
Appendix
This appendix is organized as follows. In Section A, we present proofs for all of our propositions.
Section A.1 presents a rigorous definition of our forward process using a more specific notation. This
is then used in Section A.2.1 to prove the time reversal for our jump diffusions. We also present an
intuitive proof of the time reversal using notation from the main text in Section A.2.2. In Section
A.3 we prove Proposition 2 using the notation from the main text. We prove Proposition 3 in Section
A.4 and we analyse the optimum of our objective directly without using stochastic process theory in
Section A.5. In Section B we give more details on our objective and in Section C we detail how we
apply diffusion guidance to our model. We give the full details for our experiments in Section D and
finally, in Section E, we discuss the broader impacts of our work.

A Proofs

A.1 Notation and Setup

We here introduce a more rigorous notation for defining our trans-dimensional notation that will
be used in a rigorous proof for the time-reversal of our jump diffusion. First, while it makes sense
from a methodological and experimental point of view to present our setting as a transdimensional
one, we slightly change the point of view in order to derive our theoretical results. We extend the
space Rd to R̂d = Rd ∪ {∞} using the one-point compactification of the space. We refer to [43] for
details on this space. The point∞ will be understood as a mask. For instance, let x1, x2, x3 ∈ Rd.
Then X = (x1, x2, x3) ∈ (R̂d)N with N = 3 corresponds to a vector for which all components
are observed whereas X ′ = (x1,∞, x3) ∈ (R̂d)N corresponds to a vector for which only the
components on the first and third dimension are observed. The second dimension is masked in that
case. Doing so, we will consider diffusion models on the space X = (R̂d)N with d,N ∈ N. In
the case of a video diffusion model, N can be seen as the max number of frames. We will always
consider that this space is equipped with its Borelian sigma-field X and all probability measures will
be defined on X .

We denote dim : X→ {0, 1}N which is given for any X = {xi}Ni=1 ∈ X by

dim(X) = {δRd(xi)}Ni=1.

In other words, dim(X) is a binary vector identifying the “dimension” of the vector X , i.e. which
frames are observed. Going back to our example X = (x1, x2, x3) ∈ (R̂d)N and X ′ =

(x1,∞, x3) ∈ (R̂d)N , we have that dim(X) = {1, 1, 1} and dim(X ′) = {1, 0, 1}. For any vector
u ∈ {0, 1}N we denote |u| =

∑N
i=1 ui, i.e. the active dimensions of u (or equivalently the non-

masked frames). For any X ∈ X and D ∈ {0, 1}N , we denote XD = {X ′i}Ni=1 with X ′i = Xi if
Di = 1 and X ′i =∞ if Di = 0.

We denote Ck
b (Rd,R) the set of functions which are k differentiable and bounded. Similarly, we

denote Ck
b (Rd,R) the set of functions which are k differentiable and compactly supported. The set

Ck
0(Rd,R) denotes the functions which are k differentiable and vanish when ∥x∥ → +∞. We note

that f ∈ C(R̂d), if f ∈ C(Rd) and f − f(∞) ∈ C0(Rd) and that f ∈ Ck(R̂d) for any k ∈ N if the
restriction of f to Rd is in Ck(Rd) and f ∈ C(R̂d).

A.1.1 Transdimensional infinitesimal generator

To introduce rigorously the transdimensional diffusion model defined in Section 3.1, we will introduce
its infinitesimal generator. The infinitesimal generator of a stochastic process can be roughly defined
as its “probabilistic derivative”. More precisely, assume that a stochastic process (Xt)t≥0 admits a
transition semigroup (Pt)t≥0, i.e. for any t ≥ 0, A ∈ X and X ∈ X we have P(Xt ∈ A | X0 =
x) = Pt(x,A), then the infinitesimal generator is defined asA(f) = limt→0(Pt(f)−f)/t, for every
f for which this quantity is well-defined.

