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APPENDIX

A ADDITIONAL RESULTS

A.1 PARAMETER EFFICIENCY AND ADDITIONAL ABLATIONS

Parameter efficiency To understand the parameter efficiency and the throughput of our approach,
we compute the parameters and FLOPs between baselines and our approach in Table 5.

TS2vec TFC TS-TCC PatchTST Ours
Params 632K 1.18M 140K 612K 243K
FLOPs 0.69B 1.38B 1.95B 35.0B 9.42B

Table 5: Comparison of parameters and FLOPs between baselines and our approach. The FLOPs
are computed over a batch of SleepEDF data with batch size 64.

We can see that, bioFAME is very parameter-efficient due to its fix-size frequency filter design.
With the same depth (4), heads (8), and dimensionality (64), bioFAME contains only ≈40% param-
eters of the transformer baseline PatchTST. The parameter size of bioFAME also stands competitive
with many CNN-based architectures. The FLOPs of bioFAME are significantly lower than the trans-
former baseline PatchTST (<30%); yet greater than CNN-based architectures.

Additional ablations To understand the models’ sensitivity towards different hyperparameters
and understand if bioFAME can provide better performance with increased complexity, we con-
ducted additional ablation experiments in Table 6 and Table 7.

dim 32 64 128 256
ExpEMG 91.1 98.05 96.48 97.78

FD-B 76.74 76.58 78.14 80.87
Avg. 83.92 87.32 87.31 89.33

Table 6: Performance of our approach with different latent dimensionality.

depth 3 4 5 6
ExpEMG 77.54 76.58 76.79 78.99

FD-B 97.78 98.05 95.55 92.59
Avg. 87.66 87.32 86.17 85.79

Table 7: Performance of our approach with different encoder depth.

We observed that increasing the latent dimensionality could further improve the performance of our
approach; while increasing the network depth gives no performance gains.

A.2 DATA EFFICIENCY AND OPERATOR SELECTION

Data efficiency To understand the behavior of bioFAME within the context of limited data
availability, we conducted experiments aimed at gauging the architecture’s efficacy when ex-
posed to a reduced amount of labeled data during the finetuning phase. We show the perfor-
mance of bioFAME in Figure 4(A), both with and without pretraining, where the performance
of bioFAME is plotted when the amount of labeled data for downstream training varies from 5% to
100%. Notably, in contrast to previous work (Eldele et al., 2021), wherein architecture performance
substantially deteriorated with decreased labeled data, bioFAME achieves stable results with rel-
atively low decay of performance even without pretraining. Furthermore, the pretrained version of
bioFAME gives consistently robust performance across the spectrum of labeled data proportions.
We hypothesize that modeling biosignals using the Fourier function group with frequency operators
improves the data efficiency of models.
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Ablations on the two operators To validate the effectiveness of the Maxpool operator and the
Query operator as described in Section 4.1, we examine the model’s performance by varying the
number of filters. We find that the Maxpool operator gives more stable results, while the Query
operator seems to scale better to larger amount of filters.

Figure 4: (A) We examine the performance of bioFAME under low-data regime with and without pretraining.
(B) We examine how the MaxPool operator and Query operator would perform with different amounts of filters.

A.3 MODEL VARIATION

For the transfer experiments result as shown in Table 1, we provide the standard variation across
five different random seeds in Table 8. Note that the entire training process, both the pretraining and
the finetuning stages, is repeated to obtain the standard variation for fair evaluation. We notice that
multimodal pretraining typically gives a lower standard deviation than that of unimodal pretraining,
demonstrating that multimodal pretraining might help with the stability of the model, as it is exposed
to a variety of frequency components.

Epilepsy (EEG) SleepEOG
Models Accuracy Precision Recall F1 Accuracy Precision Recall F1

bioFAME (scratch) 1.17 2.42 0.72 1.26 0.77 0.67 0.50 0.76
bioFAME (unimodal) 0.35 0.37 1.17 0.65 1.39 1.23 0.91 0.61
bioFAME (multimodal) 0.17 0.51 0.21 0.24 0.90 0.79 0.89 0.88

∆(uni, multi) ↓0.18 ↑0.14 ↓0.96 ↓0.41 ↓0.49 ↓0.44 ↓0.02 ↑0.27

ExpEMG FD-B (Electromechanics)
Models Accuracy Precision Recall F1 Accuracy Precision Recall F1

bioFAME (scratch) 2.67 3.13 2.25 3.15 1.63 1.33 1.20 1.09
bioFAME (unimodal) 2.04 2.80 5.64 4.15 2.74 1.75 2.01 2.14
bioFAME (multimodal) 1.34 3.04 0.96 2.15 1.94 1.53 1.44 1.66

∆(uni, multi) ↓0.70 ↑0.24 ↓4.68 ↓2.00 ↓0.80 ↓0.22 ↓0.57 ↓0.48

Table 8: The standard deviation of bioFAME for each transfer experiment.

