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Abstract

The stochastic multi-arm bandit problem has been extensively studied under stan-
dard assumptions on the arm’s distribution (e.g bounded with known support,
exponential family, etc). These assumptions are suitable for many real-world prob-
lems but sometimes they require knowledge (on tails for instance) that may not
be precisely accessible to the practitioner, raising the question of the robustness
of bandit algorithms to model misspecification. In this paper we study a generic
Dirichlet Sampling (DS) algorithm, based on pairwise comparisons of empirical
indices computed with re-sampling of the arms’ observations and a data-dependent
exploration bonus. We show that different variants of this strategy achieve provably
optimal regret guarantees when the distributions are bounded and logarithmic regret
for semi-bounded distributions with a mild quantile condition. We also show that a
simple tuning achieve robustness with respect to a large class of unbounded distri-
butions, at the cost of slightly worse than logarithmic asymptotic regret. We finally
provide numerical experiments showing the merits of DS in a decision-making
problem on synthetic agriculture data.

1 Introduction

The K-armed stochastic bandit model is a decision-making problem in which a learner sequentially
picks an action among K alternatives, called arms, and collects a random reward. In this setting, all
rewards drawn from an arm are independent and identically distributed. Hence, we can formally
associate each arm k ∈ {1, . . . ,K} with its reward distribution νk, with mean µk. The objective
of the learner is to adapt her strategy (At)t∈[T ] in order to maximize the expected sum of rewards
obtained after T selections (where T is the horizon, unknown to the learner). This is equivalent
to minimizing the regret, defined as the difference between the expected total reward of an oracle
strategy always selecting an arm with largest mean and that of the algorithm, which is equal to

RT = E

[
T∑
t=1

µ? − µAt

]
=

K∑
k=1

∆kE [Nk(T )] . (1)

Here, Nk(T ) =
∑T
t=1 1(At = k) denotes the number of selections of arm k after T time steps,

µ? = maxj∈{1,...,K} µj and ∆k = µ?−µk is called the gap between arm k and the largest mean. To
assess the performance of a bandit algorithm, one naturally studies the best guarantees achievable by
a uniformly efficient algorithm, i.e with sub-linear regret on any instance of a given class of problems.
This guarantee was first provided by Lai and Robbins (1985) for 1-dimensional parametric families
of distributions, and then extended by Burnetas and Katehakis (1996) for more general families. It
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states that any algorithm that is uniformly efficient1 on a family of distributions F must satisfy

lim inf
T→∞

RT
log(T )

≥
∑

k:∆k>0

∆k

KFinf(νk, µ
?)
, KFinf(νk, µ

?) = inf
G∈F
{KL(νk, G) :EG(X)>µ?} . (2)

A bandit algorithm is then called asymptotically optimal for a family of distributions F when its
regret matches this lower bound. When F is a Single-Parameter Exponential Family (SPEF), KFinf is
simply the Kullback-Leibler divergence between the distribution of mean µk and that of mean µ?
in F , making for a theoretically appealing setting. The quantity KBinf , corresponding to the family
F[−∞,B] of distributions supported in (−∞, B] is also often considered in the literature, see e.g
(Honda and Takemura, 2010, 2015; Cappé et al., 2013).

Overview of existing strategies An efficient strategy faces the classical exploration/exploitation
dilemma: it needs to obtain enough information from arms that have not been sampled a lot (ex-
ploration), but also to sample arms that are well-performing sufficiently often (exploitation). Many
algorithms have been proposed for the multi-armed bandits problem (see Lattimore and Szepesvári
(2020) for a survey), and we propose in the following a non-exhaustive list of such methods. A first
category contains the deterministic index policies, built on the concept of Optimism in Face of Uncer-
tainty, the most celebrated of which being the Upper Confidence Bound (UCB) algorithms (Agrawal,
1995; Auer et al., 2002). These algorithms can obtain a logarithmic regret under classical hypothesis
on the distributions (e.g bounded, sub-gaussian, sub-exponential, . . . ), and the strongest guarantees
have been achieved by kl-UCB Cappé et al. (2013), DMED (Honda and Takemura, 2010), and IMED
(Honda and Takemura, 2015), which share a common pattern of solving a convex optimization prob-
lem at each round. To be asymptotically optimal, these algorithms require either 1) the knowledge of a
specific SPEF for each arm, or 2) a known upper bound on the support of each arm. A second general
category is that of randomized bandit algorithms, which has been formulated for instance in (Kveton
et al., 2019b) as General Randomized Exploration (GRE). The common feature of these methods
is that, at each time step and for each arm, the algorithm draws an index from a distribution that
depends on 1) the rewards observed from the arm, and 2) some knowledge on the arms distributions
and chooses the arm with the largest index. Thompson Sampling (TS) (Thompson, 1933; Agrawal
and Goyal, 2012) belongs to this category, and a proper choice of Bayesian prior/posterior ensures
optimality of TS in SPEF (Korda et al., 2013). Different algorithms using Bootstrapping schemes
have also been proposed (Osband and Roy, 2015; Kveton et al., 2019a,b; Wang et al., 2020; Riou and
Honda, 2020): they share the idea of computing a noisy mean for empirical samples, enhanced by
some exploration aid appropriately tuned to the family of distributions they consider. A last category
contains the methods based on sub-sampling Baransi et al. (2014); Chan (2020); Baudry et al. (2020,
2021b), that achieve asymptotic optimality in SPEF without knowing which family, when all arms
share the same. However the proofs heavily rely on properties of the tails of SPEF so the results seem
difficult to generalize outside these families.

Motivations While many algorithms achieve optimal regret for bounded distributions with the sole
knowledge of the upper bound, the assumptions needed for algorithms working with unbounded
distributions (e.g SPEF, sub-Gaussian, sub-exponential) generally assume a known parametric model
for the tails. While such assumption entails convenient properties on the theoretical side, the
practitioner may have some difficulty to determine which setting/parameters correspond to her
problem. Furthermore, this uncertainty raises the question of robustness with respect to these
hypotheses. Several works have considered this question: Hadiji and Stoltz (2020) shows that
adapting to an unknown bounded range requires a tradeoff between instance-dependent and worst-
case regret, and recently (Agrawal et al., 2020; Ashutosh et al., 2021) proved the impossibility of an
instance-dependent logarithmic regret for light-tailed distributions without explicit control on the tail
parameters. The root cause for this is the lack of compactness of such families F , which allows mass
to "leak" at infinity so that maximally confusing distributions with mean µ∗ exist arbitrarily close to
νk, meaning KFinf(νk, µ

∗) = 0. The latter work also introduces a robust variant of UCB, that trades
off logarithmic regret for O (f(T ) log(T )), where f essentially tracks the possible mass leakage at
infinity. These results puts into question the usual hypotheses under which bandit algorithms are
designed: considering a parametric control of the tails is indeed sensitive to model mis-specification,
but on the other hand the examples chosen to prove infeasability results seem a bit extreme for the
practitioner. In this paper, we propose simple alternative setups allowing unspecified tail shapes

1That is, for each bandit on F , for each arm k with ∆k>0, then E[Nk(T )]=o(Tα) for all α∈(0, 1].
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but avoiding "mass leakage" to infinity, for instance with mild conditions linking the quantiles and
the means of the distributions. We consider in this paper light-tailed distributions (see definition
in Appendix A.1). This problem is already non-trivial, so we let possible extensions for heavy-tail
distributions for future work (e.g with tools like median-of-means, see (Bubeck et al., 2013)).

Outline In the novel settings we consider, we want algorithms that require the smallest level of
knowledge on the tails of distributions. To this extent, the Non-Parametric Thompson Sampling
(NPTS, Riou and Honda (2020)) algorithm is a good candidate, considering how little knowledge it
requires to reach asymptotic optimality for bounded distributions with known bounds. Furthermore,
the flexibility of this algorithm has been recently demonstrated with its adaptation in a risk-aware
setting (Baudry et al., 2021a). We provide a generalization of NPTS that we call Dirichlet Sampling
(DS): we combine the core elements of NPTS and a duel-based framework inspired by (Chan,
2020), introducing data-dependent exploration bonuses. We present the resulting algorithm and
detail the technical motivations of this approach in Section 2. We then introduce in Section 3 a first
regret decomposition of DS algorithms under general assumptions, and the technical results that
allow to fine-tune the algorithm for different families (see Section 3.1). We provide three instances
of DS algorithms and their regret guarantees in Section 3.2: Bounded Dirichlet Sampling (BDS)
tackles bounded distributions with possibly unknown upper bounds, Quantile Dirichlet Sampling
proposes a first generalization to the unbounded case using truncated distributions. Last, Robust
Dirichlet Sampling (RDS) has a slightly larger than logarithmic regret for any unspecified light-tailed
unbounded distributions, making it a competitor to the Robust-UCB algorithm of Ashutosh et al.
(2021). Finally, we study in Section 4 a use-case in agriculture using the DSSAT simulator (see
Hoogenboom et al. (2019)), which naturally faces all the questions (robustness, model specification)
that motivate this work and shows the merit of DS over state-of-the-art methods for this problem.

2 Dirichlet Sampling Algorithms

In this section we introduce Dirichlet Sampling, a strategy that aims at generalizing the Non-
Parametric Thompson Sampling algorithm of Riou and Honda (2020) outside the scope of bounded
distributions with a known support upper bound. For this purpose, we build an adaptive strategy in a
duel-based framework, already used in sub-sampling based algorithms like SSMC (Chan, 2020).

Background Non-Parametric Thompson Sampling is an index strategy where the index of each
arm is a random re-weighting of their observations, augmented by an exploration bonus. The weights
are drawn from the Dirichlet distribution Dn = Dir((1, . . . , 1)) for n data, which is the uniform
distribution on the simplex Pn = {w ∈ [0, 1]n : wt1 = 1} and matches the Bayesian posterior (i.e
Thompson Sampling) for multinomial arms. The exploration bonus is simply the known upper bound
of the support, and avoids under-exploration of potentially "unlucky" good arm. We provide further
explanations on the Dirichlet distribution and NPTS respectively in Appendix C.1 and A.3.

The simplicity of NPTS and its strong theoretical guarantees are appealing for further generalization.
As we fully depart from the Bayesian approach, considering other exploration bonuses, we derive
a new family of algorithms under the name of Dirichlet Sampling. We keep the two principles of
re-weighting the observations using a Dirichlet distribution and the exploration aid, and explore how
to apply them to more general (e.g unbounded) distributions. In particular, we allow in DS some
pre-processing of the observations before re-weighting (see section 3.1 and 3.2) and motivate in
Section 3.1 the use of a data-dependent bonus, that use information from several arms. The complexity
introduced by such bonus in the analysis requires a change of algorithm structure, dropping the index
policy for a leader vs challenger approach (Chan, 2020).

Round-based algorithm We define a round as a step of the algorithm at the end of which a set of
(possibly several) arms are selected to be pulled. Let Ar ⊂ {1, . . . ,K} be the subset of the arms
pulled at the beginning of a round r, we call T -round regret the quantity

RT = E

[
T∑
r=1

K∑
k=1

∆k1(k ∈ Ar)

]
=

K∑
k=1

∆kE[Nk(T )] , (3)

where we slightly change the definition of Nk (compared with 1) to Nk(T ) =
∑T
r=1 1(k ∈ Ar).

We consider the T -round regret for simplicity, as it is a simple upper bound of the regret after T
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pulls. At the beginning of each round we define a reference arm (leader), and then organize pairwise
comparisons called duels between this arm and the other arms (challengers). The leader is chosen as
the arm with largest sample size,

`r ∈ argmax
k∈{1,...,K}

Nk(r) ,

where ties are broken first in favor of the best empirical arm, then with a random choice. A major
motivation for this choice is that the leader will have a sample size that is linear in the number of
rounds, as at least one arm is chosen at each round. This ensures strong statistical properties that we
will exploit to design the exploration bonus of DS strategies. Randomizing the index of the leader
is also unnecessary: it competes against each challenger with its empirical mean. We also dismiss
all the arms k that satisfy Nk(r) = N`(r) with the same argument. These choices have a practical
interest as they avoid the computation time of drawing the largest weight vectors. We believe this can
be an alternative of independent interest to computationally intensive index policies.

Challenger’s index We fix an index that is not dependent on the round, but only on the history of the
challenger and the leader available at this round, that we denote respectively by X = (X1, . . . , Xn),
Y = (Y1, . . . , YN ) for simplicity of notations. We denote by µ : RN → R the function that computes
the average of a set of observations. The duel can includes two steps, and the challenger wins if

1. µ(X ) ≥ µ(Y) (first compare the empirical means), or

2. µ̃(X ,Y) ≥ µ(Y), where µ̃ : RN × RN → R denotes the chosen DS index.

We summarize in Algorithm 1 the steps of Dirichlet Sampling, that we completely detail in Ap-
pendix A.2. We write it for a generic "Dirichlet Sampling index" µ̃ that must be computed by a
re-weighting of the observations augmented by an exploration bonus. As in NPTS, the weights are
drawn with a Dirichlet distribution. For instance, a canonical example of Dirichlet Sampling index
with a data-depend (instead of fixed) bonus B(X ,Y) is

µ̃(X ,Y) =

n∑
i=1

wiXi + wn+1B(X ,Y) , w = (w1, . . . , wn+1) ∼ Dn+1 .

However, the algorithm structure in Algorithm 1 could be combined with any randomized index,
which is of independent interest as we will see in Section 3. In the next section we study the
theoretical properties of Dirichlet Sampling, and discuss the choice of the index µ̃ for different
families of distributions.

Algorithm 1 Generic Dirichlet Sampling
Input: K arms, horizon T , Dirichlet Sampling index µ̃
Init.: t = 1, r = 1, ∀k ∈ {1, ...,K}: Xk = {Xk

1 }, Nk = 1; . Draw each arm once
while t < T do
A = {} ; . Arm(s) to pull at the end of the round
` = Leader((X1, N1), . . . , (Xk, Nk)) ; . Choose a Leader
for k ∈ {1, . . . ,K} : Nk < N` do

if max(µ(Xk), µ̃(Xk,X`)) ≥ µ(X`) then
A = A ∪ {k} ; . Play the duels

Draw arms from |A| if A is non-empty, else draw arm `.
Update t, r, (Nk)k∈{1,...,K}, (Xk)k∈{1,...,K}. ; . Collect Reward(s) and update data

3 Regret Analysis and Technical Results

In this section, we analyze the regret of DS algorithms. We first derive a general regret decomposition
for any index µ̃ that holds thanks to the duel-based structure. We then introduce several properties
of Dirichlet sampling, that theoretically guide proper tuning of a DS index. We finally instantiate
DS for three different problems and provide regret bounds in these settings. Starting with the regret
decomposition, we exhibit general conditions to ensure guarantees that are independent on the index
and the run of the bandit algorithm. Allowing a different family of distribution Fk for each arm k,
the first one concerns the concentration of the mean of each distribution.
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Condition 1 (C1) [Concentration] For all νk ∈ Fk, there exists a good rate function Ik satisfying
Ik(x) > 0 for x 6= µk and for all x > µk, y < µk, and any i.i.d sequence X1, . . . , Xn drawn from
νk

P

(
1

n

n∑
i=1

Xi ≥ x

)
≤ e−nIk(x) , and P

(
1

n

n∑
i=1

Xi ≤ y

)
≤ e−nIk(y) . (4)

This hypothesis is standard in the bandit literature, and is for instance satisfied by any light-tailed
distributions. We refer to (Dembo and Zeitouni, 2010) for techniques to derive such functions.

We now provide an upper bound on the round-regret presented in Section 2 for Algorithm 1. To
simplify the notations we consider that there is only one optimal arm and, without loss of generality,
that ∀k > 1, µk < µ1. Furthermore, for simplicity we write the following theorem for an index
µ̃(X , µ), that only uses the mean of the leader. The same result holds for any index using statistics on
the leader’s history that have concentration properties similar to (C1) (e.g possibly quantiles, variance,
etc) with slight adaptations of the proof.
Theorem 3.1 (Generic regret decomposition of DS). Consider a bandit model ν = (ν1, . . . , νK),
where all distributions in ν satisfy (C1). Then for any DS index the expected number of pulls of each
arm k ∈ {2, . . . ,K} is upper bounded for each ε ∈ [0,∆k) by

E [Nk(T )] ≤ nk(T ) +BkT,ε + Ckν,ε ,

where nk(T ) = E
[∑T−1

r=1 1(k ∈ Ar+1, `
r = 1)

]
, Ckν,ε is independent on T and, denoting Xn the

set of n first observations of arm 1,

BkT,ε =

K∑
j=2

d2 log(T )/I1(µk+ε)e∑
n=1

sup
µ∈[µj−ε,µj+ε]

EXn
[
1 (µ(Xn) ≤ µ)

P(µ̃(Xn, µ) ≥ µ)

]
.

The details of the proof of this result are to be found in Appendix B. The proof follows the general
outline of Chan (2020), and makes all the components of Ckν,ε explicit. This term is related to
deviations of sample means for arms k and 1 and is typically bounded by a (problem-dependent)
constant under light-tail concentration (C1), so it does not depend on µ̃ but only on the rate functions
and the means of each arm. The other two terms of the RHS reflect the exploration strategy. nk(T ) is
the expected number of pulls of arm k when the best arm is the leader; we interpret it as the sample
size required to statistically separate both arms at horizon T . On the other hand, BkT,ε measures the
capacity of the best arm to recover from a bad (small-sized) sample.