Here, we start by introducing the infinitesimal generator of interest and give some intuition about its
form. Then, we prove a time-reversal formula for this infinitesimal generator.

14

We consider b : Rd → Rd, α : {0, 1}NM → R+. For any f ∈ C2(X) and X ∈ X we define

A(f)(X) =
∑N

i=1{⟨b(Xi),∇xi
f(X)⟩+ 1

2∆xi
f(X)}δRd(Xi) (5)

−
∑

D1⊂D
∆0
0
· · ·

∑
DM⊂D

∆M−1
M−1

α(D0, . . . ,DM)
∑M−1

i=0 (f(X)− f(XDi+1))δDi(dim(X)),

where M ∈ N, D0 = {1}N , {∆j}M−1j=0 ∈ NM such that
∑M−1

j=0 ∆j < N and for any j ∈
{0, . . . ,M−1}, D∆j

j is the subset of {0, 1}{1,...,N} such that Dj+1 ∈ D
∆j

j if and only if Dj ·Dj+1 =

Dj+1, where · is the pointwise multiplication operator, and |Dj | = |Dj+1| + ∆j . The condition
Dj · Dj+1 = Dj+1 means that the non-masked dimensions in Dj+1 are also non-masked dimensions
in Dj . The condition |Dj | = |Dj+1|+∆j means that in order to go from Dj to Dj+1, one needs to
mask exactly ∆j dimensions.

Therefore, a sequence {∆j}M−1j=0 ∈ NM such that
∑M−1

j=0 ∆j < N can be interpreted as a sequence

of drops in dimension. At the core level, we have that |DM | = N −
∑M−1

j=0 ∆j . For instance if
|DM | = 1, we have that at the end of the process, only one dimension is considered.

We choose α such that
∑

D1⊂D
∆0
0
· · ·

∑
DM⊂D

∆M−1
M−1

α(D0, . . . ,DM) = 1. Therefore,

α(D0, . . . ,DM) corresponds to the probability to choose the dimension path D0 → · · · → DM .

The part X 7→ ⟨b(Xi),∇xi
f(X)⟩+ 1

2∆xi
f(X) is more classical and corresponds to the continuous

part of the diffusion process. We refer to [44] for a thorough introduction on infinitesimal generators.
For simplicity, we omit the schedule coefficients in (5).

A.1.2 Justification of the form of the infinitesimal generator

For any dimension path P = D0 → · · · → DM (recall that D0 = {1}N), we define the jump kernel
JP as follows. For any x ∈ X, we have JP(X,dY) =

∑M−1
i=0 δDi

(dim(X))δXDi+1
(dY). This

operator corresponds to the deletion operator introduced in Section 3.1 . Hence, for any dimension
path P = D0 → · · · → DM , we can define the associated infinitesimal generator: for any f ∈ C2(X)
and X ∈ X we define

AP(f)(X) =
∑N

i=1{⟨b(xi),∇xif(X)⟩+ 1
2∆xif(X)}δRd(Xi) +

∫
X
(f(Y)− f(X))JP(X,dY).

We can define the following jump kernel

J =
∑

D1⊂D
∆0
0
· · ·

∑
DM⊂D

∆M−1
M−1

α(D0, . . . ,DM)JP.

This corresponds to averaging the jump kernel over the different possible dimension paths. We have
that for any f ∈ C2(X) and X ∈ X

A(f)(X) =
∑N

i=1{⟨b(xi),∇xif(X)⟩+ 1
2∆xif(X)}δRd(Xi) +

∫
X
(f(Y)− f(X))J(X,dY).

(6)

In other words, A =
∑

D1⊂D
∆0
0
· · ·

∑
DM⊂D

∆M−1
M−1

α(D0, . . . ,DM)AP.

In what follows, we assume that there exists a Markov process (Xt)t≥0 with infinitesimal generator
A. In order to sample from (Xt)t≥0, one choice is to first sample the dimension path P according
to the probability α. Second sample from the Markov process associated with the infinitesimal
generator AP. We can approximately sample from this process using the Lie-Trotter-Kato formula
[44, Corollary 6.7, p.33].

