a set of candidate queries Qc
24: for qi ∈ Qc do
25: Compute Hessian with the expected response to qi:
26: Hqi ←

[
∇2 log p(θ|D ∪ {(qi, ŷi)}, φ)

]∣∣∣
θ

27: u(qi,D)← −vTπ1,π2
H−1
qi vπ1,π2

28: end for
29: Sort queries by u(qi,D) and select k queries {q1, . . . , qk} with the largest values
30: Make queries {q1, . . . , qk} and observe {y1, . . . , yk}
31: D ← D ∪ {((q1, y1), . . . , (qk, yk))}
32: Update DNN parameters, φ and θ, via supervised learning on D
33: H ←

[
∇2 log p(θ|D, φ)

]∣∣∣
θ

34: end if
35: end while
36: return π̄∗
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To compute the IDRL objective, we need a Bayesian posterior. We fix the features fφ̂, and perform

Bayesian regression to approximate the posterior p(θ|D, φ̂). To this end, we consider θ̂ to be
the mode of this posterior, and compute a Laplace approximation:

p(θ|D, φ̂) ≈ N (θ̂, H−1)

H =
[
∇2log p(θ|D, φ̂)

]∣∣∣
θ=θ̂

where H is the Hessian of the log-likelihood at point θ̂. The Laplace approximation is a very basic
technique for approximate inference; however, it is convenient in our case because it approximates the
posterior as a Gaussian distribution. This means we can compute the entropy and information
gain of this distribution similarly easy as for a GP model.

E.2 Hyperparameter choices

Neural network model. We use the same network architecture as Christiano et al. (2017): a
two-layer neural network with 64 hidden units each and leaky-ReLU activation functions (α = 0.01).
For training we use `2-regularization with λ = 0.5.
Policy training. We use the stable-baselines3 implementation of SAC (Raffin et al., 2019),
with default hyperparameters. For training the policy, we append a feature to the observations that
measure the remaining time within an episode, ft = (tmax − t)/tmax, where t is the current
time step in an episode and tmax is the episode length. Adding this feature tends to speed up
training significantly in the MuJoCo environments. We do not add this feature for learning the
reward function. Policies are trained for 107 timesteps in total.
Sampling rate. We provide 25% of samples to the reward model before starting to train the
policy, and during training provide samples at a sampling rate proportional to 1/T . Concretely, if
Ns samples are provided in Nb batches over the course of training, the i-th batch will contain
Ns
HNb
· 1
T samples, where Hn is the n-th harmonic number.

Candidate policies. We maintain a set of 3 candidate policies, that are each updated 107 timesteps,
as the main policy. The candidate policies are updated in regular intervals, which are controled by
a hyperparameter Np. Over the course of training, the candidate policies will be updated Np
times using 107/Np timesteps each time.
Hyperparameter tuning. We only tuned two hyperparameters explicitly: Nb, the number of
batches of training samples the model gets during training, and Np the number of times the candidate
policies are updated during training. We selected all other hyperparameters after preliminary
experiments and to be as similar as possible to Christiano et al. (2017). We first tuned Nb us-
ing a random acquisition function and values in {10, 100, 1000, 10000}, and chose Nb = 1000
which gave the best performance evaluated over 5 random seeds. We choose the same Nb for
all acquisition functions. Then, we tuned Np for the IDRL acquisition function and values in
{10, 100, 200, 400, 600, 800, 1000}. We chose Np = 100 which lead to best performance evaluated
over 5 random seeds. All hyperparameters were only tuned on the HalfCheetah environment.

E.3 Comparison of our Deep RL setup to Christiano et al.