Theorem 3.1 is formulated to be as general as possible and can be regarded as a counterpart of
Theorem 1 of Kveton et al. (2019b). We will later analyze instances of Dirichlet Sampling where
the first-order term of the regret is driven entirely by nk(T ). We therefore introduce the following
condition to control the contribution of BkT,ε to the regret.

Condition 2 (C2) For any µ < µ1, and any n1(T ) = o(log T ) it holds that

n1(T )∑
n=1

EXn∼νn1

[
1(µ(Xn) ≤ µ)

Pw∼Dn+1 (µ̃(X , µ) ≥ µ)

]
= o(log T ) .

The LHS represents the expected cost in terms of regret of underestimating the optimal arm; intuitively,
it measures the expected number of losing rounds before finally winning one when starting with low
rewards. This is a classic decomposition in bandit analysis, and a counterpart of (C2) holds for most
index policies with provable regret guarantees, e.g Theorem 1 in Kveton et al. (2019b) (GIRO) or
Lemma 4 in Agrawal and Goyal (2012)) (Bernoulli Thompson Sampling). We find it noteworthy
that this regret decomposition depends only on the distribution of the best arm and its randomized
Dirichlet Sampling index when it is a challenger.
Corollary 3.1.1 (Conditions for controlled regret). If condition (C1) and (C2) holds for the DS index
on the families of distribution (Fk)k∈{1,...,K}, the regret of the DS algorithm satisfies

RT ≤
K∑
k=2

∆knk(T ) + o(log T ) .

5



Up to this point this result is quite abstract, but this standardized analysis allows us to instantiate
the Dirichlet Sampling algorithm on different class of problems and calibrate it in order to ensure
condition (C2) holds and to make nk(T ) explicit. In particular if nk(T ) = O(log T ), we recover the
logarithmic regret. In the next section, we present technical results to justify calibrations of the DS
index for several kind of families.

3.1 Technical tools: boundary crossing probability of a DS index

In this section, we highlight some key properties of a sum of random variables re-weighted by a
Dirichlet weight vector that help us suggest a sound tuning of the bonus B(X ,Y) for different kind
of families. We then detail such tuning.

Boundary crossing probability (BCP) We consider a set of n+ 1 observation points X =
(X1, . . . , Xn+1) ⊂ Rn+1. (Intuitively, n points are samples from a challenger arm, and one point
corresponds to the added bonus). Then, for any µ ∈ R, we introduce the following “Boundary
Crossing Probability” (BCP) term, conditional on X

[BCP] := Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
,

where we recall that Dn+1 is the Dirichlet distribution with parameter (1, . . . , 1) of size n+1, i.e
the uniform distribution on the (n + 1)-simplex. We emphasize that here X is considered fixed,
and the only source of randomness comes from the weights w. When all observations are distinct
this expression has a closed form, which is unfortunately untractable in the proof, as discussed in
Appendix C.2. This quantity is of much interest as both the growth of nk(T ) and (C2) can be derived
from respectively upper and lower bounds for the BCP. Lemma 14 and Lemma 15 in (Riou and
Honda, 2020) provide such bounds, resorting to classical concentration results and properties of the
Dirichlet distribution that we recall in Appendix C.1 and C.2, and complete with additional technical
results. The lower bounds suggest non-trivial tuning of the bonus. We first exhibit a necessary
condition when the bonus is not allowed to depend on the set of observations X .
Lemma 3.2 (Necessary condition with a data-independent bonus). Consider a fixed bonusB(X , µ) =
B(µ), and a distribution F (with CDF also denoted F ). If Condition (C2) holds then

B(µ) > µ+
1

1− F (µ)
EF [(µ−X)+] .

This result is obtained using a "worst-case" scenario when all observations are below the threshold
µ. Hence, it does not cover all possible trajectories, yet it suggests to investigate the properties of
bonuses with a similar form. Since the right-hand side of the inequality requires a knowledge on the
arms distributions that we would like to avoid, we use an empirical estimator for the expectation.
This suggests to introduce some parameter ρ and data-dependent bonuses of the form

B(X , µ, ρ) = µ+ ρ× 1

n

n∑
i=1

(µ−Xi)
+ . (5)

We interpret ρ as the leverage of the empirical excess gap 1
n

∑n
i=1(µ−Xi)

+ w.r.t the threshold µ.
We then tune ρ assuming an hypothesis on some upper quantile of the arm distribution, which is much
less constraining than assuming knowledge of the shape of the entire tail. In all DS algorithms we
propose (see next section), we use Equation 5 as the basis for defining the appropriate bonus. Finally,
we provide in Lemma 3.3 a novel lower bound on the BCP that reveals that in the general case of
unbounded distributions, without further processing of the data, DS cannot achieve a logarithmic
regret when the maximum of the data tends to +∞ at some rate g(n).
Lemma 3.3 (Lower bound for the BCP). Consider a set X = (X1, . . . , Xn+1) ∈ Rn+1, and assume
that X = max

i∈{1,...,n+1}
Xi ≥ g(n) for some function g. Denoting ∆̄+

n = 1
n

∑n+1

i=1,Xi<X
(µ−Xi)

+ the

empirical positive gap, it holds that

Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
≥ exp

(
−n ∆̄+

n

g(n)− µ

)
.

In particular, we see in this expression that g(n) may hinder the exponential rate in n. In the next
section we discuss three examples of DS algorithms and their theoretical guarantees.
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3.2 Theoretical guarantees for Dirichlet Sampling algorithms

Building on the results from previous the section, we now instantiate the DS algorithms for three
bandit problems. We first prove that optimal guarantees can be derived for DS with bounded
distributions under a non-standard definition of the problem (i.e unknown upper bound but alternative
assumptions), motivated by practical considerations. Then, we consider a natural extension to
unbounded distributions using a simple truncation mechanism, ensuring logarithmic regret under
assumptions on some quantile of the distributions. Finally we consider a simple DS algorithm,
securing slightly larger-than-logarithmic regret for the entire family of light-tailed distributions. In
the following we denote by B(X , µ, ρ) the bonus defined in Equation 5 for a set X , a mean µ and
some parameter ρ. For simplicity we will keep a generic µ in our exposition, while its value is in
practice the empirical mean of the leading arm. We detail each algorithm and their components in
Appendix A.2 and the proofs of the three theorems in Appendix D. In all cases, the proof consists in
showing that (C1) and (C2) hold for each proposed algorithms in the settings they tackle and deriving
an expression for nk(T ).

Optimality for bounded distributions Let F[b,B] be the set of distributions supported in [b, B],
and consider a bandit ν = (ν1, . . . , νK) with νk ∼ F[bk,Bk] for some Bk ∈ R. If we assume that
Bk is known (case 1), then simply defining Bk as the exploration bonus ensures an asymptotically
optimal regret, with a direct adaptation of the proof of NPTS (Riou and Honda, 2020). However, the
precise knowledge of the upper bound for each arm is sometimes inaccessible to the practitioner (e.g
if the environment is new, or if no expert is available to provide an estimate of the bound). We propose
an alternative setting, with the family Fγ,pB = {∃B : ν ∈ F[b,B],Pν([B − γ,B]) ≥ p} ⊂ F[b,B].
Bk is unknown but we assume it is detectable in the sense that we will observe a sample from its
neighborhood [Bk − γ,Bk] with a reasonable probability of at least p, with known γ, p (case 2). In
this case we propose the following bonus, allowing to obtain theoretical results in this setting,

B(X , µ) := max{X+γ,B(X , µ, ρ)} , where X̄ = max{x : x ∈ X}. (6)

Theorem 3.4 (Optimality of BDS). If ∀k ∈ {2, . . . ,K} , νk ∼ Fγ,ρB , choosing the exploration
bonus of Equation 6 with ρ ≥ −1/ log(1− p) ensures that

E[Nk(T )] ≤ log(T )

KBρ,γinf (νk, µ1)
+O(1) ,

where Bρ,γ = max (B + γ, µ1 + ρEνk [(µ1 − µk)+])).

This setting is a first example of the interest of data-dependent bonuses. It makes sense in practice
by avoiding for instance distributions with a small mass arbitrarily far from the rest of their support,
which may not be likely in a real-world application. We now consider the unbounded case.

Unbounded distributions: truncating the upper tail Let consider the family F[b,+∞] for some
unknown b ∈ R. A natural way to extend algorithms designed for F[b,B] (where B < +∞) is to
truncate the upper tail of the distributions. We propose a simple way to do this, by considering
(as a parameter of the algorithm) a quantile 1 − α, denoted by q1−α(ν) for a distribution ν, and
a truncation operator Tα that (1) do not change a distribution below its 1 − α quantile, and (2)
"summarizes" its upper tail by its expectation, known as Conditional Value at Risk (CVaR). Formally,
we obtain Tα(ν)(A) = ν(A) for any A ⊂ [b, q1−α(ν)] and Tα(ν) ({x}) = α1(x = Cα(ν)) for any
x > q1−α(ν), with Cα(ν) = E[X|X > q1−α(ν)]. We then propose Quantile Dirichlet Sampling
(QDS), that computes the index of a challenger (say arm k, with observations Xk) during a duel
as follow: (1) apply Tα to the empirical distribution, (2) compute the bonus B(Xk, µ, ρ), and (3)
re-sample the truncated empirical distribution with weights drawn according to Dir(1, . . . , 1, nα)
where parameter nα is for the weight used with the empirical CVaR, and is simply the number of
observations used to compute it (to avoid a bias in the re-sampled mean). We can obtain theoretical
guarantees with this method by considering the subset of distributions

Fα[b,+∞) = {ν ∈ F[b,+∞) : ∀µ > Eν(X),KF[b,+∞)

inf (ν, µ) ≥ KMk

inf (Tα(ν), µ)} ,

where Mq
k = max{q1−α(νk), µ1 + ρEνk [(µ1 −X)+]}, and the second Kinf is taken on the family

F[b,Mq
k] (using previously introduced notations). Although technical, this condition essentially states
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that the bandit problem taken on the complete family F[b,+∞) is no harder than an alternative bandit
problem considering the truncated distributions and a bounded family, with an upper bound depending
on the 1− α quantile and the leverage ρ of the exploration bonus.
Theorem 3.5 (Logarithmic Regret of QDS). Consider a bandit model ν = (ν1, . . . , νK) satisfying
∀k, νk ∈ Fα[b,+∞) for some b > −∞ (lower-bounded support) and a known α > 0. Then, for any
ε0 > 0 small enough QDS with any parameters α′ < α and ρ ≥ (1 + α′)/α′2 satisfies

E[Nk(T )] ≤ log T

KMC
k

inf (Tα(νk), µ1)− ε0

+O(1) ,

with MC
k = max{Cα(νk), µ1 + ρEν [(µ1 −X)+], and Tα is the truncation operator we defined.

This result is of particular interest as it captures the continuum between bounded and light-tailed
distributions. In our opinion, it sheds new light on the interpretation of infeasability results of e.g
Ashutosh et al. (2021): logarithmic regret can be achieved without specifying the tail with precise
parameters, but a simple quantile condition is required to avoid pathological distributions that makes
little sense in practice (e.g very small mass at a very large value). We further discuss this condition in
Appendix E and provide examples of families for which it holds (exponential, Gaussian).
Remark 3.6. The restriction to the semi-bounded case b > −∞ is due to our proof technique, based
on a discretization of the support of the truncated distribution (see Appendix D). Note that the actual
value of b is not known by the algorithm. This is intuitive sinceKF−∞,Binf = KFb,Binf for all b, B ∈ R, as
proved in Theorem 2 of (Honda and Takemura, 2015). Different theoretical tools could allow to prove
a logarithmic regret for QDS in the doubly unbounded case, possibly with a symmetric treatment of
the two tails. We leave this extension for future work.

One may wonder whether the couple quantile condition/truncation is necessary to achieve theoretical
results as well as good practical performance. Our last algorithm investigates this issue.

Robust regret for light-tailed distributions We call Robust Dirichlet Sampling (RDS) the algo-
rithm with bonus B(X , µ, ρn), where the leverage ρn is a function of the sample size n = |X |. We
prove that while being very simple, RDS achieves a robust sub-linear regret bound when each arm
comes from any unknown light-tailed distribution, that we define as the family

F` = {ν ∈ F(−∞,+∞) : ∃λν > 0,∀λ ∈ [−λν , λν ],Eν [exp(λX)] < +∞} .

Theorem 3.7 (Robust regret bound for RDS). Let ν = (ν1, . . . , νK) a bandit model satisfying
νk ∈ F` for all k. Consider any increasing sequence (ρn)n∈N with ρn → +∞, ρn = o(n). Then,
for T large enough the expected number of pull of any sub-optimal arm k in RDS is upper bounded
by

E[Nk(T )] ≤ nη,ε0k (T ) +O(1) ,

where for any η ∈ (0, 1], ε0 > 0, nη,ε0k (T ) is the sequence satisfying

nη,ε0k (T ) =
log T

η(∆k−ε0)
(Mk,n

η,ε0
k (T )−µ) , with Mk,n=max

{
F−1
k

(
exp

(
− 1

n2(log n)2

))
, ρn

}
.

In particular, if ρn = O(log n) then E[Nk(T )] = O(log(T ) log log(T )) for any light-tailed distribu-
tion νk ∈ F`.

The sequence Mk,n is a large probability upper bound of the maximum of n observations from Fk,
that we discuss in Appendix D. For light-tailed distributions, it holds that Mk,n = O(log n) (using
Jensen inequality as in the proof of Theorem 2.5 in Boucheron et al. (2013)). Hence, choosing
ρn = O(log n) we can further obtain the simpler upper bound inO(log(T ) log log(T )). This slightly
larger-than-logarithmic rate is a consequence of Lemma 3.3. In our opinion this is a small cost
compared to the adaptive power of RDS. We call the algorithm robust because these theoretical
guarantees are obtained on the broad class of light-tailed distributions, without any additional
assumption. We recommend the leverage function ρn = O(

√
log(1+n)), which corresponds to the

growth rate of the maximum of sub-Gaussian samples and is empirically validated (see Appendix F).
We emphasize that RDS thus avoids all hyperparameter tuning, a desirable feature for the practitioner
with little information on the problem she faces. Furthermore, in the next section we show that this
algorithm performs very well in practice despite its non-logarithmic asymptotic guarantees.
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4 Application in a crop-farming environment

We consider a practical decision-making problem using the DSSAT2 simulator (Hoogenboom et al.,
2019). Harnessing more than 30 years of expert knowledge, this simulator is calibrated on historical
field data (soil measurements, genetics, planting date...) and generates realistic crop yields. Such
simulations are used to explore crop management policies in silico before implementing them in
the real world, where their actual effect may take months or years to manifest themselves. More
specifically, we model the problem of selecting a planting date for maize grains among 7 possible
options, all else being equal, as a 7-armed bandit. The resulting distributions incorporate historical
variability as well as exogenous randomness coming from a stochastic meteorologic model. We
illustrate this in Figure 1 with the histogram of four of these distributions, computed on 106 samples.
They are typically right-skewed, multimodal and exhibit a peak at zero corresponding to years of
poor harvest, hence they hardly fit to a convenient parametric model (e.g SPEF/sub-Gaussian. . . ).

0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

Figure 1: Distribution of simulated dry grain yield (kg/ha) for four out of seven different planting
dates. Reported on the x-axis are the distribution minimum, mean and maximum values. The optimal
arm is the third one (mean 3630 kg/ha).

Benchmarks A natural choice for the learner would be to use algorithms adapted for bounded
distributions with known support. Indeed, one could argue that crop yields are fundamentally bounded
by a very large value, that can be provided with some expert knowledge. However this method may
have limits when the upper bound cannot be estimated accurately (few data, new environment, . . . ),
as a conservative bound can have a cost on the regret. For this reason, we believe that the novel
Dirichlet Sampling algorithms we introduce in Section 3.2 are a good alternative choice for this
problem. In particular, the three algorithms we propose in this paper are relevant in this setting:
BDS keeps the bounded-support hypothesis but introduces the possible uncertainty on the bound,
while the light-tailed hypothesis of RDS and the quantile condition of QDS look reasonable. In
Figure 2 we compare DS algorithms to empirical IMED (Honda and Takemura, 2015) and NPTS
(Riou and Honda, 2020), with two upper bounds: 1) the "exact" upper bound is provided looking at
the maximum of all historical data collected (left figure), and 2) the algorithms use a conservative
estimate with a value 1.5 times larger than the previous one (right figure). To avoid cluttering, we
only report the performance of IMED and NPTS as they were the most competitive baselines on this
problem, but report figures with other competitors (e.g UCB1, Bernoulli TS, SDA) in Appendix F.

Tuning For BDS we choose the parameters ρ = 4, γ = 3500, corresponding to p ≈ 20% in the
hypothesis of Theorem 3.4, which is conservative in our example. For QDS, we set ρ = 4 to be able
to compare with BDS and a quantile 95%. Finally for RDS, we choose ρn =

√
log (1+n), which

enters into the theoretical framework of Theorem 3.7.

Results Our results show that Dirichlet Sampling algorithms achieve similar or slightly lower regret
to their competitors when the latter are allowed to use the "exact" upper bound, and compare favorably
when they use a conservative estimate (1.5 times larger, right), see Figure 2. In particular, RDS is the
overall winner in both experiments. We think this demonstrates the merits of trading-off logarithmic
regret (albeit only by a factor O (log log T )) for finite-time adaptation to the tail behaviour via the
leverage ρn. As a side remark, note that our round-based implementation is more efficient than NPTS
as it does not draw random weights for the leader, which is the most costly operation at each round.
The code to reproduce the experiments is available in this github repository.