Denote (Pt)t≥0 the semigroup associated with AP, (Qt)t≥0 the semigroup associated with the
continuous part of AP and (Jt)t≥0 the semigroup associated with the jump part of AP. More
precisely, we have that, (Qt)t≥0 is associated with Acont such that for any f ∈ C2(X) and X ∈ X

Acont(f)(X) =
∑N

i=1{⟨b(Xi),∇xi
f(X)⟩+ 1

2∆xi
f(X)}.

In addition, we have that, (Qt)t≥0 is associated with AP
jump such that for any f ∈ C2(X) and X ∈ X

AP
jump(f)(X) =

∫
X
(f(Y)− f(X))JP(X,dY).

15

First, note that Acont corresponds to the infinitesimal generator of a classical diffusion on the
components which are not set to∞. Hence, we can approximately sample from (Qt)t≥0 by sampling
according to the Euler-Maruyama discretization of the associated diffusion, i.e. by setting

Xt ≈ X0 + tb(X0) +
√
tZ, (7)

where Z is a Gaussian random variable.

Similarly, in order to sample from (Jt)t≥0, one should sample from the jump process defined as
follows. On the interval [0, τ), we have Xt = X0. At time τ , we define X1 ∼ J(X0, ·) and repeat
the procedure. In this case τ is defined as an exponential random variable with parameter 1. For t > 0
small enough the probability that t > τ is of order t. Therefore, we sample from J, i.e. the deletion
kernel, with probability t. Combining this approximation and (7), we get approximate samplers for
(Qt)t≥0 and (Jt)t≥0. Under mild assumptions, the Lie-Trotter-Kato formula ensures that for any
t ≥ 0

Pt = lim
n→+∞

(Qt/nJt/n)
n.

This justifies sampling according to Algorithm 1 (in the case of the forward process).

A.2 Proof of Proposition 1

For the proof of Proposition 1, we first provide a rigorous proof using the notation introduced in A.1.
We then follow this with a second proof that aims to be more intuitive using the notation used in the
main paper.

A.2.1 Time-reversal for the transdimensional infinitesimal generator and Proof of
Proposition 1

We are now going to derive the formula for the time-reversal of the transdimensional infinitesimal
generatorA, see (5). This corresponds to a rigorous proof of Proposition 1. We refer to Section A.2.2
for a more intuitive, albeit less-rigorous, proof. We start by introducing the kernel KP given for any
dimension path D0 → · · · → DM , for any i ∈ {0, . . . ,M − 1}, Y ∈ Di+1 and A ∈ X by

KP(Y,A) =
∑M−1

i=0 δDi+1
(dim(Y))

∫
A∩Di

pt((XDi\Di+1
,YDi+1

)|dim(Xt)=Di)P(dim(Xt)=Di)

pt(YDi+1
|dim(Xt)=Di+1)P(dim(Xt)=Di+1)

dXDi\Di+1
.

Note that this kernel is the same as the one considered in Proposition 1. It is well-defined under the
following assumption.
Assumption 1. For any t > 0 and D ⊂ {0, 1}N , we have that Xt conditioned to dim(Xt) = D
admits a density w.r.t. the |D|d-dimensional Lebesgue measure, denoted pt(·|dim(Xt) = D).

The following result will be key to establish the time-reversal formula.
Lemma 1. Assume A1. Let A,B ∈ X . Let P be a dimension path D0 → · · · → DM with M ∈ N.
Then, we have

E[1A(Xt)JP(Xt,B)] = E[1B(Xt)KP(Xt,A)].

