
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A ANALYTICAL RESULTS

A.1 PRELIMINARIES

Transformers We consider the standard transformer architecture as defined in (Luo et al., 2022).
The transformer network is the stack of transformer blocks, each of them consists of a self-attention
layer Attn(·) and a feed forward layer FF(·). Given an input X → Rd→T , they are written as:

Attn(X) = X +
h∑

i=1

W i
OW

i
V X · ω

[(
W i

KX
)T

W i
QX

]

FF(X) = Attn(X) +W2 · ReLU (W1 ·Attn(X))

(6)

where W i
O → Rd→m, W i

V ,W
i
K ,W i

Q → Rm→d, W2 → Rd→r, and W1 → Rr→d.

We denote th,m,r : Rd→T
↑ Rd→T as a transformer block with an attention layer with h heads of

size m, and a feed-forward layer with r hidden nodes. Thus, the transformer can be written as:

T
h,m,r :=

{
f : Rd→T

↑ Rd→T
| f is a composition of transformer blocks th,m,r

}
. (7)

Similarly, transformer with absolute positional embedding is:

T
h,m,r
P :=

{
fP(X) = f(X +E) | f → T

h,m,r and E → Rd→T
}

(8)

Universal Approximator (UA) The universal approximation framework considers the feasibility
or existence of a neural network that can approximate different types of functions with arbitrarily
small error. Consider a transformer network f1 and an arbitrary function f2, where f1, f2 : Rn→T

↑

Rn→T are both sequence-to-sequence functions. We define a distance between f1 and f2 as:

dp (f1, f2) :=

(∫
↓f1(X)↔ f2(X)↓pp dX

)1/p

(9)

being a UA means that for any given f2 → F, let 1 ↗ p < ↘ and ε > 0, there exists a network f1,
such that dp(f1, f2) ↗ ε. Several prior works have explored the concept of universal approximators
(UAs) and whether transformers qualify as UAs. Below, we outline the key results from the literature
that will be referenced in this paper:

Theorem 2 (informal, see Yun et al. (2019)). Given 1 ↗ p < ↘ and ε > 0, for any function
f → FPE, where FPE consists of all continuous permutation equivariant functions with compact
support, there exists a Transformer network f → T

2,1,4 where dp(f, g) ↗ ε.

Theorem 3 (informal, see Yun et al. (2019)). Given 1 ↗ p < ↘ and ε > 0, for any function
f → FCD, where FCD consists of all continuous functions with compact support, there exists a
Transformer network f → T

2,1,4
P where dp(f, g) ↗ ε.

Theorem 2 discussed that transformers without positional embeddings are UAs for all continuous
permutation equivariant functions; and Theorem 3 discussed that transformers with absolute posi-
tional embeddings (APE) are UAs for all continuous functions with compact support. Note that the
latter results may be overruled by modifying the transformer architectures as follows:

Theorem 4 (informal, see Luo et al. (2022)). Consider relative positional encoding (RPE) that
modifies the attention as Attn(X) = X +

∑h
i=1 W

i
OW

i
V X · softmax

[(
W i

KX
)T

W i
QX +E

]
,

where E → RT→T encodes the relative position within attention maps. Given T > 2, there always
exists a continuous function fM : D ↑ Rd→T , such that supX↑D

↓fRPE(X)↔ fM (X)↓22 ≃ M
holds for any modified RPE-based transformer.

While UA framework is typically used for understanding the approximation problem towards con-
tinuous functions, more recently, it is used to understand the approximation problem towards dis-
continuous functions. Specifically, in this work, we reference the results in Ismailov (2023) that

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

shows any discontinuous function may be implemented by a three-layer Kolmogorov type neural
network:

Theorem 5 (informal, see Ismailov (2023)). Given d ≃ 2 and any function f : Id ↑ R, where I is a
closed unit internal [0, 1], then function f can be implemented exactly by a three-layer Kolmogorov
neural network with d, 2d+1, and 1 processing units in the first, second, and final layer, respectively.

As stated in Ismayilova & Ismailov (2023); Ismailov (2023), the expressiveness of simple neural net-
works can be extended by constructing more diverse activation functions, which helps us understand
the approximation ability towards discontinuous functions which are more prevalent in real-world
complex systems. Note that other works also discuss the approximation problems towards functions
that may be discontinuous (Kidger & Lyons, 2020; Pinkus, 1999).

A.2 ADDITIONAL PROOF OF THEOREM 1

We only study the convergence property of self attention layers as the convergence property of feed
forward networks has been extensively studied in previous works. To prove convergence, we build
an input sequence X + !n, where !n is defined as a bounded perturbation matrix ! → D that is
uniformly scaled by a positive value n. Given a self attention layer Attn(X), we show the following:

Lemma 1. Given n ≃ N , X → D, !n = !/n, there exists an ε such that:
sup

!↑D,↓!↓1↔1
↓Attn(X)↔Attn(X+!n)↓2 < ε. (10)

holds for any self attention layer parameterized by W i
O → Rd→m, W i

V ,W
i
K ,W i

Q → Rm→d.