2Decision Support System for Agrotechnology Transfer is an open-source project maintained by the DSSAT
Foundation, see https://dssat.net/
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Figure 2: Average regret on 5000 simulations and horizon T = 104. Dashed lines correspond to
5%-95% regret quantiles. Empirical IMED and NPTS are run with exact upper bounds around
1.5× 104 kg/ha (left) and the conservative upper bound 1.5× 104 kg/ha (right).

Other experiments To further illustrate the properties of DS algorithms, we perform additional
experiments on synthetic examples. Due to space limits, we present our results in Appendix F. First,
we test the sensitivity of DS w.r.t its hyperparameters, and check that their impact on the performance
of the algorithms is moderate. Then, we show the merits of RDS in case of model misspecification,
following the robustness experiments of Ashutosh et al. (2021). Finally, we consider the case of
Gaussian mixtures, a common tool to model nonparametric distributions via kernel density estimation,
and show that they fit the scope of DS but not that of usual bandit algorithms.

5 Conclusion

In this paper, we introduced a new framework for randomized exploration in stochastic bandits
based on resampling of the reward history and a data-dependent bonus, which generalizes an opti-
mal Thompson Sampling strategy for bounded distributions to light-tailed families. We proposed
three instances of such Dirichlet Sampling (DS) algorithms, corresponding to different modeling
assumptions. In our opinion, these new algorithms are appealing for the practitioner because 1) our
theoretical results show strong guarantees under different settings, 2) DS algorithms are simple to
implement despite the technically challenging analysis and achieve strong practical performances,
and 3) they provide alternative robust ways to tackle unbounded distributions in bandit problems.
Interesting future directions include extending the DS framework to heavy tail distributions, and
tightening the analysis of Boundary Crossing Probabilities of Section 3.1 to design sharper bonuses
for general families of distributions motivated by real use-cases. Moreover, we believe the duel-based
structure associated with the generic regret decomposition of Theorem 3.1 opens up new perspectives
to design exploration strategies in bandits. In particular, they allow to analyze policies using the
history of two arms in the computation of a single index.
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A Supplementary Material

In this section we introduce different elements to help the understanding of the Dirichlet Sampling
algorithms. We first detail the notations used in the main text and in the proofs. Then, we provide a
detailed version of Algorithm 1 and recall the three DS indexes presented in Section 3.2. Finally, we
briefly recall the Non Parametric Thompson Sampling of Riou and Honda (2020), to help readers
that are not familiar with this algorithm.

A.1 Notations

In this section, we provide to the reader an index of all the notations used in Sections 1-4, and in the
detailed proofs in Appendix B-D.

Multi-Arm Bandits and families of distributions

• ν = (ν1, . . . , νK) denotes a K-armed bandits where an k ∈ {1, . . . ,K} is associated with
a reward distribution νk ∈ Fk, for some family of distributions Fk.

• For any family of distributions F , any ν ∈ F and any µ ∈ R we denote
KFinf(ν, µ) = inf

ν′∈F,ν′ 6=ν
{KL(ν, ν′) :Eν′(X)>µ} .

This quantity allows to define asymptotic optimality for bandit algorithms in Equation 2.
• SPEF: Single-Parameter Exponential Family. The family of distributions PΘ is a SPEF on

the parameter set Θ ⊂ R if there exists a function Ψ : Θ→ R and f : R→ R such that any
distribution from PΘ admits a density

gθ(x) = g(x, θ) = eθx−ψ(θ)f(x) ,

for some parameter θ ∈ Θ. Hence, each distribution in a specified SPEF is fully characterized
by its parameter θ ∈ Θ.

• F[b,B] denotes the set of all distributions supported on [b, B], where b andB can respectively
take values −∞ and +∞. With a slight abuse of notations, we denote for any ν ∈ F[b,B],
µ ∈ R

KBinf(ν, µ) := KF[b,B]

inf (ν, µ) ,
which holds for any b as detailed for instance in (Honda and Takemura, 2015).
• Fγ,p[b,B] = {ν ∈ F[b,B] : Pν([B − γ,B]) ≥ p} is a set of bounded distributions with an

additional condition on a neighborhood of their upper bound. Considering this set allows to
build strategies with logarithmic regret for bounded distributions with an unknown upper
bound.

• We denote the set of light-tailed distributions in R
F` = {ν ∈ F(−∞,+∞) : ∃λν > 0,∀λ ∈ [−λν , λν ],Eν [exp(λX)] < +∞} .

• We denote qβ : F(−∞,+∞) → R the operator that returns the quantile β ∈ [0, 1] of any
distribution ν ∈ F(−∞,+∞),

qβ(ν) = inf{x ∈ R : Fν(x) > β} ,
where Fν denotes the cdf of a distribution ν.
• We denote Cα : F(−∞,+∞) → R the operator that returns the Conditional Value-at-Risk

(CVaR) at level α ∈ [0, 1] of any distribution ν ∈ F(−∞,+∞),

Cα(ν) = inf
x∈R

{
x+

1

α
Eν
[
(X − x)+

]}
.

Moreover if the cdf of ν is continuous, then Cα = Eν [X|X ≥ q1−α(ν)].
• Considering a base family F ⊂ F[b,+∞) and parameters α ∈ (0, 1), ρ > 0, we consider the

subset of F
Fα[b,+∞) = {ν ∈ F : ∀µ > Eν(X),KFinf(ν, µ) ≥ KMq

k

inf (Tα(ν), µ)} ,
where Mq

k = max{q1−α(ν), µ + ρEν [(µ − X)+], and Tα : F → F[−∞,q1−α(νk)] is
the truncation operator satisfying Tα(ν)(A) = ν(A) for any A ⊂ [b, q1−α(ν)] and
Tα(ν) ({x}) = α1(x = Cα(ν)) for any x > q1−α(ν).
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Dirichlet Sampling Algorithms

• DS := Dirichlet Sampling, and we call "DS index" the index µ̃ computed in DS algorithms
using a re-weighting scheme (with a Dirichlet distributions) and an exploration bonus.

• Bounded Dirichlet Sampling (BDS): the DS algorithm proposed for families of distributions
from F[b,B] with known B and F[b,B]γ,ρ for known (γ, ρ).

• Robust Dirichlet Sampling (RDS): a DS algorithm proposed for the general family of
light-tailed distributions F`.

• Quantile Dirichlet Sampling (QDS): a DS algorithm proposed for families of distributions
Fα[b,+∞) associated with some base family F ⊂ F[b,+∞].

• Round: a step of the algorithm indexed by some r ∈ N and at the end of which a set of arms
Ar ⊂ {1, . . . ,K} is selected.

• T-Round regret: Consider a bandit ν = (ν1, . . . , νK) with arms’ means (µ1, . . . , µK) and
an horizon of T rounds,

RT =

K∑
k=1,∆k>0

∆kE[Nk(T )] ,

where ∆k = maxi∈{1,...,K} µi − µk and

Nk(T ) =

T∑
r=1

1(k ∈ Ar)

is the number of selection of an arm k after T rounds.
• Duel: a pairwise comparisons between two arms at the end of which one arm is selected as

the winner.
• Leader: A reference arm `r chosen at the beginning of each round r as

`r ∈ argmax
k∈{1,...,K}

Nk(r) .

We denote Lr = argmax
k∈{1,...,K}

Nk(r) the set of possible candidates for leadership. If |Lr| > 1

the algorithm chooses uniformly at random an arm `r ∈ argmax
k∈Lr

µrk, where µrk is the empirical

mean of arm k at round r.
• Duel in DS algorithms: we denote X = (X1, . . . , Xn) and Y = (Y1, . . . , YN ) two sets of

real observations.
1. µ : RN → R denotes the application computing the mean of a set: µ(X ) = 1

n

∑n
i=1Xi,

and µ(Y) = 1
N

∑N
i=1 Yi.

2. µ̃ : RN × RN → R denotes an application that returns the "DS index" µ̃(X ,Y).
If X denotes the observations from a challenger in a DS algorithm, and Y the one of
the current leader, then the challengers wins the duel if max(µ(X ), µ̃(X ,Y)) ≥ µ(Y).
Otherwise, the leader wins the duel.

• We denote Dir(P ) the Dirichlet distribution with parameter P ∈ NN. When P = 1n =
(1, . . . , 1) (vector of size n, all values equal to 1) we write this distributionDn. Furthermore,
Dn is the uniform distribution on the probabilistic simplex of size n,

Pn = {w ∈ [0, 1]n :

n∑
i=1

wi = 1} .

• We denote B : X ∈ RN × Y ∈ RN → B(X ,Y) a generic exploration bonus for a duel
involving the set X (challenger) and the set Y leader. With a slight abuse of notation we use
B(X , µ(Y)) when it only uses the mean of the leader, and consider in the paper the bonus

B(X , µ, ρ) = µ+ ρ× 1

n

n∑
i=1

(µ−Xi)+ ,

where n = |X |, X = (X1, . . . , Xn) and ρ > 0 is a given parameter and for any x ∈ R,
x+ = max(x, 0).
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Technical Notations for the proof of Theorem 3.1

• Optimal arm = arm 1 without loss of generality

• X kn = (Xk
1 , X

k
2 , . . . , X

k
n) denotes the first n observations collected from arm k. We assume

that for each arm an unknown infinite reward stream X k is available and that the j-th reward
in X k is the j-th reward collected from this arm (independently on when it is observed). For
arm 1 we simply use the notations X and Xn.

• ar = dr/4e, br = dar/Ke: in all rounds after ar the leader has at least br observations,
which is linear in r.

• Dr = {∃u ∈ [ar, r] : `u = 1}: under this event arm 1 has been leader at least once after the
round ar.

• We call the event Brk = {`r = 1, `r+1 = k} a leadership takeover by arm k.

• Cr = {`r 6= 1, 1 /∈ Ar+1} represents a duel lost at round r by arm 1 against a sub-optimal
leader. We also denote Lr =

∑r
u=ar

1(Cu).

• Hr,nj =
{
N1(r) = n,

∣∣∣µ(X jNj(r))− µj∣∣∣ ≤ ε, 1 /∈ Ar+1

}
for some ε > 0.

A.2 Detailed algorithms

Algorithm 2 Generic Dirichlet Sampling Bandit Algorithm
Input: K arms, horizon T , DS index µ̃
Init.: t = 1, r = 1, ∀k ∈ {1, ...,K}: Xk = {}, Nk = 1, Sk = 0
while t < T do
A = {} ; . Set of Arms to pull at the end of the round
if r = 1 then
A = {1, . . . ,K} ; . All arms are pulled at the first round

else
// Leader Choice
L = argmax

k∈{1,...,K}
Nk ; . Arm(s) with the largest number of samples

L̄ = argmax
k∈L

µk ; . Keep best arm(s) in L

` ∼ U(L̄) ; . Random choice if several candidates
// Duels
for k ∈ {1, . . . ,K}, k /∈ L ; . Challengers in L are eliminated
do

if µk ≥ µ` then
A = A ∪ {k} ; . First duel with empirical mean

else
Draw DS index µ̃(Xk,X`)

if µ̃(Xk,X`) ≥ µ` then

A = A ∪ {k} ; . Second duel with the Dirichlet Sampling index

// Collect reward and update quantities
if |A| = 0 then
A = {`} ; . If no winning challenger ` is pulled

Shuffle A
for k ∈ A do

if t < T then
Collect Xk,Nk , update history Xk = Xk ∪ {Xk,Nk}
Nk = Nk + 1, Sk = Sk +Xk,Nk , µk = Sk/Nk, t = t+ 1

r = r + 1
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Table 1: Summary of settings and bonuses
Algorithm Kind of family B(X ,Y)

BDS F[b,B], known B B

BDS Fγ,p[b,B], known γ, p max{X̄ + γ,B(X , µ, ρ)}
RDS F` B(X , µ, ρn) with ρn → +∞
QDS Fα[b,+∞) B(X , µ, ρ)

In this section we provide the detailed implementation of each algorithm presented in this paper.
Before that, we first recall the families on which each algorithm achieves regret guarantees and their
corresponding bonuses. We denote X̄ the maximum of a set X .

For QDS, the family Fα[b,+∞) relies on an unknown base family F ⊂ F[b,+∞) for some b > −∞.
We detail in Theorems 3.4, 3.7 and 3.5 the conditions on the tuning of ρ for each algorithm to
ensure a controlled regret. These three results rely on the same general analysis of a Dirichlet
Sampling Algorithm with any index µ̃. Before instantiating each algorithm we first provide a detailed
version of this algorithm in Algorithm 2, to complete the short version we provided in Section 2 with
Algorithm 1,

We now provide the detailed computation of the DS index for the three algorithms we introduced in
Section 3.2: Bounded Dirichlet Sampling (BDS), Robust Dirichlet Sampling (RDS) and Quantile
Dirichlet Sampling (QDS).

Bounded Dirichlet Sampling index We first introduce in Algorithm 3 the index of BDS. The set
of parameters is dependent of the choice of hypothesis (B1) or (B2) in Theorem 3.4. As hypothesis
(B1) corresponds to the same index as Non Parametric Thompson Sampling (that we describe in
further details in Appendix A.3) we only report the bonus under case (B2).

Algorithm 3 Bounded Dirichlet Sampling Index
Input: Two sets of data X = (X1, . . . , Xn) and Y = (Y1, . . . , YN ), parameters γ, ρ

Set µ = 1
N

∑N
i=1 Y1

Set B(X , µ) = max
(
maxni=1Xi + γ, µ+ ρ

n

∑n
i=1(µ−Xi)

+
)

Draw w = (w1, . . . , wn+1) ∼ Dn+1

return
∑n
i=1 wiXi + wn+1B(X , µ)

We recall that if γ and p are known in (B2) then the theoretical tuning of ρ we provide in Theorem 3.4
is ρ ≥ −1/ log(1− p).

Robust Dirichlet Sampling index We now report in Algorithm 4 the index of RDS, which only
depends on the choice of an increasing sequence ρn satisfying ρn → +∞ and ρn = o(

√
n).

Algorithm 4 Robust Dirichlet Sampling Index
Input: Two sets of data X = (X1, . . . , Xn) and Y = (Y1, . . . , YN ), (ρn)n∈N

Set µ = 1
N

∑N
i=1 Y1

Set B(X , µ) = µ+ ρn × 1
n

∑n
i=1(µ−Xi)

+

Draw w = (w1, . . . , wn+1) ∼ Dn+1

return
∑n
i=1 wiXi + wn+1B(X , µ)

RDS is the simplest instance of Dirichlet Sampling we propose, and achieves robust regret guaran-
tees for light-tailed distributions. We also propose QDS for unbounded distribution, that achieves
logarithmic regret guarantees under a mild quantile condition.
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Quantile Dirichlet Sampling index We finally present in Algorithm 5 the index of QDS, depend-
ing this time on the choice of a quantile qα′ and a parameter ρ. If the regret guarantees require quite
complicated notations for a proper formalism, the index is actually quite simple to implement: the
bonus is similar to BDS and RDS, and the re-weighting step only require to compute the α′ quantile
of the data, the corresponding CVaR (mean of the observations larger than this quantile) and to draw
a Dirichlet weight with a slightly different parameter. Furthermore, the computation time of these
steps can be optimized in practice (keeping in memory the sorted data, quantile and CVaR).

Algorithm 5 Quantile Adaptive Dirichlet Sampling Index
Input: Two sets of data X = (X1, . . . , Xn) and Y = (Y1, . . . , YN ), quantile α′, ρ

Sort X to have X1 ≤ X2 ≤ · · · ≤ Xn

Set µ = 1
N

∑N
i=1 Y1

Set B(X , µ) = µ+ ρ
n

∑n
i=1(µ−Xi)

+

Set quantile index nα′ = dn(1− α′)e/n

Set Cα′ = 1
n−nα′+1

∑n−nα′+1
i=1 Xnα′+i

Draw w = (w1, . . . , wnα′+1) ∼ Dir((1, . . . , 1,nα′ , 1)) ; . Only ones except for wnα′
return

∑nα′−1
i=1 wiXi + wnα′Cα′ + wnα′+1B(X , µ)

A.3 Non-Parametric Thompson Sampling

In this section we briefly introduce the Non Parametric Thompson Sampling Algorithm, introduced
in Riou and Honda (2020), for readers that are not familiar with it. NPTS is an index policy, that we
detail in Algorithm 6. To keep consistent notations, we write it using the notations of this paper.

Algorithm 6 Non Parametric Thompson Sampling (Riou and Honda, 2020)
Input: Horizon T , K arms, known upper bound B
Init.: ∀k ∈ {1, ...,K}: Xk = {}, Nk = 0
for t ∈ {1, . . . , T} do

for k ∈ {1, . . . ,K} do
Sample w ∼ DNk+1

Set µk =
∑Nk
i=1 wiXi + wNk+1B

Pull arm At = argmax
k∈{1,...,K}

µk, observe XNk+1

Update Xk = Xk ∪ {Xnk+1}, Nk = Nk + 1

We recall that this algorithm is asymptotically optimal when arms belong to F[b,B] for a known B.

B Proof of Theorem 3.1

We first recall the statement of result we want to prove.
Theorem 3.1 (Generic regret decomposition of DS). Consider a bandit model ν = (ν1, . . . , νK),
where all distributions in ν satisfy (C1). Then for any DS index the expected number of pulls of each
arm k ∈ {2, . . . ,K} is upper bounded for each ε ∈ [0,∆k) by

E [Nk(T )] ≤ nk(T ) +BkT,ε + Ckν,ε ,

where nk(T ) = E
[∑T−1

r=1 1(k ∈ Ar+1, `
r = 1)

]
, Ckν,ε is independent on T and, denoting Xn the

set of n first observations of arm 1,

BkT,ε =

K∑
j=2

d2 log(T )/I1(µk+ε)e∑
n=1

sup
µ∈[µj−ε,µj+ε]

EXn
[
1 (µ(Xn) ≤ µ)

P(µ̃(Xn, µ) ≥ µ)

]
.
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In this section we study the regret of a general DS algorithm, for any index function µ̃. We exploit
the duel structure of the algorithm in order to exhibit the the two crucial terms that depend on the
DS index and have to be controlled in Theorem 3.1. Before starting the analysis we recall the first
condition that we assume on the arms distributions, which ensures the concentration of the means.