Proof. Let A,B ∈ X . We have

E[1A(Xt)JP(Xt,B)] =
∑M−1

i=0 E[1A(Xt)δDi
(dim(Xt))1B((Xt)Di+1

)]

=
∑M−1

i=0

∫
A∩Di

pt(XDi
|dim(Xt) = Di)P(dim(Xt) = Di)1B(XDi+1

)dXDi

=
∑M−1

i=0

∫
A∩Di

pt(XDi |dim(Xt) = Di)P(dim(Xt) = Di)1B(XDi+1)dXDi+1dXDi\Di+1

=
∑M−1

i=0

∫
B∩Di+1

1B(XDi+1
)

× (
∫
A∩Di

1A(XDi
)pt(XDi

|dim(Xt) = Di)P(dim(Xt) = Di)dXDi\Di+1
)dXDi+1

=
∑M−1

i=0

∫
B∩Di+1

1B(XDi+1)

×KP(XDi+1
,A)pt(XDi+1

|dim(Xt) = Di+1)P(dim(Xt) = Di+1)dXDi+1

=
∑M−1

i=0 E[δDi+1
(dim(Xt))KP(Xt,A)1B(Xt)],

which concludes the proof.

16

Lemma 1 shows that KP verifies the flux equation associated with JP. The flux equation is the discrete
state-space equivalent of the classical time-reversal formula for continuous state-space. We refer to
[45] for a rigorous treatment of time-reversal with jumps under entropic conditions.

We are also going to consider the following assumption which ensures that the integration by part
formula is valid.
Assumption 2. For any t > 0 and i ∈ {1, . . . , N}, Xt admits a smooth density w.r.t. the Nd-
dimensional Lebesgue measure denoted pt and we have that for any f, h ∈ C2

b((Rd)N) for any
u ∈ [0, t] and i ∈ {1, . . . , N}

E[δRd((Xu)i)⟨∇xi
f(Xu),∇xi

h(Xu)⟩]
= −E[δRd((Xu)i)h(Xu)(∆xi

f(Xu) + ⟨∇xi
log pu(Xu),∇xi

f(Xu)⟩)].

The second assumption ensures that we can apply the backward Kolmogorov evolution equation.
Assumption 3. For any g ∈ C2(X) and t > 0, we have that for any u ∈ [0, t] and X ∈ X,
∂ug(u,X)+A(g)(u,X) = 0, where for any u ∈ [0, t] and X ∈ X, g(u,X) = E[g(Xt) |Xu = X].

We refer to [19] for conditions under A2 and A3 are valid in the setting of diffusion processes.
Proposition 4. Assume A1, A2 and A3. Assume that there exists a Markov process (Xt)t≥0 solution
of the martingale problem associated with (6). Let T > 0 and consider (Yt)t∈[0,T] = (XT−t)t∈[0,T].
Then (Yt)t∈[0,T] is solution to the martingale problem associated withR, where for any f ∈ C2(X),
t ∈ (0, T) and x ∈ X we have

R(f)(t,X) =
∑N

i=1{−⟨b(Xi) +∇xi
log pt(X),∇xi

f(X)⟩+ 1
2∆xi

f(X)}δRd(Xi)

+
∫
X
(f(Y)− f(X))K(X,dY).

Proof. Let f, g ∈ C2(X). In what follows, we show that for any s, t ∈ [0, T] with t ≥ s

E[(f(Yt)− f(Ys))g(Ys)] = E[g(Ys)
∫ t

s
R(f)(u,Yu)du].

More precisely, we show that for any s, t ∈ [0, T] with t ≥ s

E[(f(Xt)− f(Xs))g(Xt)] = E[−g(Xt)
∫ t

s
R(f)(u,Xu)du].