Proof. First, we re-write the activation component ω
[(
W i

KX
)↗

W i
QX

]
in Eq. 6 as column-wise

softmax operation softmax(X↗Wxj), where xj is a random column of X. We have:

↓ softmax(X↗Wxj)↔ softmax((X+!n)
↗W(xj + ϑj,n))↓2

↗ ↓ softmax(X↗Wxj)↔ softmax((X+!n)
↗W(xj + ϑj,n))↓1

↗ 2↓X↗Wxj ↔ (X+!n)
↗W(xj + ϑj,n)↓↘ (Corollary A.7 in Edelman et al. (2022))

= 2max
i

(
1

n
(x↗

i Wϑj + ϑ↗i Wxj) +
1

n2
ϑ↗i Wϑj)

↗ 2max
i

(
1

n
(x↗

i W1+ 1↗Wxj) +
1

n2
1↗W1) = εh

(11)

which shows that the attention map converges given deterministic X and W = (Wi
K)↗Wi

Q. Thus,
Eq. 10 holds by considering the self attention operator Attn(X) as a convex combination of attention
heads given deterministic X, W i

O → Rd→m, W i
V → Rm→d.

Thus, given X ↑ 0, the transformer network fP (X) converges to a deterministic matrix B that is
dependent on the network parameters and the positional embedding E. Note that, under the context
of network optimization, a more generalized version of the convergence property of transformers
has been proved in other previous works (Wu et al., 2024; Gao et al., 2024).

A.3 ADDITIONAL PROOF OF PROPOSITION 1

Based on the results in Theorem 3, it is known that as long as the constructed sequence X =
[E(S1), E(S2), ..., E(ST )] forms a continuous sequence-to-sequence function between input X and
the target {A[g(ti)]}Ti=1, it is guaranteed that there exists a transformer network fP → T

2,1,4
P that

can approximate the constructed sequence-to-sequence function. Thus, we show how the presented
two conditions are sufficient to meet the above requirement:

• When there exists a continuous mapping between a fixed element p of Si and the i-th element of
the target output A[g(ti)], one can construct a simple linear encoder E(S) = Sv, where v[i] = 0
when i ⇐= p and v[p] = 1, that creates the continuous sequence-to-sequence function.

• Based on the results in Theorem 5, if there exists an expressive tokenizer E (that may be a discon-
tinuous function) that preprocess Si to create a continuous mapping between E(Si) to the target,
the existence of the transformer is guaranteed for a continuous sequence-to-sequence function.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Example solutions We provide example solutions to approximate the differential operator. Un-
der the first condition, a trivial solution can be constructed by performing phase transition with
degradation operator, creating (di ⇒ g)(t) = sin(Mt + iω

2T )/M . While the first condition requires
data-specific degradation operators, the second condition provides more flexibility. In the case of
differential operator, we rely on the result from Ismailov (2023) and use a Kolmogorov’s map-
ping three-layer neural network to approximate an arbitrary (continuous or discontinuous) function
f : IT ↑ R, where I is a compact interval [0, 1]. Thus, one can construct a simple degradation
operator of value shifts as: (di ⇒ g)(t) = sin(Mt)/M + (1 + iϑ/T )/M , where ϑ → (0,M ↔ 2]
is an arbitrary number that distinguishes Si. In this case, there exists an encoder E that can create
a continuous sequence-to-sequence function to the desired target (e.g., E(Si) = Mti), where the
existence of a solution is guaranteed by previous results in Yun et al. (2019).

B EXPERIMENTAL DETAILS

B.1 SYNTHETIC EXPERIMENTS

B.1.1 SYNTHETIC DATASETS DETAILS

Fractional Brownian motion (fBm) Given a Hurst index H and two time steps i and j, a fBm
process is a continuous-time Gaussian process BH(t) with the following covariance structure:

E [BH(i)BH(j)] =
1

2

(
|i|2H + |j|2H ↔ |i↔ j|2H

)
(12)

Define function ϖ(i,H) = 0.5(|i ↔ 1|2H + |i + 1|2H ↔ 2|i|2H), a fBm process can be simulated
through the Cholesky decomposition method detailed as follows:

Algorithm 1 Simulation of fBm processes using the Cholesky’s method
Inputs: N as the length of sequence (time steps), H → (0, 1) as the Hurst index
Initialize: L → RN→N , V → RN with each entry randomly sampled from N (0, 1)
Define: X → RN as the output vector

Initial conditions for L: L[0, 0] = 1, L[1, 0] = 22H≃1
↔ 1, L[1, 1] = (1↔ L[1, 0]2)1/2,