Condition 1 (C1): concentration of the means For all k, there exists a good rate function Ik
satisfying for all x ≥ µk, y ≤ µk, and any i.i.d sequence X1, . . . , Xn drawn from νk

P

(
1

n

n∑
i=1

Xi ≥ x

)
≤ e−nIk(x) , and P

(
1

n

n∑
i=1

Xi ≤ y

)
≤ e−nIk(y) .

This is actually the only result we need to prove Theorem 3.1, we do not need to introduce the DS
indexes for this result. We will carefully detail each term of the Theorem, in particular the constant
Ckν,ε whose components are all explicit.

B.1 Regret decomposition

Thanks to the duel structure of DS, the fact that an arm is pulled or not depends of its status as a
leader or a challenger. If an arm is a challenger, it can be pulled only if it wins its duel against the
leader. For this reason, a natural first regret decomposition consists in considering the cases when 1)
the optimal arm is the leader and some sub-optimal arms are pulled, and 2) the optimal arm is not
the leader. Thanks to the definition of the round-regretRT in Equation 3, and denoting arm 1 as the
unique optimal arm (without loss of generality), we upper boundRT by controlling the expectation
of the number of pulls of each sub-optimal arm k ∈ {2, . . . ,K}. Using that all arms are pulled
during the first round we obtain

E[Nk(T )] = 1 + E

[
T−1∑
r=1

1(k ∈ Ar+1)

]

= 1 +

T−1∑
r=1

E [1(k ∈ Ar+1, `
r = 1) + 1(k ∈ Ar+1, `

r 6= 1)]

≤ 1 + E

[
T−1∑
r=1

1(k ∈ Ar+1, `
r = 1)

]
︸ ︷︷ ︸

nk(T )

+E

[
T−1∑
r=1

1(`r 6= 1)

]
︸ ︷︷ ︸

EkT

.

We already extracted the term nk(T ) of Theorem 3.1 at this step, and introduced a term EkT that
contains both BkT,ε and Ckν,ε. In the rest of this proof we work on the term EkT .

B.2 Upper bound on EkT

The following part of the proof is inspired by the proof of the SSMC algorithm in Chan (2020).
Furthermore, we will see that we can further decompose EkT into several events that we will handle
using condition (C1), showing the interest of the algorithm’ structure in rounds and duels. After that,
we will finally exhibit the term that requires the condition (C2).

Before that, we start by analyzing two alternatives that can cause the event {`(r) 6= 1}, namely 1)
arm 1 has already been leader and has lost the leadership at some point (leadership takeover), or 2)
arm 1 has never been leader. To formalize these alternatives we define the sequence ar = dr/4e and
the event

Dr = {∃u ∈ [ar, r] : `u = 1} .

Dr is true: arm 1 has already been leader after round ar

We first justify the choice of ar: starting after a number of rounds that is linear in r ensures a number
of observations for the leader during the whole segment [ar, r] that is also linear in r, that is for all
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s ∈ [ar, r],
N`s(s) ≥ dar/Ke := br .

Under Dr we study the probability of a leadership takeover by a sub-optimal arm between ar and r.
Such takeover can happen only if 1) a sub-optimal arm obtain the same number of samples as arm 1,
and 2) its sample average is larger than the one of arm 1 at the round when it happens. We denote X kn
the history available for arm k after it has been sampled n times, and drop the exponent for arm 1.
We formalize the leadership takeover with the following events,

{`r 6= 1} ∩ Dr ⊂ ∪r−1
u=ar{`

u = 1, `u+1 6= 1}
⊂ ∪r−1

u=ar ∪
K
k=2 {`u = 1, k ∈ Au+1, Nk(u+ 1) = N1(u+ 1), µ(X kNk(u+1)) ≥ µ(XN1(u+1))}

⊂ ∪r−1
u=ar ∪

K
k=2 {Nk(u+ 1) = N1(u+ 1), µ(X kNk(u+1)) ≥ µ(XN1(u+1))}

=⊂ ∪ru=ar+1 ∪Kk=2 {Nk(u) = N1(u), µ(X kNk(u)) ≥ µ(XN1(u))}
:= ∪ru=ar+1 ∪Kk=2 Buk .

Starting the sum on the rounds at some round r0, we first develop and express the sum of these terms
as

E

[
T−1∑
r=r0

t∑
u=ar+1

1(Buk )

]
= E

[
T−1∑
r=r0

t∑
u=ar+1

1(Nk(u) = N1(u), µ(X kNk(u)) ≥ µ(XN1(u)))

]

≤ E

T−1∑
r=r0

r∑
u=ar+1

u∑
n=du/Ke

1(Nk(u) = N1(u) = n, µ(X kn ) ≥ µ(Xn))


≤ E

T−1∑
r=r0

r∑
u=ar+1

u∑
n=du/Ke

1(µ(X kn ) ≥ µ(Xn))

 .
We now define xk = µ1+µk

2 . If µ(X kn ) ≥ µ(Xn), then either the arm 1 had "under-performed" or
arm k has "over-performed", which means that µ(X kn ) ≥ xk or µ(Xn) ≤ xk, which gives

E

[
T−1∑
r=r0

t∑
u=ar+1

1(Buk )

]
≤ E

T−1∑
r=r0

t∑
u=at+1

u∑
n=du/Ke

1(µ(X kn ) ≥ xk ∪ µ(Xn) ≤ xk)


≤

T−1∑
r=r0

t∑
u=at+1

u∑
n=du/Ke

[
P(µ(X kn ) ≥ xk) + P(µ(Xn) ≤ xk)

]
≤

T−1∑
r=r0

r2
[
P(µ(X kbr ) ≥ xk) + P(µ(Xbr ) ≤ xk)

]
≤

T−1∑
r=r0

r2
(
e−brI1(xk) + e−brIk(xk)

)
= O(1) ,

where the two last lines come from the condition (C1), which is the existence of a good rate function
for each arm’s distribution. Thanks to the structure of the algorithm this condition is enough to upper
bound the cost of leadership takeover by sub-optimal arms by constants in the regret. This convergent
series is the first component of the term Ckν,ε in Theorem 3.1. We now consider the case when arm 1
has never been leader.
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Upper bound when Dr is not true

The idea in this part is to leverage the fact that if the optimal arm is not leader between dr/4e and r,
then it has necessarily lost a lot of duels. We introduce the count of the number of duels lost by arm 1,

Lr =

r∑
u=ar

1(Cu) ,

with Cu = {∃k 6= 1, `u = k, 1 /∈ Au+1} representing the event that at round u arm 1 is challenger
and has lost its duel. We then consider the upper bound

P(`r 6= 1 ∩ D̄r) ≤ P(Lr ≥ r/4) . (7)

This result is a direct adaptation from (Chan, 2020) (Equation 7.12), we then use of the Markov
inequality to obtain

P(Lr ≥ r/4) ≤ E(Lr)

r/4
=

4

r

r∑
u=ar

P(Cu) . (8)

We then remove the double sum on u and t by simply counting the number of occurrences of each
term,

T−1∑
r=r0

P(Lr ≥ r/4) ≤ E

[
T−1∑
r=r0

4

r

r∑
u=ar

1(Cu)

]

≤ E

T−1∑
r=r0

T−1∑
u=ar0

4

r
1(Cu)1(u ∈ [ar, r])


≤ E

 T−1∑
u=ar0

1(Cu)

T−1∑
r=r0

4

r
1(u ∈ [ar, r])

 .

From this step we can control independently the sum in r,

T−1∑
r=r0

4

r
1(u ∈ [ar, r])

T−1∑
r=r0

4
1(u ≤ r)

r
1(ar ≤ u)

≤ 4

u

T−1∑
r=r0

1(ar ≤ u)

≤ 4

u

T−1∑
r=r0

1(dr/4e ≤ u)

≤ 4

u

T−1∑
r=r0

1(r/4 ≤ u+ 1)

≤ 4

u
× 4(u+ 1)

≤ 32 .

With this result we obtain that
T−1∑
r=r0

P(Lr ≥ r/4) ≤ 32

T−1∑
r=ar0

P(Cr) .
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We then decompose as the union of all the terms corresponding to each possible sub-optimal leader,

Cr = ∪Kj=2{`r = j, 1 /∈ Ar+1} := ∪Kj=2Crj .

We can now fix any sub-optimal leader j and work on the term Crj . We recall that arm 1 has two
chances to win the duel: first with its empirical mean, and then with a random index. We first handle
the case when the sub-optimal leader could be "over-performing", by writing for any ε > 0

Crj ⊂
{∣∣∣µ(X jNj(r))− µj∣∣∣ ≥ ε, `r = j

}
∪
{∣∣∣µ(X jNj(r))− µj∣∣∣ ≤ ε, `r = j, µ

(
XN1(r)

)
≤ µ

(
X jNj(r)

)
, µ̃
(
XN1(r),X jNj(r)

)
≤ µ

(
X jNj(r)

)}
.

We then upper bound the left-hand term using again the concentration of the leader, and obtain

T−1∑
r=1

P
(∣∣∣µ(X jNj(r))− µj∣∣∣ ≥ ε, `r = k

)
=

T−1∑
r=1

∑
nj=dr/Ke

P
(∣∣∣µ(X jNj(r))− µj∣∣∣ ≥ ε,Nj(r) = nj

)
= O(1).

For the simplicity of notations we keep the notation Crj to define the right-hand term. We then
continue the analysis of Crj by considering the number of samples of arm 1, and in particular if
N1(r) ≥ n1(T ) or not, for some new function n1(T ). Considering that arm 1 has a first chance with
its empirical mean, and that under Crk the leader’s mean is controlled we can fix n1(T ) in order to
ensure that for any n ≥ n1(T ): P(µ (Xn) ≤ µj + ε) ≤ 1/T 2. Thanks to condition (C1) this is the
case for n1(T ) = d2/I1(µj + ε) log T e. We now define the event

Hr,nj =
{
N1(r) = n,

∣∣∣µ(X jNj(r))− µj∣∣∣ ≤ ε, µ (Xn) ≤ µ
(
X jNj(r)

)
,

µ̃
(
Xn,X jNj(r)

)
≤ µ

(
X jNj(r)

)}
,

and use it to define a new upper bound on Crj ,

T−1∑
r=ar0

P
(
Crj
)
≤

T−1∑
r=ar0

T−1∑
n=1

P
(
Hr,nj

)

≤
T−1∑
r=ar0

T−1∑
n=n1(T )

P (N1(r) = n, µ(Xn) ≤ µj + ε) +

T−1∑
r=ar0

n1(T )∑
n=1

P
(
Hr,nj

)

≤ 1 +

T−1∑
r=ar0

n1(T )∑
n=1

P
(
Hr,nj

)
.

We then use as in Riou and Honda (2020) that

T−1∑
r=ar0

1(Hr,nj ) =

T−1∑
m=1

1

 T−1∑
r=ar0

1(Hr,nj ) ≥ m

 ,
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and define as τn1 , . . . , τ
n
m the m first rounds for which Hr,nj hold. If 1

(∑T−1
r=ar0

1(Hr,nj ) ≥ m
)

is

true thenHτj ,nj holds for any i ≤ m and all these τi are finite, which means that

1

 T−1∑
r=ar0

1(Hr,nj ) ≥ m

 ≤ m∏
i=1

1

(
Hτ

n
i ,n
j

)
.

So, we denote the term that is left to upper bound as

Dj
T,ε =

n1(T )∑
n=1

T−1∑
m=1

E

[
m∏
i=1

1

(
Hτ

n
i ,n
j

)]

=

n1(T )∑
n=1

T−1∑
m=1

EXn

[
m∏
i=1

P
(
µ̃
(
Xn,X kNj(τni )

)
≤ µ

(
X kNj(τni )

) ∣∣∣Xn)1(Hτni ,nj

)]
.

In the next steps we remove the dependency of the index in X kNj(τni ), knowing that the index only
depends of its mean and that the mean is located in a small range around µj . At this step, we notice
that we could have replaced this control of the mean by locating the empirical distribution of k in any
space "around" its true distribution, assuming a concentration similar as (C1) for the corresponding
event. However, to simplify the notations we assume that the index µ̃ only depends on the history of
k through its mean, and we further upper bound BkT,ε by simply taking the maximum value of the

expectation for any possible value of µ
(
X kNj(τni )

)
,

Dj
T,ε ≤

n1(T )∑
n=1

T−1∑
m=1

sup
µ∈[µj−ε,µj+ε]

EXn [P (µ̃ (Xn, µ) ≤ µ)
m
1 (µ (Xn) ≤ µ)]

≤
n1(T )∑
n=1

sup
µ∈[µj−ε,µj+ε]

EXn
[
P (µ̃ (Xn, µ) ≤ µ)

P (µ̃ (Xn, µ) ≥ µ)
1 (µ (Xn) ≤ µ)

]
.

which concludes the proof if we define BkT,ε =
∑K
j=2D

j
T,ε in Theorem 3.1.

C Technical results on the Dirichlet distribution

In this section we provide the proofs of the technical results in Section 3.1, along with other results
that we use in the proofs of Appendix D but did not introduced in the main paper due to space
limitations. Before proving the upper and lower bounds on the Boundary Crossing Probability, we
present some basic properties of the Dirichlet distribution for readers that are not familiar with this
distribution.

C.1 Basic properties of the Dirichlet distribution

We consider the Dirichlet distribution Dir(α) for some parameter α = (α1, . . . , αn). Let w =
(w1, . . . , wn) be a random variable drawn from the distribution Dir(α). We first recall that w takes
its values in the probability simplex Pn = {p ∈ [0, 1]n :

∑n
i=1 pi = 1}. The distribution admits the

following density,

f(w1, . . . , wn) =
Γ(
∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

wαi−1
i ,

where Γ denotes the Gamma function. In this paper we only consider integer values for the coefficient
(αi)i∈N, and for any m ∈ N Γ(m) = (m − 1)!. Denoting N =

∑n
i=1 αi, we obtain the more

convenient form

f(w1, . . . , wn) =
(N − 1)!∏n
i=1(αi − 1)!

n∏
i=1

wαi−1
i .
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This distribution has a lot of convenient properties. First, interpreting αi/N has the frequency of an
item in a set of observations drawn from a finite collection (empirical distribution), and w a random
re-weighting of these observation providing a "noisy" empirical distribution, the Dirichlet distribution
ensures that the noisy frequency of each item is unbiased with respect to the observed frequency, with
a variance that is inversely proportional to the total number of items collected. For any i ∈ [1, n],

E[wi] =
αi
N

, and V(wi) =
αi(N − αi)
N2(N + 1)

,

and the marginal density of each component of w is actually a distribution Beta(αi, N − αi). This
explains the use of the Dirichlet distribution to generalize the Beta-Bernoulli Thompson Sampling.

In this paper we also use two main properties of the Dirichlet distribution, both using the relation
between the Dirichlet distribution and the Exponential distribution. Let R1, . . . , Rn be n i.i.d random
variables drawn from exponential distributions with respective parameters αi, Ri ∼ E(αi). Then the
vector w = (w1, . . . , wn) with wi = Ri∑n

j=1 Rj
follows a Dirichlet distribution Dir(α).

The second property is a consequence of the first one, and is that the components of a random variable
drawn from a Dirichlet distribution and can be aggregated, providing another Dirichlet distribution: if
w ∼ Dir(α), then w′ = (w1, . . . , wi + wj , . . . , wn) ∼ Dir((α1, . . . , αi + αj , . . . , αn)) (putting the
sum in the i− th slot and removing the j-th slot without changing the other indices). In particular,
we will make use of this property in the proofs of Theorem 3.4 and 3.5. Indeed, we will discretize the
data, i.e grouping observations from continuous distributions into bins of the same size and studying
the properties of the resulting distribution.

C.2 Boundary Crossing Probability for Dirichlet re-weighting

We recall the definition of the Boundary Crossing Probability, given in Section 3.1. In this section we
prove Lemma 3.2 and 3.3, that we restate below, along with other technical results including some
from Riou and Honda (2020).

Boundary crossing probability (BCP) We consider a set of n+ 1 observation points X =
(X1, . . . , Xn+1) ⊂ Rn+1. (Intuitively, n points are samples from a challenger arm, and one point
corresponds to the added bonus). Then, for any µ ∈ R, we introduce the following “Boundary
Crossing Probability” (BCP) term, conditional on X

[BCP] := Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
.

When all observations are distinct from each other this BCP has a closed formula, which has been
derived for instance in Cho and Cho (2001) as

Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
=

n+1∑
i=1

(Xi − µ)n+∏n+1
j=1,j 6=i(Xi −Xj)

. (9)

This expression is obtained by computing the volume of the half-space of the simplex defined by the
hyperplane

∑n+1
i=1 wiXi ≥ µ. Unfortunately, this formula is not very informative: for sorted data the

terms are alternatively positive and negative, and can take large values (compensating each other).
This makes the exact formula hardly tractable even for numerical simulations. We also add that the
closed formula does not exist for a Dirichlet distribution with some parameters larger than 1, as it
would require a closed formula for the incomplete beta function.