While we believe that our diverse experiments across many datasets demonstrate the robustness of
our approach under randomness, we believe that another important source of randomness comes
from the data split, which is fixed in this work.

A.4 ABLATION RESULTS BREAKDOWN

In Table 9, we report the breakdown details for the average accuracy presented in Table 2 and Table 3.
Our model provides robust performance across different downstream tasks consistently.

B EXPERIMENTAL DETAILS

B.1 DATASETS DETAILS

We provide additional details about the datasets we used as follows.
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Ablations Epilepsy SleepEOG ExpEMG FD-B

Table 2

FA✗ FM✗ 95.01 68.00 92.68 67.03
FA✓ FM✗ 95.03 69.73 98.37 73.23
FA✗ FM✓ 94.81 68.41 95.94 74.97
FA✓ FM✓ 95.51 70.03 98.05 76.58

Table 3

Uni, Enc-2✗ 95.91 70.17 95.94 78.16
Multi, Enc-2✗ 95.26 71.04 96.10 73.28
Uni, Enc-2✓ 95.51 70.03 98.05 76.58

Multi, Enc-2✓ 95.71 71.55 98.54 78.18

Table 9: Breakdown of model performance on different downstream tasks.

SleepEDF The entire SleepEDF dataset contains 197 recordings of whole-night sleep, where the
dataset contains 2-lead EEG, EOG, chin EMG, respiration rates, body temperature, and event mark-
ers. We selected a subset of the dataset from the Cassette Study following Eldele et al. (2021), where
the dataset is used to study the age effects on sleep in healthy Caucasians. We further followed the
same train/validate/test split, and removed data with incomplete modalities. The recordings are
segmented into 30 seconds of sleep for training, where each sample is associated with one of the
five sleeping patterns/stages: Wake (W), Non-rapid eye movement (N1, N2, N3), and Rapid Eye
Movement (REM).

Epilepsy The Epilepsy dataset contains single-lead EEG measurements from 500 subjects, where
the brain activities are recorded for subjects with seizure. The classification task is based on if the
subject is having a seizure episode during the recording session.

SleepEOG The SleepEOG dataset is a subset of the SleepEDF dataset under the Telemetry Study,
where subjects are reported to have mild difficulty falling asleep, and thus intake either temazepam
or placebo before sleep. The EOG channel is used for classification.

ExpEMG The ExpEMG dataset consists of single-channel EMG recordings from the tibialis an-
terior muscle of three healthy volunteers, where they (1) do not have history of neuromuscular
disease; (2) suffer from chronic low back pain and neuropathy; and (3) suffer from myopathy due
to longstanding history of polymyositis. The classification task aims to classify different conditions
(subjects).

FD-B The FD-B dataset is an electromechanical dataset, where the motor currents and vibration
signals of healthy or damaged motors are recorded. The classification task aims to detect different
faulty conditions of the motors based on their behavior. We found that the motor movement follows
a similar frequency assumption as biosignals (Hooge et al., 1981), and thus used this electromechan-
ical dataset to provide additional validation of the transfer performance of our model.

Datasets Train Validate Test Sampling rate Length
Epilepsy 60 20 11420 174 178

SleepEOG 1000 1000 37244 100 3000
ExpEMG 122 41 41 4000 1500

FD-B 60 21 13559 64000 5120

Table 10: Dataset split details for different downstream tasks.

We performed the transfer experiments based on the same settings as in Zhang et al. (2022b), where
we used the train/validate/test spilt as shown in Table 10 for downstream fine-tuning to demonstrate
the few-shot generalization ability of the model across different signals.

B.2 MODEL TRAINING AND TRANSFER EXPERIMENTS DETAILS

For all experiments, we pretrain bioFAME for 200 epochs on the SleepEDF dataset using a batch
size of 128 to obtain the weights of the model. During fine-tuning, we remove the lightweight second
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encoder that mixes information across modalities, and use the average token of the frequency-aware
transformer encoder to perform the prediction for downsteam tasks. We fine-tune bioFAME for 80
epochs with a batch size of 64, using an Adam optimizer with a learning rate of 0.001 on all datasets
to obtain the final results. We perform all transfer experiments under the same training setup for all
downstream tasks without additional adjustment for each dataset. Note that we perform full-scale
model finetuning instead of linear probing when performing the transfer experiments, because the
former approach is shown to be more effective for transformers in previous works (He et al., 2022).

B.3 MULTIMODAL SETUP DETAILS

The multimodal experiments are designed to tackle the challenge presented by modality mismatch
scenarios, where discrepancies in biosignal recording setups between training and testing phases
lead to distributional shifts. Due to the scarcity of comprehensive multimodal datasets encompass-
ing simultaneous recording of diverse modalities of biosignals, we exclusively used the SleepEDF
dataset due to its modality coverage.