Initial conditions for X: X[0] = V[0], X[1] = L[1, 0]V[0] + L[1, 1]V[1]
for each time step i from 2 till N ↔ 1 do L[i, 0] = ϖ(i,H)

for each time step j from 1 to i↔ 1 do

L[i, j] =
1

L[j, j]

(
ϖ(i↔ j,H)↔

j≃1∑

k=0

L[i, k] · L[j, k]

)

end for

Update L[i, i] = (1↔
∑i≃1

k=0(L[i, k]
2))1/2, X[i] =

∑i
k=0 L[i, k]V[k]

end for

for each time step i from N ↔ 1 till 0 do X[i] = (
∑i

k=0 X[k])⇑N≃H

end for

Output: A simulated fBm process X

Autocorrelated sinusoids The autocorrelated sinusoids dataset is generated with AR processes in
the frequency space. Given an integer k, a randomly initialized set of weights {ϱi}

k
i=1, an AR(k)

process defines the sequence of frequency values as follows:

ft =
k∑

i=1

ϱift≃i (13)

The AR process ensures that the frequency components in the synthetic dataset are correlated, cre-
ating an autoregressive frequency structure that NoTS can effectively learn from.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.1.2 FEATURE REGRESSION TASK DETAILS

We detail the feature extraction methods as follows. We use them as the ground truth for the feature
regression task. Define the indicator function 1A(x), where 1A(x) = 1 if x → A and 1A(x) = 0
otherwise. Given a single-channel signal s → RT with vi as the value on i-th timestamp, all features
are extracted on each channel of the signal as follows:

Slope Sign Change (SSC) SSC measures directional slope changes in a signal, indicating the in-
tensity of fluctuations. Given a threshold value ϑ as hyperparameter, a period of time series sequence
s, we extract SSC value with the following equation:

SSC(s) =
T≃1∑

i=2

1(vi≃vi→1)(vi≃vi+1)<0 (vi) · 1max(|vi≃vi+1|,|vi≃vi→1|)⇐ε (vi)

In practice, we extract the SSC values on top of segmented signals with a length of 32.

Willison Amplitude (WAMP) WAMP is a similar feature that focuses on counting significant
amplitude changes between consecutive steps. Given a threshold value ϑ as hyperparameter, a period
of time series sequence s, WAMP is computed through WAMP(s) =

∑T≃1
i=1 1|vi+1≃vi|⇐ε (vi). In

practice, we also extract the WAMP values on top of segmented signals with a length of 32, creating
a 32-dimensional feature for each studied synthetic data sample.

Band power (b. power) The band power quantifies the energy within a specific selected range of
frequencies. It is computed by first performing the Fourier transform of s, creating a frequency rep-
resentation s(f). The band power within frequency range [f1, f2] is later extracted as BP(f1,f2)(s) =∫ f2
f1

|s(f)|2 df . In this work, we consider 3 unique frequency range {[5, 10], [15, 30], [30, 80]} as hy-
perparameters to extract a 96-dimensional feature for each studied synthetic data sample.

B.2 REAL-WORLD EXPERIMENTS

B.2.1 DATASET INFORMATION

Classification We selected 9 univariate datasets from the UCR archive (Dau et al., 2019), filtering
out all datasets with less than 140 series length or less than 350 training samples. The dataset
selection is performed to ensure each dataset has both sufficient samples and dynamics. The detailed
information about the selected datasets is provided in Table 4.

Dataset Train Test Series Length Classes

FordA 3601 1320 500 2

FordB 3636 810 500 2

ScreenType 375 375 720 3

ECG5000 500 4500 140 5

Wafer 1000 6164 152 2

StarLightCurves 1000 8236 1024 3

UWaveGestureLibraryAll 896 3582 945 8

HandOutlines 1000 370 2709 2

EthanolLevel 504 500 1751 4

Table 4: Detailed information about the selected datasets from the UCR archive.

We also selected 5 multivariate datasets from the UEA archive (Bagnall et al., 2018), excluding those
with a series length below 100 and the training sample size below 200. The detailed information
about the selected datasets is provided in Table 5.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Dataset Channel Train Test Series Length Classes

EthanolConcentration 3 261 263 1751 4

Heartbeat 61 204 205 405 2

PEMS-SF 963 267 173 144 7

SelfRegulationSCP1 6 268 293 896 2

SelfRegulationSCP2 7 200 180 1152 2

Table 5: Detailed information about the selected datasets from the UEA archive.

Imputation For the imputation tasks, we use the ETDataset (Zhou et al., 2021), where ETTm1
and ETTm2 are sampled at minute intervals, and ETTh1 and ETTh2 are sampled at hourly intervals.
The detailed information about the selected datasets is provided in Table 6.