Hence, both upper and lower bounds for the BCP have to be studied independently of this formula.
We start with upper bounds.

Upper bound on the BCP The first result we introduce is a variant of Lemma 15 of Riou and
Honda (2020).
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Lemma C.1 (Upper bound on the BCP). Consider a set X = (X1, . . . , Xn+1) and a target value
µ ∈ R, and denote X̄ = maxn+1

i=1 Xi and νX the empirical distribution associated to X . The BCP
satisfies

Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
≤ e
− max
λ∈[0,1)

∑n+1
i=1

[
log
(

1−λXi−µX̄−µ

)]
≤ e−(n+1)KX̄inf (νX ,µ) ,

When distributions have support upper-bounded by B, replacing X̄ by B makes the Kinf functional
data-independent.

Proof. This result is a variant of Lemma 15 of Riou and Honda (2020), hence we rewrite the beginning
of their proof, which consists in using the Chernoff method to upper bound the BCP and writing the
Dirichlet weight with exponential variables. For any λ ∈ [0, 1), denoting X̄ = maxn+1

i=1 Xi it holds
that

[BCP] ≤ PR1,...,Rn∼E(1)

(
n+1∑
i=1

Ri
Xi − µ
X̄ − µ

≥ 0

)

≤ PR1,...,Rn∼E(1)P

(
exp

(
λ

n+1∑
i=1

Ri
Xi − µ
X̄ − µ

)
≥ 1

)

≤
n+1∏
i=1

ERi
[
exp

(
λRi

Xi − µ
X̄ − µ

)]
,

which is so far exactly the Chernoff method, up to the rescaling by X̄ − µ. For λ < 1, each MGF is
defined and has an explicit formula, so

[BCP] ≤
n+1∏
i=1

1

1− λXi−µX̄−µ

= exp

(
−
n+1∑
i=1

log

(
1− λXi − µ

X̄ − µ

))
.

We obtain the first inequality of the lemma by choosing the maximum over all possible values of λ,
and the second inequality is direct when writing the dual problem associated with KX̄inf(ν̂n+1, µ) (see
e.g Honda and Takemura (2010, 2015)).

Lower bounds on the BCP We now consider the anti-concentration of the BCP, that suggests a
sound tuning of the bonus in DS algorithms. Under this perspective, we first provide a necessary
condition of the bonus in DS to ensure sufficient exploration.
Lemma C.2 (Necessary condition with a data-independent bonus). Consider a fixed bonus
B(X , µ) = B(µ), and a distribution F (with CDF also denoted F ). If Condition (C2) holds
then

B(µ) > µ+
1

1− F (µ)
EF [(µ−X)+] .

Proof. When all the observations are below the threshold equation 9 provides

Pw∼Dn

(
n∑
i=1

wiXi + wn+1B(µ) ≥ µ

)
=

n∏
i=1

B − µ
B −Xi

,

so plugging this term in (C2) gives the expression

E

[
n∏
i=1

(
B −Xi

B − µ

)
1(Xi ≤ µ)

]
= EX1∼F

[(
B −X1

B − µ

)
1(X1 ≤ µ)

]n
.

Condition (C2) can hold only if the expectation is smaller than 1, which is equivalent to
(B − µ)(1− F (µ)) ≥ E [(µ−X)+] ,

which gives the result.
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Remark C.3. The proof also work if we do not consider the events {Xi ≤ µ} but instead {Xi ≤ y}
for any y ∈ R. We use this property in the proof of Theorem 3.4 for instance. If we directly consider
the quantile q1−α of F we can define

B(µ, α) = µ+
1

α
EF [(µ−X)1(X ≤ q1−α)] .

Another alternative hypothesis could be that there exist some α > 0, Bα satisfying

EF [(µ1 −X)1(X ≤ q1−α)] ≤ Bα ,
that would then provide a condition

B(µ, α) ≥ µ+
Bα
α

.

Lemma C.4 (Lower bound for the BCP). Consider a setX = (X1, . . . , Xn+1) ∈ Rn+1, and assume
that X = max

i∈{1,...,n+1}
Xi ≥ g(n) for some function g. Denoting ∆̄+

n = 1
n

∑n+1

i=1,Xi<X
(µ−Xi)

+ the

empirical positive gap, it holds that

Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
≥ exp

(
−n ∆̄+

n

g(n)− µ

)
.

Proof. We obtain this lower bound by truncating all the observations that are larger than the threshold
except the maximum of X̄ , allowing to use Equation 9. Combining this property with log(1 +x) ≤ x
we obtain

Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
≥ Pw∼Dn+1

(
n∑
i=1

wi min(Xi, µ) + wn+1X̄ ≥ µ

)

=
(X̄ − µ)n∏n

i=1(X̄ −min(Xi, µ))

= exp

(
−

n∑
i=1

log

(
X̄ −min(Xi, µ)

X̄ − µ

))

= exp

(
−

n∑
i=1

log

(
1 +

µ−min(Xi, µ)

X̄ − µ

))

≥ exp

(
−

n∑
i=1

µ−min(Xi, µ)

X̄ − µ

)

= exp

(
−

n∑
i=1

(µ−Xi)+

X̄ − µ

)
,

which yields the result.

We finally provide another lower bound on the BCP that is used to derive Lemma 14 in (Riou and
Honda, 2020).
Lemma C.5 (Second Lower Bound for the BCP). Consider observations X = (X1, . . . , Xn), a
parameter α = (α1, . . . , αn) ⊂ Nn, and µ ∈ R. We add a value B to the dataset, and denote
α̃ = (α1, . . . , αn, 1). We also denote X̄ = max {maxni=1Xi, B}, and N =

∑n
i=1 αi. Then, for any

vector w? ∈ Pn+1 satisfying
∑n
i=1 w

?
iXi + w?n+1B ≥ µ it holds that

Pw∼Dir(α̃)

(
n∑
i=1

wiXi + wn+1B ≥ µ

)
≥ N !∏n

i=1 αi!

n∏
i=1

(w?i )αi
(
αiM

w∗n+1

w∗iM

)
,

where iM is the index satisfying XiM = X̄ (setting iM = n+ 1 if X̄ = B).
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Proof. We use the density of the Dirichlet distribution defined in Appendix C.1, and consider the
set S = {w ∈ Pn+1 :

∑n
i=1 wiXi + wn+1B ≥ µ}, which is the set defined in the BCP. Then,

considering any allocation w? ∈ S , we define the subset S2 = {w ∈ Pn+1 : ∀i 6= iM , wi ∈ [0, w?i ]}.
The inclusion S2 ⊂ S is direct : transferring weights to the maximum can only increase the value of
the weighted sum. Hence, P(w ∈ S2) is a lower bound of P(w ∈ S). We then obtain

Pw∼Dir(α)

(
n+1∑
i=1

wiXi ≥ µ

)
≥ P(w ∈ S2)

≥ N !∏n
i=1(αi − 1)!

∫ w?1

0

· · ·
∫ w?n+1

0

n∏
i=1

wαi−1
i

n+1∏
i=1,i6=iM

dwi

=
N !∏n

i=1,i6=iM αi!

n∏
i=1

(w?i )αi
(
w∗n+1

w∗iM

)

=
N !∏n
i=1 αi!

n∏
i=1

(w?i )αi
(
αiM

w∗n+1

w∗iM

)
,

which concludes the proof.

A direct corollary of this result is to choose the weights w? that maximize the lower bound, which
gives as in Lemma C.1 an expression with KX̄inf .
Corollary C.5.1. Take the notations of Lemma C.5 and Consider νX ,α the multinomial distribution
with atoms X = (X1, . . . , Xn) and probabilities pα =

(
α1

N , . . . ,
αn
N

)
. It holds that

Pw∼Dir(α̃)

(
n∑
i=1

wiXi + wn+1B ≥ µ

)
≥ N !∏n

i=1 αi!
exp

(
−N

(
KX̄inf (νX ,α, µ) +H(νn,α, µ)

))
.

Proof. Consider two multinomial distributions ν1, ν2 with same support and respective probabilities
p = (p1, . . . , pn) and q = (q1, . . . , qn) the Kullback-Leibler divergence is simply

KL(ν1, ν2) =

n∑
i=1

pi log(pi/qi) := −
n∑
i=1

pi log(qi)−H(ν1) .

We first write the result of Lemma C.5 with p = pα and q = w?, and choose w? = inf KL(pα, w
?) =

KX̄inf(pα, µ) (with a slight abuse of notation, denoting the distributions by their probabilities). Fur-
thermore, we simplify the constants using that

αiM
w?n+1

w?iM
≥
w?n+1

w?iM
≥ 1 ,

with equality only if iM = n+ 1. Indeed, the optimal allocation will necessarily put more weights
on largest values, so w?iM ≥ w

?
n+1.

D Regret bounds of Section 3.2

In this section we provide the complete proof of Theorems 3.4, 3.7 and 3.5, presented in Section 3.2.
For each of these results we follow the same path: starting from Theorem 3.1, which holds in each
case, we then detail the terms nk(T ). This first part exhibits the first-order terms of the regret bound.
Then, we prove that condition (C2) holds (anti-concentration of the BCP, avoiding under-exploration
of the best arm). We justify in the proofs the hypothesis we consider and the theoretical tuning of the
parameters of the algorithms. In all cases, we justify that (C1) holds under the settings we consider.

We recall the terms we have to study, from Theorem 3.1.

First-order term

∀k ∈ {1, . . . ,K}, : nk(T ) = E

[
T−1∑
r=1

1(k ∈ Ar+1, `
r = 1)

]
.
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Condition (C2) For any µ < µ1, and any n1(T ) = o(log T ) it holds that

n1(T )∑
n=1

EXn∼νn1

[
1(µ(Xn) ≤ µ)

Pw∼Dn+1
(µ̃(Xn, µ) ≥ µ)

]
= o(log(T )) .

The proofs of the three theorems share common elements, so before instantiating the proof for each
algorithm we further work on these two terms under general assumptions.

D.1 General proof sketches

In this section we derive the parts of the proofs of condition (C2) and (C3) that are shared by all three
instances of DS.

Further characterization of nk(T )

In this section we consider an arm k ∈ {2, . . . ,K}, of distribution νk.

Lemma D.1. Assume that νk satisfies (C1), and denote X kn = (Xk
1 , . . . , X

k
n) a set of n random

variables drawn from νk. Assume that for any n ∈ N there exists a subset Bk,n ⊂ Rn satisfying

1. X kn ⊂ Bk,n ⇒ P
(
µ̃(X kn , µ) ≥ µ

)
≤ exp (−fk(n,Bk,n, µ)), for a DS index µ̃, a fixed

threshold µ ∈ R and a fixed strictly increasing function fk.

2.
∑T−1
n=1 P

(
X kn /∈ Bk,n

)
≤ CBk for some constant CBk .

If these two conditions hold, then it holds that

nk(T ) = mk(T ) +O(1) ,

where mk(T ) is the sequence satisfying fk(nk(T ),Bk,n, µ1 + ε) = log T .

Proof. We first split the sequence (1 (k ∈ Ar+1, `
r = 1))r=1,...,T−1 in a pre-convergence phase, the

size of which we control, and a post-convergence phase, for which arm k has been pulled enough
times so we can use concentration (C1) to hold. To this end, we define a function mk(T ) without
specifying it for the moment and write

E

[
T−1∑
r=1

1(k ∈ Ar+1, `
r = 1)

]
≤ E

[
T−1∑
r=1

1(k ∈ Ar+1, `
r = 1, Nk(r) < mk(T ))

]

+ E

[
T−1∑
r=1

1(k ∈ Ar+1, `
r = 1, Nk(r) ≥ mk(T ))

]

≤mk(T ) + E

[
T−1∑
r=1

1(k ∈ Ar+1, `
r = 1, Nk(r) ≥ mk(T ))

]
,

where we used that for any n, the event {k ∈ Ar+1, Nk(r) = n} can happen at most once. The next
step is to further split the second term by defining a "good event" of large probability under which
(k ∈ Ar+1) has a low probability. As we aim at keeping some level of generality in this section, we
simply define this event as

Grk =
{
X kNk(r) ∈ Bk,Nk(r)

}
∩
{
µ(XN1(r)) ≤ µ1 − ε1

}
,

where ε1 > 0, and use the same notations as in Appendix B for the other terms.

We further define the event
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Wr
k = {k ∈ Ar+1, `

r = 1, Nk(r) ≥ mk(T )} .

Then, it holds that

nk(T ) ≤ mk(T ) + E

[
T−1∑
r=1

1(Wr
k ,Grk) +

T−1∑
r=1

1(Wr
k , Ḡrk)

]
.

We use the first assumption in the lemma to upper bound the left-hand term as

E

[
T−1∑
r=1

1(Wr
k ,Grk)

]
= E

T−1∑
r=1

T−1∑
n=mk(T )

1 (k ∈ Ar+1, `
r = 1, Nk(r) = n,Grk)


≤ E

T−1∑
r=1

T−1∑
n=mk(T )

1

(
µ̃
(
X kNk(r),XN1(r)

)
≥ µ(XN1(r)), Nk(r) = n,Wr

k ,Grk
)

≤ E

T−1∑
r=1

T−1∑
n=mk(T )

P
(
µ̃
(
X kNk(r),XN1(r)

)
≥ µ(XN1(r))

∣∣∣X kNk(r),XN1(r)

)
1(Nk(r) = n,Wr

k ,Grk)


≤E

T−1∑
r=1

T−1∑
n=mk(T )

exp
(
−f
(
n,Bk,n, µ(XN1(r))

))
1(k ∈ Ar+1, `

r = 1, Nk(r) = n,Grk)


≤E

T−1∑
r=1

T−1∑
n=mk(T )

exp (−f (n,Bk,n, µ1 − ε1))1(k ∈ Ar+1, Nk(r) = n)

 ,

where the last two lines come directly from Assumption 1 in the lemma ans using the second term of
Grk involving arm 1. We complete this step of the proof by further using the monotonicity of f in n,

E

[
T−1∑
r=1

1(Wr
k ,Grk)

]
≤e−f(mk(T ),Bk,mk(T ),µ1−ε1)E

T−1∑
r=1

T−1∑
n=mk(T )

1(k ∈ Ar+1, Nk(r) = n)


≤ e−f(mk(T ),Bk,mk(T ),µ1−ε1)E

 T−1∑
n=mk(T )

1


≤ T exp

(
−f(mk(T ),Bk,mk(T ), µ1 − ε1)

)
.

We handle the right-hand term before discussing this result, and directly write the union bound
Ḡrk ⊂

{
X kNk(r) /∈ Bk,Nk(r)

}
∪
{
µ(XN1(r)) > µ1 − ε1

}
, that leads to
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E

[
T−1∑
r=1

1(Wr
k , Ḡrk)

]
= E

[
T−1∑
r=1

1(k ∈ Ar+1, `
r = 1, Nk(r) ≥ mk(T ), Ḡrk)

]

≤E

[
T−1∑
r=1

1(`r = 1, µ(XN1(r)) > µ1 − ε1)

]
︸ ︷︷ ︸

A1

+ E

[
T−1∑
r=1

1(k ∈ Ar+1, Nk(r) ≥ mk(T ),X kNk(r) /∈ Bk,Nk(r))

]
︸ ︷︷ ︸

A2

,

where the two terms A1 and A2 depend respectively only of arm k and arm 1. The first term can be
handled thanks to condition (C1) on arm 1, and using that the leader has necessarily a linear number
of samples,

A1 ≤
T−1∑
r=1

E [1(N1(r) ≥ dr/Ke, µ̄r1 ≥ µ1 + ε1)]

≤
T−1∑
r=1

r∑
n=dr/Ke

P(µ(XN1(r)) ≥ µ1 − ε1)

≤
T−1∑
r=1

r∑
n=dr/Ke

e−nI1(µ1−ε1)

≤
T−1∑
r=1

re−dr/KeI1(µ1−ε1)

= O(1) .

We now upper bound A2, using again that
∑T−1
r=1 1(k ∈ Ar+1, Nk(r) = n) ≤ 1 for any n ∈ N,

A2 ≤
T−1∑
r=1

T−1∑
n=mk(T )

E
[
1(k ∈ Ar+1, Nk(r) = n,X kNk(r) /∈ Bk,Nk(r))

]

≤
T−1∑

n=mk(T )

P
(
X kn /∈ Bk,n

)
.

Combining these results, we obtain a bound on nk(T ) for arm k as

nk(T ) ≤ mk(T ) + Te−f(mk(T ),Bk,mk(T ),µ1−ε1) +

T−1∑
n=mk(T )

P
(
X kn /∈ Bk

)
+O(1) .

We see that if Bk,n is designed to make the series convergent, and mk(T ) is chosen as the sequence
satisfying f(mk(T ),Bk,mk(T ), µ1 − ε1) = log T , then we finally obtain

nk(T ) ≤ mk(T ) +O(1) .

Thanks to this result, when we will adapt the proof for each algorithm we will be able to combine
Lemma D.1 with Lemma C.1 to directly look for a proper choice of the set Bk,n.
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Condition (C2)

In this section we take the result of Corollary C.5.1 and use it to derive a ratio between the likelihood
of an empirical distribution and its BCP in the case of multinomial distributions. This result will be
useful in the proofs of Theorem 3.4 and 3.5 where we use an adaptive discretization in order to work
with multinomial distributions.
Lemma D.2 (Balance between the likelihood and the BCP for multinomial distribution). Consider
observations X = (X1, . . . , Xn, B) and denote X̄ = maxX ≥ µ ∈ R. Now consider a multinomial
distribution νn supported on (X1, . . . , Xn) and of probability pn ∈ Pn.