In this section we point out differences in our Deep RL setup compared to Christiano et al. (2017).
Some of the modifications are necessary for applying IDRL. Other differences result from us not being
able to reproduce the exact environments and hyperparameters because Christiano et al. do not provide
code of their experiments.
Reward model. Christiano et al. model the reward function with an ensemble of DNNs. We
learn a feature representation using a single DNN, and combine this with a Bayesian linear model
which makes computing the IDRL objective more straightforward.
Policy learning. We use SAC while Christiano et al. use TRPO for learning the policy. We
chose SAC because it is significantly more sample efficient in MuJoCo environments.
Sampling rate. Christiano et al. provide 25% of total samples to the model intially, and provide the
rest of the samples at an adaptive sampling rate which they choose to be “roughly proportional
to 2 · 106/(T + 2 ∗ 106)” (Christiano et al., 2017, App. A.1), where T is the number of environment
interactions so far. Unfortunately, they do not provide enough information to exactly reproduce
their sampling schedule. Instead, we simplify the schedule to be proportional to 1/T .
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Clip length. Christiano et al. query comparisons between clips that “last 1.5 seconds, which varies
from 15 to 60 timesteps depending on the task”(Christiano et al., 2017, App. A.1). Unfortunately, they
do not specify the framerate used for each task, so we can not reproduce the exact clip lengths. Instead,
we simply choose a length of 40 timesteps for each environment which is roughly in the middle
of the range they provide.
Observations. From their paper it is unclear whether Christiano et al. (2017) include the agents
position in the observation in locomotion environments such as the HalfCheetah. Note, that including
the observation makes the reward learning task much easier because the reward function is linear in the
change of the agent’s x-position. Therefore, we do not include the position in the observation which we
use to predict the reward function.
Penalties for termination. Most of the standard MuJoCo environments have termination conditions,
that, e.g., terminate an episode when the robot falls over. Such termination can leak information about
the reward, i.e., longer episodes are better. Therefore, Christiano et al. replace “these termination
conditions by a penalty which encourages the parameters to remain in the range” (Christiano et al.,
2017, App. A). Unfortunately, they do not specify the exact penalties they use. We also remove the
termination condition, but replace it with a bonus for “being alive” which is implemented in the version
3 environments of OpenAI Gym.

F Additional experimental results

F.1 Experiments in small environments

In Figure 6, we provide more detailed results of our experiments in small environments. This includes
experiments in the Gridworld environment, but also the Chain and Junction environments that
were not presented in the main paper. The results confirm the conclusion we presented in the
main paper: by focusing on queries that are informative about which policy is optimal, IDRL
is able to learn better policies with fewer queries than the baselines.

F.2 Ant Corridor

Figure 7 shows results in the Ant-Corridor, using the same experimental setup as the results in
Figure 3b in the main paper, which shows results in the Swimmer-Corridor.

F.3 Deep RL experiments in individual environments

In Figure 8 we provide learning curves for the individual MuJoCo environments that were aggregated
to create Figure 4 in the main paper. To aggregate the results we normalized the return in each
environment:

Gnorm(π) = 100 · G(π)−G(πrand)

G(π∗)−G(πrand)
,

where πrand is a policy that samples action uniformly at random, and π∗ is an expert policy trained
using SAC on the true reward. This results in a score that is 0 for a policy that performs as
well as a random policy, and 100 for a policy that matches an expert performance. In Figure 4
this score is averaged over all environments.
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Figure 6: Learning curves for the Chain, Junction and Gridworld environments for two query types:
the reward of individual states and comparisons of states. For each setting, one plot shows the regret of
a policy trained using the reward model and a second plot shows the mean squared error (MSE) of the
reward model over the whole state space. The plots show mean and standard error across 30
random seeds. Across all environments, IDRL learns a better policy with fewer queries. However, the
MSE measured on the entire state space is usually worse, because IDRL focuses on regions of
the state space that are informative about the optimal policy.
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Figure 7: Regret and cosine similarity in the Ant-Corridor environment, comparing IDRL ( )
to IGR ( ), EI ( ), and uniform sampling ( ). The experimental setup is exactly the
same to the results shown in Figure 3b in the main paper. The Ant-Corridor environment is the
same as the Swimmer-Corridor, only with a different robot.
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Figure 8: Return of policies trained using a model trained from 1400 comparison for each of
the MuJoCo environments. Figure 4 in the main paper shows the normalized average over all
environments.
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