Dataset Channel Series Length Train Validation Test

ETTm1, ETTm2 7 96 34465 11521 11521

ETTh1, ETTh2 7 96 8545 2881 2881

Table 6: ETDataset for imputation tasks.

Anomaly detection The detailed information about the selected datasets is provided in Table 7.

Dataset Channel Series Length Train Validation Test

SMD 38 100 566724 141681 708420

MSL 55 100 44653 11664 73729

SWaT 51 100 396000 99000 449919

PSM 25 100 105984 26497 87841

Table 7: Detailed information about the selected datasets for the anomaly detection tasks.

B.2.2 MODEL TRAINING AND ARCHITECTURE DETAILS

Training details For pre-training on synthetic datasets, we use a learning rate of 0.05, a Multi-
StepLR scheduler with a multiplicative factor ϖ = 0.3, and two milestones on epoch 30 and 150.
We perform all pre-training for a total of 300 epochs on both of the synthetic datasets, where we set
batch size as 1024 for the reconstruction task.

For pre-training on real-world datasets, we use a learning rate of 0.005. We perform all pre-training
for either a total of 300 epochs, or a total of 6000 steps, whichever finishes the first. We set batch
size as 32 for imputation and anomaly detection tasks, and batch size as 64 for classification tasks.

Table 8: Complete classification results on the UCR datasets.

Parameter efficient tuning Full-scale fine-tuning

Dataset NoTS-lw Next-pred bioFAME SimMTM NoTS-lw Next-pred bioFAME SimMTM
HandOutlines 71.62 64.32 64.05 88.92 93.51 72.16 91.62 89.73
EthanolLevel 28.60 26.60 25.20 29.00 91.40 48.60 41.20 38.00

StarLightCurves 91.66 87.34 85.15 88.59 97.21 97.49 97.56 97.39
UWave-GL-All 67.39 56.28 37.38 76.35 96.57 96.90 87.83 94.72

FordA 81.52 77.27 71.74 51.59 94.02 94.09 93.49 94.55
FordB 68.27 63.83 57.41 64.57 83.70 86.17 85.19 83.58
Wafer 98.78 89.21 89.21 89.23 99.81 99.87 99.64 99.85

ECG5000 91.31 89.00 92.96 87.38 94.13 88.47 94.29 93.82
ScreenType 47.73 39.73 40.53 42.67 42.40 41.87 42.93 43.20

Average 71.88 65.95 62.63 68.70 88.08 80.62 81.53 81.65

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Attaching NoTS to existing architectures

Dataset PatchTST PatchTST + NoTS iTransformer iTransformer + NoTS

HandOutlines 91.89 93.51 92.16 92.16
EthanolLevel 57.80 68.00 86.20 86.40

StarLightCurves 97.46 97.56 93.94 93.52
UWave-GL-All 96.04 96.45 89.89 91.76

FordA 93.71 93.56 77.05 83.11
FordB 78.64 80.49 68.52 69.14
Wafer 99.59 99.63 99.72 99.77

ECG5000 94.09 94.33 94.42 94.49
ScreenType 42.93 44.00 42.13 45.07

Average 83.57 85.28 82.67 83.94

We apply the same set of hyperparameters for both parameter efficient fine-tuning and full-scale fine-
tuning, where we perform hyperparameter selection on learning rate {0.005, 0.001, 0.05} and batch
size {32, 64, 128}. We perform the fine-tuning for 300 epochs on imputation, anomaly detection,
and feature regression tasks, and perform the fine-tuning for 4000 steps on classification tasks.

The settings are applied consistently across all models to ensure a fair comparison. All models are
optimized with an Adam optimizer with ς1 = 0.9, ς2 = 0.99, and a weight decay of 1⇑ 10≃5.

Model architectures For all pre-training methods including NoTS-lw, we use a same channel-
independent 1D-ResNet encoder for fair comparison. The encoder has 3 ResNet layers of channel
size {16, 32, 64}, each has 2 ResNet blocks. The first convolutional layer has a kernel size of 7, and
the rest layers have a kernel size of 3. We append an additional convolutional layer after the ResNet
blocks to alter the dimensionality d of the token embeddings, where model variant d = 32 is used
for all experiments, and d = 16, 64, 128 is trained for the scalability pilot study. We use a 3-layer
4-head transformer with a token dimension of d, and 4⇑ size in the feed forward layer. The decoder
is built to be symmetric to the encoder architecture.

Table 9: Complete classification results on the UEA datasets.