We fix some N ∈ N and denote by βN ∈ NN a random vector denoting the counts of each item
X1, . . . , Xn when drawingN observations from νn. Then for any vector β = (β1, . . . , βn) satisfying∑n
i=1 βi = N and βtX ≤ µ for some µ ∈ R, it holds that

P(βN = β)

Pw∼Dir((βt,1))(
∑n
i=1 wiβi + wn+1B ≥ µ)

≤ exp

(
−n
[
KL

(
β

N
, pn

)
−KX̄inf

(
β

N
, µ

)])
.

Proof. Lemma 2.1.6 in (Dembo and Zeitouni, 2010) provides that for a multinomial distribution it
holds that

P(βN = β) =
N !∏n
i=1 βi!

n∏
i=1

pβin,i =
N !∏n
i=1 βi!

exp (−N(KL(β/N, pn) +H(β/N)) ,

where H denotes the entropy. Then, Corollary C.5.1 directly provides the result as all the constant
terms are equal, and the entropy term can be simplified.

D.2 Proof of Theorem 3.4: regret bound for BDS

We recall that two hypothesis are considered for BDS: (B1) distributions are bounded and the upper
bound of the support is known, and (B2) the upper bound is not known but for each distribution νk it
holds that Pνk([B − γ,B]) ≥ p for some known γ, p. We know restate the Theorem.
Theorem 3.4 (Optimality of BDS). If ∀k ∈ {2, . . . ,K} , νk ∼ Fγ,ρB , choosing the exploration
bonus of Equation 6 with ρ ≥ −1/ log(1− p) ensures that

E[Nk(T )] ≤ log(T )

KBρ,γinf (νk, µ1)
+O(1) ,

where Bρ,γ = max (B + γ, µ1 + ρEνk [(µ1 − µk)+])).

Proof. We denote X̄ = maxX∈X X and for X = (X1, . . . , Xn),

BBDS(X , µ) = max

{
X̄ + γ, µ+ ρ

1

n

n∑
i=1

(µ−Xi)
+

}
,

where parameter γ directly comes from the hypothesis on the distributions, and we justify below
the tuning of parameter ρ as a function of p. First of all, the bounded support hypothesis ensures
condition (C1) thanks to Hoeffding inequality, with a rate function Ik(x) = 2(x−µk)2

B2 . We can now
focus on the expression of nk(T ) and on proving condition (C2).

First-order term

We use Lemma D.1. To define the large-probability event Bk,n, we consider the Levy distance

d(νF , νG) = inf{ε > 0 : G(x− ε)− ε ≤ F (x) ≤ G(x+ ε) + ε} ,

where νF and νG are two distributions of respective cdf F and G.

In this section, we fix some ε > 0 (different than the one from Th. 3.1 but we avoid an index for
simplicity) and consider Bk,n as a Levy ball of size ε around the true distribution:
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Bk,n {X ∈ Rn : d(νX , νk) ≤ ε} ,

The objective is to use the continuity of the KBinf function in its first argument with respect to the Levy
distance (see e.g Honda and Takemura (2010)). From now on we denote (in this section) distributions
by their cdf: let Fk,n be the empirical distribution associated with the set X kn and F̃k,n be the biased
empirical distribution to which the bonus of the BDS algorithm has been added. We first prove that
Fk,n belongs to the Levy ball with high probability, using the relation between the Levy distance and
the supremum norm

d(Fk,n, Fk) ≤ ||Fk,n − Fk||∞ .

We use the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see e.g Massart (1990)), that states that

P (||Fk,n − Fk||∞ ≥ ε) ≤ 2e−2n ε2 .

Hence, the convergence of
∑+∞
n=1 P (d(Fk,n, Fk) ≥ ε) is direct. Now considering the event ||Fk,n −

Fk||∞ ≥ ε, we prove that the biased distribution F̃k,n (adding the bonus in the set of observations)
is also close to Fk in the sense of the supremum norm. First, the triangular inequality provides
||F̃k,n − Fk||∞ ≤ ||Fk,n − Fk||∞ + ||F̃k,n − Fk,n||∞. We upper bound the second term with

|F̃k,n(x)− Fk,n(x)| ≤max

{∣∣∣∣ k

n+ 1
− k

n

∣∣∣∣ , ∣∣∣∣ k

n+ 1
− k

n

∣∣∣∣}
≤max

{∣∣∣∣ k

n(n+ 1)

∣∣∣∣ , ∣∣∣∣ n− k
n(n+ 1)

∣∣∣∣}
≤ 1

n+ 1
,

so if ||Fk,n − Fk||∞ ≤ ε, then ||F̃k,n − Fk||∞ ≤ ε+(n+ 1)−1, and finally

||Fk,n − Fk||∞ ≤ ε⇒ d(F̃k,n, Fk) ≤ ε+
1

n+ 1
.

Hence, if we combine these results we obtain that for n large enough F̃k,n is also in a Levy ball
around Fk, of size ε′ slightly larger than ε, with large probability.

Now that the event Bk,n is defined and we derived its properties, we can find the function f in
Lemma D.1 in the case of BDS. We denote Xn+1 the bonus of BDS and use Lemma C.1 to obtain

Pw∼Dn+1

(
n∑
i=1

wiXi + wn+1BBDS(X , µ) ≥ µ

)
≤ e−(n+1)KBBDS(X ,µ)

inf (F̃k,n,µ) ,

Furthermore, under the event Bk,n and the fact that the mean of the leader is concentrated around its
true mean the bonus of the BDS index is upper bounded by Bρ,γ + ε′, for some ε′ > 0. We use the
continuity of KBinf with respect to 1) the first argument in terms of the Levy distance, 2) the second
argument (e.g w.r.t the euclidian norm), 3) the upper bound: for any ε0 > 0, we can calibrate the ε in
the Levy ball to obtain

Pw∼Dn

(
n+1∑
i=1

wiXi ≥ µ

)
≤ e−(n+1)(KBρ,γinf (νk,µ1)−ε0) ,

hence we conclude this part by setting exactly mk(T ) = log(T )

KBρ,γinf (νk,µ1)−ε0
.
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Condition (C2)

We now study the quantity

En = EXn∼νn1

[
1(µ(Xn)) ≤ µ)

P (µ̃(Xn, µ) ≥ µ)

]
when µ < µ1. We first use Lemma 3.3 to obtain the lower bound on the BCP

Pw∼Dn+1
(µ̃(Xn, µ) ≥ µ) ≥ e−

n
ρ ,

with ρ the parameter chosen in the component of the bonus that follows Equation 5

Using this results and (C1), we obtain a first bound

En ≤ e−n(I(µ)−1/ρ) ,

which is sufficient to obtain (C3) if I1(µ) ≥ 1/ρ. We then consider the case when it is not
sufficient, and now use the hypothesis P([B − γ,B]) ≥ p and the second component of the bonus,
X̄n + γ := maxXi + γ to obtain

En ≤EXn
[
1(µ(Xn) ≤ µ)(1(X̄n ≤ B − γ) + 1(X̄n ≥ B − γ))

P (µ̃(Xn, µ) ≥ µ)

]
≤ (1− p)ne

n
ρ︸ ︷︷ ︸

En,1

+EXn
[
1(µ(Xn) ≤ µ)1(X̄n + γ ≥ B)

P (µ̃(Xn, µ) ≥ µ)

]
︸ ︷︷ ︸

En,2

.

The two terms correspond to the two possible expressions for the bonus. The term En,1 gives the
sufficient condition for the tuning of ρ in Theorem 3.4 with

ρ >
−1

log(1− p)
⇒

+∞∑
n=1

En,1 = O(1) .

In the second term, the exploration bonus is larger than B, so we can use the same proof scheme as
in Riou and Honda (2020), which is also the case (B1) we consider here. First, we discretize the
interval [0, B] in equally sized bins of size η, and consider the truncated variables X̃i = ηbXi/ηc.
η is chosen small enough to ensure that µ1 − η > µ, i.e the truncated distribution still has a mean
larger than µ. An upper bound of En,2 is obtained by replacing the variables Xi by X̃i. We associate
a set of observations (X̃1, . . . , X̃n) with the vector βn of size S = dB/ηe which counts the number
of observations falling in each bin. The number of possible values for βn is upper bounded by nS ,
and we use Lemma D.2 to obtain

P(β)

Pw∼Dir(β̃)

(
wtβ̃ ≥ µ

) ≤ exp
(
−n
[
KL(β/n, p̃1)−KX̄+γ

inf (β/n, µ)
])

≤ exp
(
−n
[
KL(β/n, p̃1)−KBinf(β/n, µ)

])
≤ exp

(
−n
[
KBinf(β/n, µ1 − η)−KBinf(β/n, µ)

])
,

As µ < µ1 − η, there exists some δ > 0 satisfying ∀β : βtX̃ < µ, KBinf(β/n, µ1 − η) −
KBinf(β/n, µ) > δ. So finally, denoting C the set of the possible count vectors β, it holds that

En,2 ≤
∑
β∈C

e−n[KBinf (β/n,µ1−η)−KBinf (β/n,µ)] ≤ nSe−nδ ,

The two components of the bonus ensures that condition (C2) is satisfied for the distribution that
satisfies hypothesis of Theorem 3.4. This completes the proof of the theorem.
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D.3 Proof of Theorem 3.5: logarithmic regret of QDS for semi-bounded supports

Theorem 3.5 (Logarithmic Regret of QDS). Consider a bandit model ν = (ν1, . . . , νK) satisfying
∀k, νk ∈ Fα[b,+∞) for some b > −∞ (lower-bounded support) and a known α > 0. Then, for any
ε0 > 0 small enough QDS with any parameters α′ < α and ρ ≥ (1 + α′)/α′2 satisfies

E[Nk(T )] ≤ log T

KMC
k

inf (Tα(νk), µ1)− ε0

+O(1) ,

with MC
k = max{Cα(νk), µ1 + ρEν [(µ1 −X)+], and Tα is the truncation operator we defined.

Proof. We start by simply stating that conditions (C1) hold, for the same reason as for RDS because
we consider again light-tailed distributions. The rest of the proof is similar to the proof of Theorem 3.4
for BDS.

Upper bounding nk(T )

We again want to use Lemma D.1, and formulate a high-probability event on the observations. First,
we can build a Levy ball around the true distribution to control the value of the quantile thanks to
DKW inequality. Secondly, we use as in RDS that the variable (µ−X)+ for X ∼ νk is light-tailed
and hence admits a good rate function I+

k thanks to Cramér’s theorem.

Bk,n = {X ∈ Rn : dL(νX , νk) ≤ ε, |B(X , ρ, µ)−Bk,ρ,µ| ≤ ε1, Cα′(νX ) ≤ Cα′(νk) + ε2} ,
for some ε > 0, ε1, ε2 > 0, denoting νX the empirical distribution associated with a set X , Bk,ρ,µ =
µ+ ρ×Eνk [(µ−X)+], and defining the application Cα′ as the Conditional Value at risk for a level
α′. If νk is continuous, it simply holds that Cα′(νk) = Eνk [X|X ≥ q1−α′(νk)].

We consider
∑+∞
n=1 PXn (Xn /∈ Bk,n) and first refer the reader to the proofs of Theorem 3.4 and 3.7,

respectively for the terms corresponding to the Levy distance and the concentration of the bonus
(relying as we recall on the DKW inequality and a good rate function for the data-dependent bonus),
for empirical distribution we simply take the mean of all data larger than the empirical quantile
q1−α′(νX ). However, as in the proof of Theorem 3.7 we will be able to handle this thanks to the
concentration of Wasserstein metrics for light-tailed distribution, using that (Lemma 2 from Bhat and
L.A. (2019)) for two distributions ν and ν′ it holds that

|Cα(ν)− Cα(ν′)| ≤ 1

1− α′
W1(ν, ν′) .

Then we can again use Theorem 2 from Fournier and Guillin (2015) to obtain a concentration
inequality on this term. With all these results, it holds that

+∞∑
n=1

PXn (Xn /∈ Bk,n) < +∞ ,

so the observations are in Bk,n with large probability, hence we can now consider the BCP under
Xn ∈ Bk,n. The difference compared with previous section is that this time the BCP is considered for
the truncated distribution T (νXn). However, this is not a problem as the upper bound of lemma C.1
still holds. Thanks to the aggregation properties of the Dirichlet distribution (see Appendix C.1 for
more details), the BCP with parameter (1, . . . , 1, nα) (of size n− nα′) is the same as the BCP with
parameters (1, . . . , 1) (of size n) with nα′ copies of the last term. Hence, the QDS index satisfies

P (µ̃(Xn, µ) ≥ µ) ≤ exp
(
−(n+ 1)KMXninf (T (νXn), µ)

)
.

If Xn ∈ Bk,n, then MXn is upper bounded by

MXn ≤ max (Cα′(νk), Bk,ρ,µ) + max(ε1, ε2) ,

We now define MC
k = max (Cα′(νk), Bk,ρ,µ), that is independent of the run of the bandit algorithm.
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Finally, the definition of the Levy distance ensures that d (νXn , νk) ≤ ε⇒≤ d (T (νXn), T (νk)) ≤ ε.
Hence, we can use the continuity of KMk

inf in all arguments (including MXn , see e.g Honda and
Takemura (2015)) and obtain that for any ε0 we can calibrate ε, ε1, ε2 in order to obtain

P (µ̃(Xn, µ) ≥ µ) ≤ exp
(
−(n+ 1)

(
KMC

k

inf (T (ν), µ)− ε0

))
,

which gives the first order term of Theorem 3.5 choosing mk(T ) = log T

KMkinf (T (νk),µ)−ε0
in Lemma D.1.

Condition (C2)

In this section we use the assumption that rewards are semi-bounded with a range [b,+∞]. Then, we
can find a value y and a discretization step η such that truncating the values Xi to min(Xi, y), and
truncating each Xi < y to X̃i = η

⌊
Xi
η

⌋
preserves the order of µ < µ̃1. Note that this value y does

not have to be known by the algorithm and is purely an artifact for the proof. This discretization is
similar to the proof of Theorem 3.4 in Appendix D.2. We denote S the number of items created by
the discretization, and β ∈ NS some vector of counts.

However, contrarily to the proof of BDS we directly try to use Lemma D.2 and consider for any
β ∈ NS : ||β||1 = n the quantity

Kβ = KL(β/n, ν̃1)−K
m
β̃

inf (β/n, µk) ,

where ν̃1 denote the discretized/truncated version of ν1 and mβ denotes the largest item with a
non-zero coefficient in β̃, which is itself β with an additional value associated with the bonus. We
recall that QDS summarizes the information larger than the empirical (1− α)-quantile by their mean
(i.e the CVaRα of the empirical distribution). The truncation in y does not change that, and will
simply makes this quantity smaller which will itself makes the BCP smaller (although not so much
with well chosen η, y). We use the result from Honda and Takemura (2010) (proof of Theorem 7)
stating that for any β

K
m
β̃

inf (β/n, µk) ≤ ∆̄n

Mβ − µ
,

As we know that Mβ is at least larger than the exploration bonus, we furthermore have

K
m
β̃

inf (β/n, µk) ≤ ∆̄n

ρ∆̄+
n
≤ 1/ρ .

This means that for any ξ > 0 it holds that KB ≥ ξ on all the sub-space of empirical distributions
satisfying KL(β/n, ν̃1) ≥ (1 + ξ)/ρ.

We now use Pinsker inequality to link the KL divergence with the total variation δ, in the sub-space
where KL(β/n, ν̃1) ≤ (1 + ξ)/ρ,

δ(β/n, ν̃1) ≤

√
1 + ξ

2ρ
.

If this quantity is small, we can control the probability of each measurable event. In particular, we
want the quantile used by the algorithm to be strictly larger than the (1−α)-quantile of the assumption
of Theorem 3.5. If the parameter of the condition of the theorem is α, and we run the algorithm with
a parameter α′ < α, then we know that if we properly tune ρ we will have Fk,n(q1−α(Fk)) < 1− α.
This means that the true quantile q1−α(νk) is present in the set Xn and is not truncated by the
algorithm. In particular, if ρ ≥ 1+α′

α′2 this is satisfied, and finally
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KL(β/n, ν̃1)−Kmβinf (β/n, µk) ≥ KFinf(β/n, µ1 − η)−Kq1−α′inf (β/n, µk)

≥ Kq1−αinf (β/n, µ1 − η)−Kq1−α′inf (β/n, µk)

≥ Kq1−α′inf (β/n, µ1 − η)−Kq1−α′inf (β/n, µk)

≥ κ ,

for some κ > 0 and thanks to the definition of the family Fα[b,+∞]. This result concludes the proof as
it ensures that condition (C2) is satisfied by the QDS algorithm on Fα[b,+∞].

D.4 Proof of Theorem 3.7: robust regret of RDS

Theorem 3.7 (Robust regret bound for RDS). Let ν = (ν1, . . . , νK) a bandit model satisfying
νk ∈ F` for all k. Consider any increasing sequence (ρn)n∈N with ρn → +∞, ρn = o(n). Then,
for T large enough the expected number of pull of any sub-optimal arm k in RDS is upper bounded
by

E[Nk(T )] ≤ nη,ε0k (T ) +O(1) ,

where for any η ∈ (0, 1], ε0 > 0, nη,ε0k (T ) is the sequence satisfying

nη,ε0k (T ) =
log T

η(∆k−ε0)
(Mk,n

η,ε0
k (T )−µ) , with Mk,n=max

{
F−1
k

(
exp

(
− 1

n2(log n)2

))
, ρn

}
.