Let s, t ∈ [0, T], with t ≥ s. Next, we denote for any u ∈ [0, t] and X ∈ X, g(u,X) =
E[g(Xt) | Xu = X]. Using A3, we have that for any u ∈ [0, t] and X ∈ X, ∂ug(u,X) +
A(g)(u,X) = 0, i.e. g satisfies the backward Kolmogorov equation. For any u ∈ [0, t] and X ∈ X,
we have

A(fg)(u,X) = ∂ug(u,X)f(X) +
∑N

i=1(⟨b(Xi),∇xi
g(u,X)⟩+ 1

2∆xi
g(u,Xi))f(X)δRd(Xi)

+
∑N

i=1(⟨b(Xi),∇xi
f(X)⟩+ 1

2∆xi
f(X))g(u,X)δRd(Xi)

+
∑N

i=1 δRd(Xi)⟨∇xi
f(X),∇xi

g(u,X)⟩+ J(X, fg)

= ∂ug(u,X)f(X) +A(g)(u,X)f(X) + J(X, fg)− J(X, g)f(X)

+
∑N

i=1(⟨b(Xi),∇xif(X)⟩+ 1
2∆xif(X))g(u,X)δRd(Xi)

+
∑N

i=1 δRd(Xi)⟨∇xi
f(X),∇xi

g(u,X)⟩

=
∑N

i=1(⟨b(Xi),∇xi
f(X)⟩+ 1

2∆xi
f(X))g(u,X)δRd(Xi)

+
∑N

i=1 δRd(Xi)⟨∇xi
f(X),∇xi

g(u,X)⟩+ J(X, fg)− J(X, g)f(X). (8)

Using A2, we have that for any u ∈ [0, t] and i ∈ {1, . . . , N}

E[δRd((Xu)i)⟨∇xi
f(Xu),∇xi

g(u,Xu)⟩]
= −E[δRd((Xu)i)g(u,Xu)(∆xi

f(Xu) + ⟨∇xi
log pu(Xu),∇xi

f(Xu)⟩)]. (9)

In addition, we have that for any X ∈ X and u ∈ [0, t], J(X, fg) − J(X, g)f(X) =∫
X
g(u, Y)(f(Y)− f(X))J(X,dY). Using Lemma 1, we get

E[J(Xu, fg)− J(Xu, f)g(u,Xu)] = −E[g(u,Xu)K(Xu, f)]. (10)

17

Therefore, using (8), (9) and (10), we have
E[A(fg)(u,Xu)] = E[−R(f)(u,Xu)g(u,Xu)].

Finally, we have
E[(f(Xt)− f(Xs))g(Xt)] = E[g(t,Xt)f(Xt)− f(Xs)g(s,Xs)]

= E[
∫ t

s
A(fg)(u,Xu)du]

= −E[
∫ t

s
R(f)(u,Xu)g(u,Xu)du] = −E[g(Xt)

∫ t

s
R(f)(u,Xu)du],

which concludes the proof.

A.2.2 Intuitive Proof of Proposition 1

We recall Proposition 1.

Proposition 1. The time reversal of a forward jump diffusion process given by drift
−→
b t, diffusion

coefficient −→g t, rate →λ t(n) and transition kernel
∑n

i=1 K
del(i|n)δdel(X,i)(Y) is given by a jump

diffusion process with drift
←−
b ∗t (X), diffusion coefficient ←−g ∗t , rate

←−
λ ∗t (X) and transition kernel∫

yadd

∑n+1
i=1 A∗t (y

add, i|X)δins(X,yadd,i)(Y)dyadd as defined below
←−
b ∗t (X) =

−→
b t(X)−−→g 2

t∇x log pt(X), ←−g ∗t = −→g t,

←−
λ ∗t (X) =

→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+ 1)

∫
yadd pt(ins(X,yadd, i))dyadd

pt(X)
,

A∗t (y
add, i|X) ∝ pt(ins(X,yadd, i))Kdel(i|n+ 1).

Diffusion part. Using standard diffusion models arguments such as [18] [45], we get
←−
b ∗t (X) =

−→
b t(X)−−→g 2

t∇x log pt(X|n).