Parameter efficient tuning Full-scale fine-tuning

Dataset NoTS-lw Next-pred bioFAME SimMTM NoTS-lw Next-pred bioFAME SimMTM
EthanolConcentration 28.14 25.48 28.14 25.48 30.04 29.28 27.76 28.90

Heartbeat 73.66 73.17 72.68 72.20 74.63 73.66 73.17 73.17
PEMS-SF 75.72 58.38 77.46 64.16 80.35 67.63 75.15 72.25

SelfRegulationSCP1 79.18 77.82 69.97 59.39 89.08 86.01 85.67 74.06
SelfRegulationSCP2 57.22 56.67 53.33 55.56 57.78 57.22 56.11 57.78

Average 62.78 65.95 62.63 68.70 88.08 80.62 81.53 81.65

Attaching NoTS to existing architectures

Dataset PatchTST PatchTST + NoTS iTransformer iTransformer + NoTS

EthanolConcentration 25.10 25.48 30.42 30.04
Heartbeat 73.17 74.63 73.17 74.15
PEMS-SF 88.44 90.75 89.02 90.75

SelfRegulationSCP1 78.16 82.25 87.71 88.06
SelfRegulationSCP2 51.67 51.67 57.78 58.33

Average 63.31 64.96 67.62 68.27

In our experiments, iTransformer (Liu et al., 2023b) is implemented to transform inputs to an em-
bedding dimension of 16, where we build the decoder to be symmetric and linear. We used a 3-layer
4-head transformer network with a token dimensionality of 128 and 4⇑ size in the feed forward
layer. PatchTST (Nie et al., 2022) is implemented with a patch length of 16, stride of 8, and to-
ken dimension of 32. In cases where PatchTST becomes too computationally heavy (e.g., anomaly
detection tasks), we adjust batch size to be 1 and increase patch length to be 32.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Complete imputation results with masking ratio 12.5% and 25%.
Parameter efficient tuning Full-scale fine-tuning

Dataset NoTS-lw Next-pred bioFAME SimMTM NoTS-lw Next-pred bioFAME SimMTM
12.5% masking ratio

ETTm1 0.1556 0.2832 0.1957 0.1573 0.1194 0.1219 0.1251 0.1207
ETTm2 0.1232 0.1774 0.1183 0.1243 0.1110 0.1164 0.1038 0.1041
ETTh1 0.2764 0.4569 0.2471 0.2545 0.2091 0.2126 0.1966 0.1947
ETTh2 0.1917 0.2692 0.1746 0.1796 0.1615 0.1886 0.1751 0.1632

25% masking ratio

ETTm1 0.1730 0.3280 0.2103 0.1697 0.1246 0.1377 0.1325 0.1244
ETTm2 0.1294 0.1789 0.1257 0.1269 0.1205 0.1218 0.1095 0.1093
ETTh1 0.2957 0.4738 0.2695 0.2734 0.2266 0.2440 0.2068 0.2078
ETTh2 0.1994 0.2707 0.1824 0.1861 0.1653 0.1872 0.1806 0.1681

Attaching NoTS to existing architectures

Dataset PatchTST PatchTST + NoTS iTransformer iTransformer + NoTS

12.5% masking ratio

ETTm1 0.1791 0.1657 0.1539 0.1662
ETTm2 0.1233 0.1193 0.1082 0.1071
ETTh1 0.3277 0.2705 0.2325 0.2227
ETTh2 0.1817 0.1797 0.1639 0.1609

25% masking ratio

ETTm1 0.1837 0.1903 0.1698 0.1665
ETTm2 0.1295 0.1268 0.1140 0.1117
ETTh1 0.3668 0.2952 0.2483 0.2318
ETTh2 0.1926 0.1827 0.1725 0.1678

B.2.3 COMPLETE EXPERIMENTAL RESULTS

We show the complete classification results in Table 8 and Table 9 and the complete imputation
results in Table 10. The averaged results are presented in Table 2.

Imputation task details We perform a channel-wise imputation task instead of the traditional
random imputation task. Specifically, when performing the masking, instead of uniformly sample
random elements from C ⇑ T entries of S → RC→T , we sample uniformly from T columns and
cover inputs from all channels. This is to eliminate the overfitting issues from the data embeddings.

B.2.4 ADDITIONAL VISUALIZATIONS

We present additional data and token space visualizations in Figure 4 and Figure 5, respectively.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 4: Additional data space visualizations.

Figure 5: Additional token space visualizations.

C DETAILED MODEL DEPLOYMENT PIPELINE

C.1 OVERALL PRE-TRAINING, FINE-TUNING, AND TESTING PIPELINES

C.1.1 OVERALL MODEL DEPLOYMENT FLOW

The proposed NoTS method, as a pre-training strategy, considers the following model training and
deployment flow. It considers a pre-training datasets DPT and DFT with samples shaped CPT ⇑ TPT
and CFT ⇑ TFT, respectively, allowing for differing channel and temporal dimensions between these
two phases. The model is first pre-trained by performing the autoregressive reconstruction task,
guided by the training objective as detailed in Equation 3. It is later fine-tuned on the training split
of the downstream dataset, and is finally evaluated on the testing split of the downstream dataset.
Depending on the differences between pre-training and downstream datasets, there are two schemes
as presented in Table 11.