In particular, if ρn = O(log n) then E[Nk(T )] = O(log(T ) log log(T )) for any light-tailed distribu-
tion νk ∈ F`.

Proof. We recall that the bonus function of RDS is B(X , ρn, µ) = µ + ρn
n

∑n
i=1(µ − Xi)

+, as
defined in equation 5, for a sequence (ρn)n∈N satisfying ρn → +∞ and ρn = o(n). We show that
with this simple bonus conditions (C2) hold for all light-tailed distributions.

Preliminary: concentration of the means We recall the definition of the family of light-tailed
distributions,

F` = {ν ∈ F(−∞,+∞) : ∃λν > 0,∀λ ∈ [−λν , λν ],Eν [exp(λX) < +∞]} .

Then, Cramér’s theorem (see e.g Theorem 2.2.3 in (Dembo and Zeitouni, 2010)) ensures the condition
(C1) for this family, with a good rate function that is defined with the Fenchel-Legendre transform of
each distribution, itself finite thanks to the existence of the MGF of the distributions in a neighborhood
of 0.

Concentration of the DS index

We again try to find a proper set Bk,n for observations Xn = (X1, . . . , Xn) that would allow to use
Lemma D.1. In this setting, we show that we only need to control the sample Xn through its mean,
the "positive gap" used in the bonus, and a range on its maximum value. Hence, we fix some ε > 0
and consider

Bk,n =
{
X ∈ Rn : µ(X ) ≤ µk + ε, µ(X+) ≤ ∆+

k + ε, σ(X , µ) ≤ σk,µ + ε, X̄ ∈ [mn,Mn]
}
,

where X+ is the set ((µ−X1)+, . . . , (µ−Xn)+), σ(X , µ) = 1
n

∑n
i=1(Xi − µ)2, X̄ denotes as in

other sections the maximum of the set X and (mn)n∈N, (Mn)n∈N are two fixed sequences.

We start with the two conditions {µ(X ) ≤ µk + ε} and {µ(X+) ≤ ∆+
k + ε} (sharing the same ε for

convenience). We already proved that condition (C1) holds as νk is light-tailed, thanks to Cramér’s
theorem, but this is true also for the distribution of a random variable (µ−X)+ for X ∼ νk, as the
transformed distribution is still light-tailed. Hence, thanks to Cramér’s theorem there exists also a
rate function I+

k satisfying P
(
µ(X+

n ) ≥ ∆+
k + ε

)
≤ exp

(
−nI+

k (∆+
k + ε)

)
, and then
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+∞∑
n=1

(P (µ(Xn) ≥ µk + ε) +P
(
µ(X+

n ) ≥ ∆+
k + ε

))
≤

+∞∑
n=1

(
exp(−nIk(µk + ε)) + exp(−nI+

k (∆+
k + ε))

)
≤ 1

1− e−Ik(µk+ε)
+

1

1− e−I+
k (∆+

k +ε)
.

We now consider the event with the quadratic sum. To handle this, we consider the Wasserstein
metric W2 between the empirical distribution of X and the true distribution νk. First we recall the
definition of this metric considering two distributions ν and ν′ of real random variables

Lp(ν, ν′) = inf

{∫
R×R
|x− y|pξ(dx, dy) : ξ ∈ H(ν, ν′)

}
,

where H(ν, ν′) is the set of all probability measures on R × R with marginals ν and ν′. Then,
the Wasserstein metric Wp(ν, ν

′) is defined as Wp(ν, ν
′) = Lp(ν, ν′)1/p for p > 1. Two reasons

motivate the use of this metric in our case: 1) concentration inequalities exist for Lp for light-tailed
distribution, and 2) the moments of order p are continuous with respect to the Wasserstein metric Wp

(see Theorem 6.9 in Villani (2008)). These two properties make Wp a good substitute for the Levy
metric we used for bounded distributions. Here we choose W2 as we want to control moments of
order 2, and obtain with the parameters of our problem the following concentration inequality from
Fournier and Guillin (2015) (Theorem 2). Denoting ν̄k,n the empirical distribution of Xn, there exist
some constants c, C satisfying for any x ≤ 1

P (L2(νk,n, νk) ≥ x) ≤ C
[
exp(−cnx2) + exp(−c(nx)

1
3 )
]
. (10)

The coefficient 1/3 comes from choosing ε as (1 − ε)/2 = 1/3 in the statement of the Theorem
(which is different from the ε in this proof). We see that this inequality is dominated by the
second term. Hence, starting from our target, for any ε > 0, there exists ε1 > 0 satisfying
W2(νk,n, νk) ≤ ε1 ⇒ σ(X , µ) ≤ σk,µ + ε. Furthermore, the series of term P(W2(νk,n, νk) ≥ ε1)
converges thanks to Equation 10, which concludes the part of the proof corresponding to this term.

Now that the events about sample means are handled, we investigate possible values for the sequence
mn and Mn that would allow Bk,n to happen with high probability. The maximum X̄n of a set of n
i.i.d random variables Xn = (X1, . . . , Xn) has an explicit distribution, which is (in terms of the cdf
Fk of νk) for any x ∈ R,

PXn∼νnk (X̄n ≤ x) = Fk(x)n .

We first look at the term Mn, we calibrate it to ensure that P(X̄n ≤Mn) ≥ 1− 1
n log(n)2 , so that

Mn = F−1
k

((
1− 1

n(log n)2

) 1
n

)
≤ F−1

k

(
exp

(
− 1

n2(log n)2

))
.

This way,
∑

P(X̄n ≤Mn) ≥ 1− 1
n log(n)2 converges. Then we consider mn, and this time we want

P(X̄n ≤ mn) ≤ 1
n log(n)2 to ensure the same convergence guarantees. We obtain

mn = F−1
k

(
1

n(log n)2

1
n

)
= F−1

k

(
exp

(
− log n+ 2 log log n

n

))
.

Combining all these results, we obtain

T−1∑
n=1

PXn∼νnk (Xn /∈ Bk,n) = O(1) .
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We now use the first part of Lemma C.1 and the fact that for any η ∈ [0, 1) and x ∈ (−∞, η],
− log(1 − x) ≤ x + 1

1−η
x2

2 . Denoting MXn = max
(
X̄n, B(Xn, ρn, µ)

)
, Xn+1 = B(Xn, ρn, µ)

and using the representation of Dirichlet samples as normalized exponential variables, Chernoff
inequality provide

Pw∼Dn+1

(
n∑
i=1

wiXi + wn+1B(Xn, ρn, µ) ≥ µ

)

= PR1,...,Rn+1∼E(1)

(
n+1∑
i=1

Ri(Xi − µ) ≥ 0

)

≤ inf
λ∈[0, η

MXn−µ
)

n+1∏
i=1

ERi∼E(1)

[
eλRi(Xi−µ)

]
≤ exp

(
−
n+1∑
i=1

log

(
1− η Xi − µ

MXn − µ

))

≤ exp

(
−

n∑
i=1

log

(
1− η Xi − µ

MXn − µ

)
− log(1− η)

)

≤ 1

1− η
exp

(
−

n∑
i=1

log

(
1− η Xi − µ

MXn − µ

))

≤ 1

1− η
exp

(
n∑
i=1

(
η
Xi − µ
MXn − µ

+
η2

2(1− η)

(
Xi − µ
MXn − µ

)2
))

=
1

1− η
exp

(
−nη ∆̄n

MXn − µ
+ n

η2

2(1− η)

σ̄n(µ)2

(MXn − µ)2

)
,

where ∆̄n = 1
n

∑n
i=1 µ−Xi, σ̄2

n(µ) = 1
n

∑n
i=1(Xi − µ)2.

We recall that we consider this upper bound under the event Xn ∈ Bk,n, which ensures that 1)
X̄n ∈ [mn,Mn] with the sequences we defined, 2) ∆̄n ≥ µ− µk + ε, 3) the bonus is upper bounded
by µ+ ρn × (∆+

k + ε), and 4) the quadratic deviation satisfies σ̄n(µ) ≤ σk,µ + ε. For any ε0 > 0, if
we further assume that Mn = o(m2

n), for any n large enough these results finally provide

P (µ̃(Xn, µ) ≥ µ) ≤ 1

1− η
exp

(
−nη ∆k − ε

max(Mn, Bn)− µ
+ n

η2

2(1− η)

(σk,µ + ε)2

(mn − µ)2

)
≤ 1

1− η
exp

(
−nη ∆− ε0

max(Mn, Bn)− µ

)
,

where Bn = µ+ ρn (Eνk [(µ−X)+] + ε). The condition Mn = o(m2
n) is satisfied for light-tailed

distributions, as they generally have at most a poly-logarithmic growth of the maximum (e.g log(n)
for exponential tails,

√
log n for gaussian tails, . . . ) and so Mn and mn are actually of the same order

of magnitude. We then recover all the terms of Theorem 3.7 by matching the exponent of the upper
bound with − log T .

To conclude this part, the light-tailed hypothesis allows to provide an asymptotic upper bound on the
expected number of pulls of each sub-optimal arm for the RDS index. Then, the choice of mk(T )
in Lemma D.1 can be mk(T ) = O(log(T )Mlog(T )) if Mn is a power of log. The algorithm then
achieves asymptotically a robust sub-linear instance dependent regret.

Remark D.3. The concentration bound we use on the Dirichlet weighted average requires the control
of the second empirical decentred moment σ̄2

n(µ) since we use− log(1−x) ≤ x+ 1
1−η

x2

2 . This control

39



follows from the existence of exponential moments i.e νk ∈ F`. A tighter analysis is possible, indeed
for any q > 0 and η ∈ (0, 1) there exists Cq,η > 0 such that ∀x ≤ η,− log(1−x) ≤ x+Cq,η |x|1+q

(C1,η = 1
1−η ), relaxing the requirement to a mere control of the moment of order 1+q in the topology

of W1+q (for which concentration results are similar to the one we provide, for the families we
consider). Furthermore, it would relax the condition relating mn and Mn to Mn = o(m1+q

n ).

Condition (C2)

We use the left-hand term of Lemma 3.3 and obtain a lower bound of the BCP in e−
n
ρn . Combining

this result with condition (C1) we obtain

En ≤ e−n(I1(µ)−1/ρn) ,

and for n large enough ρn > 1/I1(µ), which is sufficient to obtain the convergence of
∑+∞
n=1En. If

we choose a sequence (ρn) that is strictly increasing and of first term ρ1, we see that if I1(µ) > ρ1

then the term En is exponentially decreasing from the start.

E Examples of distributions fitting the family of QDS

We first show a given distribution ν can always be fitted in Fα[b,+∞) at the cost of a higher exploration
bonus ρ, thus satisfying the quantile condition of Theorem 3.5.
Lemma E.1. LetF ⊂ F[b,+∞) a base family of distributions with continuous cdf and α ∈ (0, 1). For
all ν ∈ F and µ > Eν [X], there exists ρ > 0, M = M(ρ) such that KM

inf (Tα (ν) , µ) ≤ KFinf (ν, µ).

Proof. Let M = max
{

CVaRα(ν), µ+ ρEν
[
(µ−X)+

]}
. By construction, the support of Tα(ν) is

upper bounded by M and µ <M, therefore it follows from Theorem 8 in Honda and Takemura (2010)
that KM

inf (Tα(ν), µ) = maxλ∈[0, 1
M−µ ] ETα(ν) [log (1− λ(X − µ))]. It follows from the concavity

of log that, for λ ∈ [0, 1
M−µ ],

ETα(ν) [log (1− λ(X − µ))] ≤ −ETα(ν) [λ(X − µ)]

= λ
(
µ− ETα(ν) [X]

)
= λ

(
µ− Eν

[
X1X≤q1−α(ν)

]
− ETα(ν)

[
X1X>q1−α(ν)

])
= λ

(
µ− Eν

[
X1X≤q1−α(ν)

]
− αCα(ν)

)
= λ

(
µ− Eν

[
X1X≤q1−α(ν)

]
− αEν [X|X > q1−α(ν)]

)
= λ

(
µ− Eν

[
X1X≤q1−α(ν)

]
− Eν

[
X1X>q1−α(ν)

])
= λ (µ− Eν [X]) ,

by definition of C1−α(ν) and the conditional expectation. Since µ > Eν [X], the maximum of the
RHS in λ is attained at the rightmost point, which yields

KM
inf (Tα(ν), µ) ≤ µ− Eν [X]

M− µ
.

For ρ > 0 large enough, we have M = µ+ ρEν [(µ−X)+] which further simplifies as

KM
inf (Tα(ν), µ) ≤ µ− Eν [X]

ρEν
[
(µ−X)+

] .
Therefore for ρ large enough, in particular ρ ≥ µ−Eν [X]

Eν [(µ−X)+]KFinf (ν,µ)
, we have

KM
inf (Tα(ν), µ) ≤ KFinf (ν, µ) .

40



The bound on ρ given in the above lemma can be rather loose because of the crude concave inequality
we use. It also comes at the price of increasing ρ, which may hurt the performances of QDS due to
overexploration. We now show that this quantile condition can be calculated almost in closed-form
and is naturally satisfied by some classical families of distributions.

E.1 Exponential

Let F = (νθ)θ∈R∗+
with density pθ(x) = θe−θx1x≥0. We summarize in the below lemma a number

of explicit formulas for the Kinf operators and quantiles of νθ.

Lemma E.2 (Some statistics of exponential distributions). Let 0 < φ < θ and α ∈ (0, 1).

(i) Eθ[X] = 1
θ .

(ii) q1−α(νθ) = − logα
θ .

(iii) Eθ [X|X ≥ q1−α(νθ)] = 1
θ + q1−α(νθ).

(iv) Eθ
[(

1
φ −X

)
+

]
= 1

φ −
1
θ

(
1− e−θ/φ

)
.

(v) KFinf(νθ,
1
φ ) = φ

θ − log φ
θ − 1.

Proof. (i)-(iv) result from straightforward integral calculations. (v) is a direct consequence of F being
a SPEF, which implies KFinf(νθ,

1
φ ) = KL(νθ, νφ), which has the stated closed-form for exponential

distributions.

Using these formulas, we numerically compute KM(ρ)
inf as a function of ρ by solving the convex

dual problem (see Honda and Takemura (2010)) and compare it to KFinf . Conversely, for a fixed
exploration bonus ρ, we compute the Kinf of the truncated distribution Tα(νθ) for a range of α. As
per intuition, smaller values of α, corresponding to smaller truncations of the support, help satisfy the
Kinf condition. Results are reported in Figure 3.
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Figure 3: Comparison of KM(ρ,α)
inf (Tα(νθ),

1
φ ) and KFinf(νθ,

1
φ ) for the exponential distribution E(θ)

with θ = 1
2 , φ = 1

3 . Left: α = 5%. Right: ρ = 8. Admissible regions for ρ and α are shaded in
green.

E.2 Gaussian

Let σ > 0 and Fσ = (νθ)θ∈R with density pθ(x) = 1√
2πσ

e−
(x−θ)2

2σ2 . We recall some useful statistics
of the SPEF of fixed variance Gaussian distributions.
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Lemma E.3 (Some statistics of fixed variance Gaussian distributions). Let θ < φ and α ∈ (0, 1).

We denote Φ(x) = 1√
2π

∫ x
−∞ e−

y2

2 dy the standard Gaussian cdf.

(i) Eθ[X] = θ.

(ii) q1−α(νθ) = θ + σΦ−1 (1− α).

(iii) Eθ [X|X ≥ q1−α(νθ)] = θ + σ
α
√

2π
e−

Φ−1(1−α)
2 .

(iv) Eθ
[
(φ−X)+

]
= (φ− θ) Φ

(
φ−θ
σ

)
+ σ√

2π
e−

(φ−θ)2

2σ2 .

(v) KFσinf (νθ, φ) = (φ−θ)2

2σ2 .

The proof is similar to that of the previous lemma; in particular (v) uses the fact that Fσ forms a
SPEF. Results are reported in Figure 4. The lighter right tail of Gaussian distributions, compared to
that of exponential distributions, results in much less stringent conditions on α and ρ; in other words,
Gaussian distributions are "easier" to summarize with the truncation and conditional Value-at-Risk
operator.
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Figure 4: Comparison of KM(ρ,α)
inf (Tα(νθ), φ) and KFinf(νθ, φ) for the Gaussian distributionN (θ, σ2)

with θ = 0, σ = 1, φ = 1. Left: α = 5%. Right: ρ = 1. Admissible regions for ρ and α are shaded
in green.

F Additional Experiments

We present in this section various experimental results for the DS algorithms. First, we expand on
the empirical analysis of the DSSAT bandit problem introduced in Section 4 and compare various
competitor algorithms. In particular, we show that each of the three settings we introduced, namely
bounded with unknown but detectable upper bound (BDS), unbounded with a quantile condition
(QDS) and robust (RDS), are eligible assumptions for simulated grain yields, providing new modeling
tools for the practitioner.

Going further, we detail another setting for which QDS and RDS apply but that is outside the scope
of SPEF algorithms: the Gaussian mixtures distributions. This may be of practical relevance as
Gaussian mixtures can be used to estimate arbitrary densities.

We also test the sensitivity of the DS algorithms to their exploration bonus. For BDS, we consider
a toy bandit problem with uniform arms and provide heuristics to tune the hyperparameter ρ that
complete the theoretical recommendations. For RDS, we follow the experimental setting of the robust
UCB for light-tailed distributions presented in Ashutosh et al. (2021) and show the superiority of the
Dirichlet Sampling approach for different bonus functions ρn.