We first empirically assessed the representation quality of each individual channel. Similar to the
findings in Supratak et al. (2017), we found that the representation capacity of different channels
follows EEG Fpz-Cz > EEG Pz-Oz > EOG > EMG > resp. Building upon these insights, we per-
formed the modality substitution and modality dropout experiments following the below pretraining
and finetuning setup.

Training modalities Testing modalities

EEG Fpz-Cz;
EOG; EMG

EEG Fpz-Cz; EOG; resp
EEG Fpz-Cz; EEG Pz-Oz; EMG

EEG Pz-Oz; EOG; EMG

Table 11: Modality setup for modality substitution experiments.

Training modalities Testing modalities

EEG Fpz-Cz;
EEG Pz-Oz; EOG; EMG

EEG Fpz-Cz; EEG Pz-Oz; EOG
EEG Fpz-Cz; EEG Pz-Oz

EEG Fpz-Cz

Table 12: Modality setup for modality dropout experiments.

B.4 HYPERPARAMETER SEARCHING DETAILS

For transfer experiments, we performed hyperparameter searching based on results on the Epilepsy
dataset, and used the same parameter setting across all transfer experiments. Specifically, we per-
formed a grid search of learning rate of [0.0001, 0.001, 0.01], transformer depth of [2, 3, 4, 5, 6],
latent dimensionality of [16, 32, 64, 128], dropout rate of [0.2, 0.3, 0.4], operator type, and filter
amount correspondingly. We followed the convention for transformers and selected the MLP di-
mension of 128 and head dimension of 16 for bioFAME and the baseline transformer. We selected
the optimal patch size and masking ratio based on results in Table 4. We did not search for the
optimal batch size, or investigate the effect of using different activation functions or normalization
techniques. For multimodal experiments, we evaluate the model’s performance on the pretraining
dataset, and performed the evaluation on the finetuning modalities using the best model used in pre-
training. For the multimodal experiments, we performed a smaller scale grid search for the latent
dimensionality and transformer depth.

C METHODOLOGY DETAILS

C.1 ADDITIONAL EXPLANATION OF MOTIVATION

Biosignals are often analyzed in their frequency space, where they are either studied through prede-
fined frequency regions or through aperiodic components which typically form a 1/f-like distribution
(Donoghue et al., 2020). The significance of frequency information is well-documented due to its
intricate interrelation with various facets of learning, aging, as well as diseases such as ADHD or
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seizures. Correspondingly, modeling approaches that rely on the manual extraction and preprocess-
ing of spectrogram features have demonstrated robust empirical performance (Supratak et al., 2017).
Building upon these insights, we hypothesize that modeling biosignals employing function groups
within the frequency domain could benefit the learning process by enhancing model adaptability and
data efficiency. We note that this hypothesis might be violated if the frequency components carry
limited information in other formats of time series datasets.

C.2 INTUITION FOR THE MULTI-HEAD FREQUENCY FILTER LAYER

We provide additional intuition for the design of our multi-head frequency filter layer by breaking
down the computation for each individual filter. For each k-th filter K[k] inside K ∈ CH×D,
given latent representation Z = [z1, z2, ...,zN ]T ∈ CN×D, we compute Z(k) = [z1 ⊙K[k], z2 ⊙
K[k], ...,zN ⊙K[k]]T , where ⊙ represents the Hadamard product between each representation and
the learnable filter weights. In order to learn the combination between different filters, we define
weights w that compute Z̃ =

∑H
k=1 wkZ

(k).

To increase the expressiveness of the filtering operation, instead of learning a linear combination of
different filters, we borrow intuition from the computation of self-attention to compute the queries
for the kernel weights w through w = zW , where W ∈ CD×H . Thus, we have:

Z̃[i, j] =

H∑
k=1

(

D∑
j=1

Z[i, j]W [j, k])Z[i, j]K[k, j]

= Z[i, j]

H∑
k=1

(

D∑
j=1

Z[i, j]W [j, k])K[k, j]

(8)

which gives Z̃ = Z ⊙ (ZWK). In our implementation, we use the real values of latents to learn the
weights of the combiner though w = zrealW . Similarly, based on the same intuition of combining
filtered matrices, we have the max pooling operation.

C.3 MODEL VARIANTS FOR COMBINING MULTIMODAL REPRESENTATIONS

In transfer experiments, we use the average of tokens to extract the final representations for the down-
stream classification. However, when having multimodal information, fixing the dimensionality of
the latent representation when many modalities are present might narrow down the information from
each modality, which might cause information loss. Thus, in multimodal experiments, we first av-
erage the representations from each individual modality, and then concat the representations across
modalities before performing the downstream classification.
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