During pre-training, the input time series are sequentially processed by the encoding layers, the
autoregressive transformer, and the decoding layers for the reconstruction task. In fine-tuning, ran-

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Stage Training Tuning Testing

Cross-domain Synthetic Real-world (train split) Real-world (test split)
In-domain Real-world (train split) Real-world (train split) Real-world (test split)

Table 11: Data splits for training, tuning, and testing.

domly initialized channel adapters and prompt task adapters are added, either trained independently
or jointly with the pre-trained encoder, decoder, and transformer during the prompt tuning and full-
scale fine-tuning stages, respectively. Finally, the tuned model, with all parameters frozen, is used
for testing. The process is detailed as in Table 12.

Stage Training Tuning Testing

Prompt tuning E , D, Transformer Adaptors NA
Full-scale tuning E , D, Transformer E , D, Transformer, Adaptors NA

Table 12: Parameters updated during training, tuning, and testing.

C.1.2 DOMAIN SHIFTS ACROSS PRE-TRAINING AND FINE-TUNING

Domain shift issues between pre-training and downstream datasets are discussed in many recent
works on pre-training methods for time series data (Dong et al., 2024; Liu et al., 2023a). These
challenges primarily stem from differences between DPT and DFT, leading to the following two
cross-domain and within-domain schemes:

Cross-domain pre-training and fine-tuning. All NoTS-lw models are trained and evaluated us-
ing the cross-domain scheme (first 8 rows of Table 2). Specifically, the models are pre-trained on
the synthetic datasets detailed in Section 5.1 to learn and extract the universal dynamic features,
then tuned on real-world datasets to demonstrate the generalization capability of the pre-training
approach.

Within-domain pre-training and fine-tuning. All NoTS models are trained and evaluated using
the within-domain scheme (Table 1 and last 4 rows of Table 2). This setting assesses the model’s
ability to learn dataset-specific patterns by pre-training and fine-tuning on the same train split of a
dataset. The final evaluation of the downstream task in fine-tuning is evaluated on the test split of
the corresponding dataset.

C.1.3 PROMPT TUNING AND FULL-SCALE FINE-TUNING

We design the prompt tuning method to adapt pre-trained knowledge to new tasks while introducing
minimal additional parameters. In this tuning paradigm, the pre-trained transformer (along with the
encoder and decoder) remains frozen. Only the adaptor parameters (channel and task adaptors) and,
for discriminative tasks, a final linear classification head are trained.

In contrast, the full-scale fine-tuning method unfreezes the pre-trained weights, allowing the entire
model, including the encoder, transformer layers, the decoder, the adaptors, and the final linear
classification head, to be fine-tuned. This approach enables comprehensive adaptation to new data
and tasks but comes with higher computational demands.

C.1.4 TESTING SCHEMES

The model is tested on the testing split of the downstream dataset. The specific testing scheme varies
across different downstream tasks, with major differences across generative (anomaly detection and
imputation tasks) and discriminative tasks (classification and regression tasks). More details are
included in the downstream tasks section.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.2 MATHEMATICAL FORMULATION OF OUR PROMPT-TUNING STRATEGY

C.2.1 TASK ADAPTORS INSPIRED BY VISUAL PROMPT TUNING (VPT)

Consider the input sequence to transformer layer X = [x1,x2, . . . ,xN ] → RN→D, where N is the
sequence length and D is the transformer’s hidden dimension. Our prompt tuning pipeline deploys
the deep visual prompt tuning strategy as follows:

We randomly initialize a set of k learnable prompt tokens {p1, . . . , pk}, where each pi → RD. For
each transformer layer d, suppose we have H attention heads, and we initialize three separate linear
projection layers for the prompt tokens:

L(d)
qp , L(d)

kp
, L(d)

vp → RD→(H→D),

each without bias. These layers project the prompt tokens into query, key, and value representations
of shape RH→D as follows:

p(d)qi = piL
(d)
qp , p(d)ki

= piL
(d)
kp

, p(d)vi
= piL

(d)
vp

, for i = 1, 2, . . . , k.

While the input tokens xj → RD, where j = 1, 2, . . . , N have separate linear projection layers that
are inherited from the pre-trained transformer attention blocks, giving x(d)

qj , x(d)
kj

, and x(d)
vj for each

j in each transformer layer d. The projected prompt tokens and input tokens are then concatenated
separately to form the augmented query, key, and value sequences:

Q(d)
aug = [p(d)q1 , p(d)q2 , . . . , p(d)qk ,x(d)

q1 ,x(d)
q2 , . . . ,x(d)

qN ],

K(d)
aug = [p(d)k1

, p(d)k2
, . . . , p(d)kk

,x(d)
k1

,x(d)
k2

, . . . ,x(d)
kN

],

V(d)
aug = [p(d)v1 , p(d)v2 , . . . , p(d)vk ,x(d)

v1 ,x(d)
v2 , . . . ,x(d)

vN ].