Finally, we note that a by-product of our analysis of Boundary Crossing Probabilities provides
an asymptotic result on the empirical Kinf operator, at the root of the regret analysis of Dirichlet
Sampling. We illustrate it on a few classical families of distributions.
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F.1 Summary of competitor algorithms

We first present in Table 2 details on the algorithms we study in this section, with the hypothesis they
make on the distributions of the arms and the knowledge they require. This is a non-exhaustive list,
and for a more detailed (but still non-exhaustive) list we refer the reader to Section 1. Except for
UCB1 and Binarized TS (which are classical benchmarks), we choose the other competitors because
they target asymptotic optimality in the families of distributions they consider.

Table 2: Comparison of competitor bandit algorithms matching the Burnetas & Katehakis bound for
various assumptions on the arm distribution ν. Elements listed as parameters are considered prior
knowledge and are used within the algorithm.

Algorithm Scope for optimality Algorithm parameters

UCB1
Auer et al. (2002)

σ-sub-Gaussian
(not optimal) σ

Binarized TS
Agrawal and Goyal (2012)

Supp(ν) ⊂ [b, B]
(not optimal) b, B

kl-UCB
Cappé et al. (2013) SPEF (νθ)θ∈Θ KL(νθ, νθ′)

Empirical KL-UCB
Cappé et al. (2013) Supp(ν) ⊂ (b, B] B

IMED
Honda and Takemura (2015)

SPEF (νθ)θ∈Θ

EX∼ν [eλX ] < +∞ KL(νθ, νθ′)

Empirical IMED
Honda and Takemura (2015)

Supp(ν) ⊂ (−∞, B]
EX∼ν [eλX ] < +∞ B

RB-SDA
Baudry et al. (2020) SPEF (νθ)θ∈Θ Non-parametric

TS
Thompson (1933) Korda et al. (2013) SPEF (νθ)θ∈Θ Suitable SPEF prior/posterior

NPTS
Riou and Honda (2020) Supp(ν) ⊂ [b, B] B

F.2 DSSAT bandit

In this section, we present additional competitors (see Table 2) on the DSSAT bandit problem, a
7-armed stochastic bandit where each arm corresponds to a simulated dry grain yield for a given
planting date (see Figure 5).

Assuming yield distributions are bounded, one can use classical algorithms such as UCB1 (Auer et al.,
2002) or Thompson Sampling with Beta prior using the binarization trick introduced in (Agrawal and
Goyal, 2012). These algorithms enjoy logarithmic regret without the optimal rate of (Burnetas and
Katehakis, 1996).

Other bounded algorithms include empirical IMED (Honda and Takemura, 2015) and NPTS (Riou
and Honda, 2020). The former is based on the calculation of Kinf indices inspired by the Burnetas-
Katehakis lower bound. We distinguish IMED, which relies on a SPEF assumption to explicitly
compute the Kinf and therefore falls short of the scope of DSSAT, from empirical IMED, which
solves the convex optimization problems defined by the Kinf of the empirical distribution of each
arm and requires boundedness.

Such bounded algorithms require the explicit knowledge of an upper bound on the support of the
arms distributions. To represent the fact that a tight bound is sometimes unknown to the practitioner
(uncertain environment, possibility of yet unobserved black swan events...) we run two variants
of the above algorithms, one with the exact maximum yield across all simulated data, which we
believe is a strong prior information, and one with the same bound inflated by 50%, which we deem
a conservative estimate.

Finally, RB-SDA (Baudry et al., 2020) is a recent sub-sampling algorithm based on a similar round-
based structure as our DS algorithms. Its optimality is only established under tail conditions satisfied
by some SPEF; in particular, despite its appealing regret growth on this specific instance of DSSAT,
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0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

0 3179 8281 0 3317 8656 0 3504 7922

Figure 5: Distribution of simulated dry grain yield (kg/ha) for seven different planting dates over
106 samples. Reported on the x-axis are the distribution minimum, mean and maximum values. The
optimal arm is the third one (mean 3630 kg/ha).

it enjoys none of the theoretical guarantees of the previous algorithms and is shown for empirical
comparison only. Note that although it has been analyzed under strong parametric assumptions, the
algorithm itself is non-parametric, and in particular is agnostic to the choice of the upper bound.

We run the three instances of DS algorithms, which we believe capture three aspects of the DSSAT
problem that are of practical interest: the boundedness without the need to know the bound a priori
(BDS), the robustness in face of unknown distributions (RDS) or the assumption that the conditional
Value-at-Risk at some defined level α is a meaningful summary of tail statistics (QDS). All three
compares similarly with the other optimal algorithms using the exact upper bound, RDS being the
overall winner, and significantly outperform their conservative counterparts.

Results are reported in Figure 6 and Table 3. As expected, UCB1 and binarized TS perform poorly
on the DSSAT problem, hinting that this particular bandit instance is not easy and requires more
sophisticated methods. RB-SDA achieves good performances but exhibits larger dispersion than other
methods (95% quantile is 0.99× 106, standard deviation is 0.26× 106), meaning that some runs in
the Monte Carlo simulations suffer high regret; we interpret this as evidence that RB-SDA operates
outside its theoretical scope here and is therefore not backed by strong regret guarantees. The DS
algorithms achieve similar or even slightly better regret than empirical IMED and NPTS using the
prior knowledge of the true upper bound. However the latter two suffer from using the conservative
upper bound in place of the true bound. Note that contrary to RB-SDA, empirical IMED and NPTS
remain theoretically sound in both the prior knowledge and conservative case, but the larger bound
drives the exploration-exploitation balance towards more exploration than is optimal. Finally, the
tuning of the ρ bonus in the DS algorithms is done using plausible heuristics (see Appendix F.4) and
have not been optimized to suit this particular problem.

F.3 Gaussian Mixture

Many real-world situations (loss profile of a portfolio of financial assets, crop yields, statistics of
heterogeneous populations...) exhibit multimodal distributions. The Gaussian mixture model is
perhaps the simplest example of such distributions and is ubiquitous in many areas of machine
learning and engineering (speech recognition, clustering...), in particular as a nonparametric model
for kernel density estimation. Still, to the best of our knowledge, it escapes the scope of current
optimal bandit methods as it is neither bounded nor SPEF. Thanks to the different sets of assumptions
in which they operate, both RDS and QDS are eligible algorithms to tackle the problem of sequential
decision-making in a Gaussian mixture environment, at the cost of slightly larger-than-logarithmic
regret and slightly lower Kinf rate respectively.

We consider two arms distributed as a 50%-50% independent mixture of N (−0.3, 0.52) and
N (1.3, 0.52) and a 10%-80%-10% independent mixture of N (−1.5, 0.52), N (0.6, 0.52) and
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Table 3: Regret on DSSAT bandit at T = 104, over N = 5000 independent simulations. Scale = 106.
Algorithm 5% quantile Mean (± standard deviation) 95% quantile

UCB1 1.56 1.74± 0.11 1.92

UCB1 (conservative) 2.00 2.13± 0.08 2.26

TS Binarization 0.72 1.36± 0.46 2.20

TS Binarization (conservative) 0.94 1.70± 0.50 2.57

Empirical IMED 0.23 0.38± 0.13 0.58
Empirical IMED (conservative) 0.29 0.42± 0.10 0.60

NPTS 0.30 0.46± 0.14 0.69

NPTS (conservative) 0.39 0.55± 0.13 0.77

RB-SDA 0.20 0.42± 0.26 0.99

BDS 0.31 0.47± 0.13 0.68

RDS 0.22 0.38± 0.16 0.63

QDS 0.25 0.41± 0.14 0.64

0 5K 10K
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1M

2M
UCB1
TS (binarization)
empirical IMED
NPTS
RB-SDA
BDS
RDS
QDS

0 5K 10K
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2M

UCB1
TS (binarization)
empirical IMED
NPTS
RB-SDA
BDS
RDS
QDS

Figure 6: Average regret on 5000 simulations and horizon T = 104. Dashed lines correspond to
5%-95% regret quantiles. UCB1, Binarized Thompson Sampling, Empirical IMED and NPTS are run
with exact upper bounds around 1.5× 104 kg/ha (left) and the conservative upper bound 1.5× 104

kg/ha (right). BDS: ρ = 4. RDS: ρn =
√

log(1+n). QDS: ρ = 4, α = 5%.

N (2.5, 0.52). Note that both mixtures have total variance equal to 0.52. Due to the lack of theoreti-
cally grounded benchmark, we run three SPEF algorithms (kl-UCB, IMED and Thompson Sampling)
assuming the arms belong to the SPEF of Gaussian distributions with fixed variance 0.52. This is an
example of model misspecification.

We run RDS with ρn =
√

log(1+n), which matches the asymptotic growth rate of the maximum of
i.i.d Gaussian samples, and QDS with α = 5%, ρ = 4; we recall that Appendix E shows empirical
evidence that the quantile condition required by QDS holds for a large variety of α and ρ in the case
of Gaussian tails. Note that the use of QDS in this context is technically out of scope of Theorem 3.5
since Gaussian mixtures are not lower bounded; we believe however that this is an artifact of our
proof technique that could lifted with a finer analysis.

Results are reported in Figure 7. Both RDS and QDS outperform other existing methods; in particular,
among the misspecified SPEF algorithms, only IMED exhibit comparable regret growth. As this
bandit problem is complicated (small optimality gap, non-SPEF distributions), all algorithms have a
relatively large variance.
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Figure 7: Left: Gaussian mixture arms (104 samples each). Right: average regret on 5000 simulations
and horizon T = 104. kl-UCB, IMED and Thompson Sampling are run assuming Gaussian arms
with same variance as the mixtures. RDS: ρn =

√
log(1+n). QDS: ρ = 4, α = 5%.

F.4 BDS parameters sensitivity

We study the sensitivity of BDS to its parameter ρ. Theorem 3.4 suggests to scale the exploration
bonus Bρ,γ as ρ = −1/ log(1 − p), which is a proxy of an upper bound of 1/ (1− F (µ1)) in
Lemma 3.2. We believe this bonus to be rather conservative when p is small and the distributions
considered exhibit little skewness; as an example, if a distribution is such that at most 25% of its
mass is located to the right of the optimal mean reward µ∗, ρ ≈ 4 should be a suitable tuning.

To investigate this, we consider a toy bandit instance with two arms following uniform distributions on
[0, 1] and [0.2, 0.9] respectively (note that the upper bound is different for each arm yet the distribution
of mass near their respective bounds is the same, thus fitting the setting of BDS). These distributions
are shown in Figure 8, and in particular their means are 0.5 and 0.55 respectively. For γ = 0.1, we
compute the expected regret of BDS obtained with the theoretical tuning ρ = −1/ log(1− p) ' 9.5,
and compare it with other choices of ρ. Figure 8 shows that only the most extreme tuning ρ = 50
exhibits significant, albeit still sublinear, regret. Small deviations from the theoretical tuning yields
similar regret, the heuristic ρ = 4 discussed above being slightly better, which tends to confirm our
belief that the analysis of Theorem 3.4 can be sharpened. Note that the exploration incentive given
by ρ is necessary since smaller values (e.g ρ = 0.1) tends to accumulate more regret.

0.0 0.2 0.4 0.6 0.8 1.0

0 = 0.50
1 = 0.55

0 5K 10K

0

25

50
= 0.1
= 1
= 2
= 4

9.5 (theory)
= 50

Figure 8: Left: bandit with two uniform arms U(0, 1) and U(0.2, 0.9) (104 samples each). Right:
average regret on 5000 simulations and horizon T = 104 of BDS for various values of ρ.

F.5 Robustness for light-tailed bandits: comparison with R-UCB-LT

The study of statistically robust bandit algorithms is fairly recent, and as such is yet to have well-
established benchmarks. Ashutosh et al. (2021) introduce R-UCB-LT, an adaptation of the standard
sub-Gaussian UCB to enforce robustness w.r.t light-tailed distributions (as defined in Appendix A.1).
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We reproduce the setting of their experiment, namely two Gaussian arms N (1, 1) and N (2, 3), and
compare several variants of both R-UCB-LT and RDS against a misspecified UCB1 (the misspec-
ification takes the form of an overly optimistic 1-sub-Gaussian assumption, while the second arm
is only

√
3-sub-Gaussian). Both R-UCB-LT and RDS rely on a slowly growing exploration bonus,

denoted respectively by f and ρ; we run both algorithms with f and ρ equal to log2, log and
√

log.

Results are reported in Figure 9. As expected, the misspecified UCB1 exhibits much faster regret
growth than the robust algorithms. However, RDS seems to outperform R-UCB-LT, the best average
regret being achieved by RDS with ρn =

√
log(1+n) and ρn = log(1+n). Furthermore, the regret

to RDS appears to be somewhat monotonic (slightly increasing) with respect to the hyperparameter ρ,
and the best results are achieved by the one matching the asymptotic growth rate of the maximum
of a i.i.d Gaussian samples, as recommended by Theorem 3.7. On the other hand, the best version
of R-UCB-LT is obtained with f ≈ log (for which we do not find a theoretical intuition) and the
performance gap is significant when other bonuses are considered. We also tested R-UCB-LT with
powers of log log with similar results; we do not report these curves for the readability of the figures.
In light of these results, RDS seems less sensitive to its parameter choice than R-UCB-LT, which is
another sort of robustness guarantee.

10 5 0 5 10 15

0 = 1.00
1 = 2.00

0 25K 50K

40

400
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R-UCB-LT log2

R-UCB-LT log
R-UCB-LT log
RDS log2

RDS log
RDS log

Figure 9: Left: Gaussian armsN (1, 1) andN (2, 3) (5× 104 samples each). Right: average regret (in
log scale) on 5000 simulations and horizon T = 5× 104. UCB1 is run assuming a 1-sub-Gaussian
instance.

F.6 Asymptotic behavior of empirical Kinf

A critical part of the regret analysis of DS algorithms relies on the control of the BCP by the empirical
KX̄ninf operator, which we recall is calculated over distributions bounded by X̄n = maxi∈{1,...,n}Xi

for a given set of observations X = (X1, . . . , Xn). However, the regret lower bound Burnetas and
Katehakis (1996) involves KFinf , calculated over distributions belonging to a base family F . The
analysis of NPTS (Riou and Honda, 2020) considers only distributions with bounded support, for
which both operators can be made arbitrarily close in the relevant topology. We show that it is
essentially the only favorable case and provide empirical evidence on the limit behavior of KX̄ninf for
standard unbounded distributions.

Combining intuitions from Lemma 3.3 and Lemma C.1 we obtain the following control of the
empirical KX̄ninf .

Lemma F.1 (Asymptotic behaviour of KX̄inf ). Consider a set Xn = (X1, . . . , Xn) ∈ Rn and a target
value µ ∈ R, and denote X̄n = maxi∈{1,...,n}Xi and νXn the empirical distribution associated to
Xn. Assume that X̄n ≥ g(n). Then,

KX̄ninf (νXn , µ) = O
(

1

g(n)

)
.
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In particular, if the distribution of Xi is unbounded, g(n) −−−−−→
n→+∞

+∞ andKX̄ninf (νXn , µ) −−−−−→
n→+∞

0.

This shows that the Kinf operator is not continuous w.r.t the family over which it is defined in the
sense that the following assertions are mutually exclusive:

(i) F contains an unbounded distribution ν and KFinf(ν, µ) > 0,

(ii) KX̄ninf (ν̂n, µ) −−−−−→
n→+∞

KFinf(ν, µ).

A direct consequence of this is that it makes impossible a direct generalization of NPTS to unbounded
distributions while preserving logarithmic regret, forcing us to either let go of logarithmic guarantees
(RDS) or assume a quantile condition and use a truncation operator to recover the continuity between
the empirical KX̄ninf and KFinf (QDS).

Lemma F.1 only provides a control of KX̄ninf by 1
g(n) , not an symptotic equivalent; we believe however

this control to be quite tight. To sharpen our intuition, we compute KX̄ninf for various sample sizes n on
classical SPEF (exponential and Gaussian with fixed variance, Bernoulli), using the dual formulation
of Honda and Takemura (2010). For the unbounded SPEF (Figure 10), we see the empirical KX̄ninf

decreases away from KFinf with n; by contrast, the Bernoulli distribution (Figure 11) shows no
significant deviation from KFinf .

Furthermore, we empirically validate the relation between KX̄ninf and the growth rate g of the
maximum of n i.i.d samples. Indeed, we have g(n) ≈ log n for exponential distributions and
g(n) ≈

√
log n for Gaussian distributions, we therefore expect logKX̄ninf (νXn , µ) ≈ − log log n and

logKX̄ninf (ν̂n, µ) ≈ − 1
2 log log n respectively. Figure 12 shows the outcome of the least squares re-

gression of logKX̄ninf (νXn , µ) on log log n, which recovers approximately the expected slopes. Again,
the case of the Bernoulli SPEF shows no significant dependency on n as g(n) ≈ 1.
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Figure 10: KFinf(ν, µ
∗) w.r.t the corresponding SPEF and empirical KX̄ninf (ν̂n, µ) for sample size

n = 102, 103, 104, and µ∗ = 3, averaged over 1000 simulations (fitted density are shown in the
background). Left: Gaussian ν = N (2, 1). Right: exponential ν = E( 1

2 ).
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Figure 11: KFinf(ν, µ
∗) w.r.t the Bernoulli SPEF and empirical KX̄ninf (ν̂n, µ) for sample size n =

102, 103, 104, averaged over 1000 simulations (fitted density are shown in the background).
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Figure 12: Linear fit (dashed) of logKX̄ninf (ν̂n, µ) (solid) on log log n and resulting slopes. Dotted
lines correspond to logKFinf(ν, µ) for the corresponding SPEF F . X-axis: log log n, Y-axis: logKinf .
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