These augmented query, key, and value sequences are then processed by the multi-head attention
mechanism with H heads in transformer layer d, allowing the model to integrate information from
both the prompt tokens and the input time series tokens.

C.2.2 CHANNEL ADAPTORS AND CHANNEL EMBEDDING

The channel embedding layer is applied before feeding data into the encoding layers, transforming
the channel dimension from C to C ⇒ as follows:

L(S) = WembedX+ bembed,

where Wembed → RC↑
→C and bembed → RC↑

are learnable parameters.

Additionally, the learnable channel tokens T → RC→D are used as additive embeddings before the
input sequence enters the transformer layers. These tokens recalibrate channel-specific represen-
tations, ensuring consistent adjustments across all tokens. This method enhances robustness and
flexibility across diverse domains and channel configurations without requiring significant architec-
tural changes.

C.3 ADDITIONAL EXPERIMENTAL DETAILS FOR DOWNSTREAM TASKS

We follow the multitask evaluation pipeline in (Wu et al., 2022) and provide the necessary details as
follows.

Classification We consider the sequence-level classification task, where each time series
sample is mapped into one label. The classification is performed by injecting prompt to-
kens into the task adapter, where the transformer processes the appended token sequence
[p1, p2, . . . , pk, x1, x2, . . . , xN ] → R(N+k)→D, where k is the number of prompt tokens, N is the
number of input tokens, and D is the transformer hidden dimension. We selected k = 5 for all
classification tasks, where the prompt tokens are averaged and passed into a linear projection head
to obtain classification logits.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Anomaly detection We consider the unsupervised time series anomaly detection task. During
the training stage, we minimize the reconstruction error of the normal data using MAE loss. In
testing, anomalies are detected by comparing reconstruction errors to a threshold derived from the
error distribution of the entire dataset. We employ event-based anomaly detection and compute the
detection accuracy for model evaluation. For all experiments, we sweep the anomaly rates across
the data distribution {0.5%, 0.75%, 1.0%, 1.25%, 1.5%} to compute the final rate for each dataset.

Imputation We randomly generate and apply masks to the input to simulate and reconstruct the
missing values. We evaluate imputation masking rates of 12.5% and 25%, with the mask ratio set to
1.5 times higher during training. The training objective minimizes the Mean Squared Error (MSE)
between the ground truth and the model’s imputed outputs, focusing on both masked points and the
entire series.

Regression The regression task is performed exclusively on the synthetic dataset in a within-
domain manner using a regression task adaptor during fine-tuning. The procedure is similar to the
classification task, with the key difference being the loss function: classification uses cross-entropy
loss, while regression employs MAE loss for fine-tuning.

D ADDITIONAL ABLATION RESULTS ON THE DEGRADATION OPERATORS

D.1 PROPORTION OF GLOBAL AND LOCAL DEGRADATION OPERATORS

Table 13: Ablation study on the proportion of global and local degradation operators
Global/Local 0/100 25/75 50/50 75/25 100/0
HandOutlines 88.11 72.16 71.62 71.62 64.32
EthanolLevel 29.00 28.60 28.60 28.60 26.60

StarLightCurves 88.59 89.84 91.66 91.66 89.84
UWave-GL-All 65.32 64.15 67.39 57.87 56.28

FordA 80.22 81.89 81.52 87.20 80.38
FordB 64.57 68.52 68.27 70.00 74.07
Wafer 94.11 99.61 98.78 98.83 96.38

ECG5000 91.31 92.96 91.31 91.31 94.09
ScreenType 43.19 45.07 47.73 44.00 44.00

Classification AVG 71.60 71.42 71.88 71.23 69.55

We conducted an ablation study to further assess the impact of varying the proportions of global and
local operators on classification performance. Utilizing the prompt fine-tuning strategy outlined in
our paper, we pre-trained four new variants of the NoTS model with different global/local operator
ratios: 25/75, 75/25, and configurations where either global (0/100) or local (100/0) operators were
entirely removed. These models were benchmarked against the original 50/50 proportion using
classification tasks across nine datasets from the UCR repository. The results, summarized in Table
13, indicate that NoTS maintains robust performance across varying operator proportions. Notably,
the optimal balance of global and local operators appears to be dataset-dependent. For instance,
the HandOutlines dataset benefits more from a higher proportion of local degradation, whereas the
FordB dataset performs better with increased global degradation. This suggests that NoTS can be
effectively utilized to explore and adapt to the specific properties of different datasets, enhancing its
versatility and applicability.

D.2 INTENSITY OF DEGRADATION

To further investigate the role of degradation intensity in constructing functional sequences, we con-
ducted two additional experiments aimed at uniformly decreasing and increasing the degradation in-
tensity during the pre-training phase by adjusting smoothing kernels. The original model employed
local smoothing kernels with values {2, 4, 8, 16} and global smoothing kernels with frequency cutoff
components {L/4, L/8, L/16, L/32}. In our new experiments, we adjusted these values to create
varying intensities: decreasing intensity involved using larger smoothing kernels while increasing

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 14: Ablation study on the intensity of degradation by adjusting smoothing kernels

Intensity of Degradation Decrease Intensity Normal Intensity Increase Intensity
Global Kernels {256, 128, 64, 32} {128, 64, 32, 16} {64, 32, 16, 8}
Local Kernels {2, 4, 6, 8} {2, 4, 8, 16} {4, 8, 16, 32}
HandOutlines 65.28 71.62 78.92
EthanolLevel 26.60 28.60 26.60

StarLightCurves 87.34 91.66 91.09
UWave-GL-All 60.04 67.39 68.53

FordA 77.83 81.52 84.38
FordB 68.07 68.27 71.28
Wafer 96.28 98.78 96.32

ECG5000 91.31 91.31 92.09
ScreenType 45.18 47.73 44.00

Classification AVG 68.66 71.88 72.58

intensity used smaller kernels. The selected kernels for each intensity level are detailed in Table 14.
After fine-tuning the newly pre-trained models on the same classification tasks, we observed that
increasing the intensity of degradation operators consistently enhanced classification performance,
as evidenced by higher average accuracy scores. Conversely, decreasing the intensity had a detri-
mental effect on performance. These findings underscore the importance of appropriate degradation
intensity in improving the model’s generalization capabilities.

D.3 NUMBER OF DEGRADATION STEPS

Table 15: Ablation study on the number of degradation steps

Degradation Steps 3 5 7
Global Kernels {128, 32} {128, 64, 32, 16} {128, 64, 32, 16, 8, 4}
Local Kernels {2, 8} {2, 4, 8, 16} {2, 4, 8, 16, 32, 64}
HandOutlines 72.70 71.62 83.52
EthanolLevel 26.60 28.60 31.00

StarLightCurves 85.49 91.66 87.74
UWave-GL-All 45.13 67.39 70.28

FordA 77.48 81.52 82.59
FordB 68.07 68.27 72.07
Wafer 90.42 98.78 98.74

ECG5000 88.47 91.31 91.31
ScreenType 44.00 47.73 45.85

Classification AVG 66.48 71.88 73.69

We explored the effect of varying the number of degradation steps in the functional sequence to bet-
ter explore the degradation operator’s construction. Initially, our approach utilized a fixed sequence
length of five degradation steps, including the raw signal. To assess the impact of this parame-
ter, we altered the sequence length to three and seven degradation steps, following the same training
pipeline. The corresponding global and local smoothing kernels for each configuration are presented
in Table 15. Upon evaluation using the classification tasks, we found that increasing the number of
degradation steps led to improved classification performance, with the average accuracy rising from
66.48 to 73.69 as the sequence length increased. However, this enhancement comes at the cost of
higher memory usage during the pre-training phase, as the memory requirements scale linearly with
the number of degradation steps. Notably, the inference stage’s memory costs remain unaffected by
this change. These results highlight a trade-off between model performance and computational re-
sources, suggesting that while more degradation steps can bolster accuracy, they also demand greater
memory capacity during training.

26


	Introduction
	Preliminaries and related works
	Preliminaries
	Pretraining methods for time series
	Learning time series from the functional perspective

	Methods
	The next-function prediction task
	NoTS: A novel pre-training objective for transformers
	Model deployment pipeline and context-aware adaptation

	An intuitive example: Approximating functions
	Time series in the function space
	Two sufficient conditions to approximate the differential operator

	Experimental Results
	Synthetic experiments: A feature regression task
	Real-world experiments: Context-aware generalization
	Ablation experiments and model analysis

	Conclusion
	Analytical results
	Preliminaries
	Additional proof of theorem 1
	Additional proof of proposition 1

	Experimental details
	Synthetic experiments
	Synthetic datasets details
	Feature regression task details

	Real-world experiments
	Dataset information
	Model training and architecture details
	Complete experimental results
	Additional visualizations


	Detailed model deployment pipeline
	Overall pre-training, fine-tuning, and testing pipelines
	Overall model deployment flow
	Domain shifts across pre-training and fine-tuning
	Prompt tuning and full-scale fine-tuning
	Testing Schemes

	Mathematical formulation of our prompt-tuning strategy
	Task adaptors inspired by Visual Prompt Tuning (VPT)
	Channel adaptors and channel embedding

	Additional experimental details for downstream tasks

	Additional ablation results on the degradation operators
	Proportion of global and local degradation operators 
	Intensity of degradation
	 Number of degradation steps