Jump part. We use the flux equation from [45] which intuitively relates the probability flow going
in the forward direction with the probability flow going the backward direction with equality being
achieved at the time reversal.

pt(X)
←−
λ ∗t (X)

←−
K∗t (Y|X) = pt(Y)

→
λ t(Y)

−→
K t(X|Y)

pt(X)
←−
λ ∗t (X)

∫
yadd

∑n+1
i=1 A∗t (y

add, i|X)δins(X,yadd,i)(Y)dyadd

= pt(Y)
→
λ t(Y)

∑n+1
i=1 Kdel(i|n+ 1)δdel(Y,i)(X). (11)

To find
←−
λ ∗t (X), we sum and integrate both sides over m and y, with Y = (m,y),∑N

m=1

∫
y∈Rmd pt(X)

←−
λ ∗t (X)

∫
yadd

∑n+1
i=1 A∗t (y

add, i|X)δins(X,yadd,i)(Y)dyadddy

=
∑N

m=1

∫
y∈Rmd pt(Y)

→
λ t(Y)

∑n+1
i=1 Kdel(i|n+ 1)δdel(Y,i)(X)dy.

Now we use the fact that δdel(Y,i)(X) is 0 for any m ̸= n+ 1,

pt(X)
←−
λ ∗t (X) =

→
λ t(n+ 1)

∫
y∈R(n+1)d pt(Y)

∑n+1
i=1 Kdel(i|n+ 1)δdel(Y,i)(X)dy

=
→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+ 1)

∫
y∈R(n+1)d pt(Y)δdel(Y,i)(X)dy.

Now letting Y = ins(X,yadd, i),

pt(X)
←−
λ ∗t (X) =

→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+ 1)

∫
yadd pt(ins(X,yadd, i))dyadd

←−
λ ∗t (X)x =

→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+1)

∫
yadd pt(ins(X,yadd,i))dyadd

pt(X) .

To find A∗t (y
add, i|X), we start from (11) and set Y = ins(X, zadd, j) to get

pt(X)
←−
λ ∗t (X)A∗t (z

add, j|X) = pt(Y)
→
λ t(n+ 1)Kdel(j|n+ 1).

By inspection, we see immediately that
A∗t (z

add, j|X) ∝ pt(ins(X, zadd, j)Kdel(j|n+ 1).

With a re-labeling of zadd and j we achieve the desired form
A∗t (y

add, i|X) ∝ pt(ins(X,yadd, i))Kdel(i|n+ 1).

18

A.3 Proof of Proposition 2

In this section we prove Proposition 2 using the notation from the main paper by following the
framework of [17]. We operate on a state space X =

⋃N
n=1{n} × Rnd. On this space the gra-

dient operator ∇ : C(X ,R) → C(X ,X) is defined as ∇f(X) = ∇(nd)
x f(X) where ∇(nd)

x is
the standard gradient operator defined as C(Rnd,R) → C(Rnd,Rnd) with respect to x ∈ Rnd.
We will write integration with respect to a probability measure defined on X as an explicit sum
over the number of components and integral over Rnd with respect to a probability density de-
fined on Rnd i.e.

∫
X
f(X)µ(dX) =

∑N
n=1

∫
x∈Rnd f(X)p(n)p(x|n)dx where, for A ⊂ Rnd,∫

(n,A)
µ(dX) =

∫
x∈A p(n)p(x|n)dx. We will write p(X) as shorthand for p(n)p(x|n).

Following, [17], we start by augmenting our space with a time variable so that operators become
time inhomegeneous on the extended space. We write this as X̄ = (X, t) where X̄ lives in the
extended space S = X × R≥0. In the proof, we use the infinitesimal generators for the the forward
and backward processes. An infinitesimal generator is defined as

A(f)(X̄) = lim
t→0

Ept|0(Ȳ|X̄)[f(Ȳ)]− f(X̄)

t
and can be understood as a probabilistic version of a derivative. For our process on the augmented
space S , our generators decompose asA = ∂t+Ât where Ât operates only on the spatial components
of X̄ i.e. X [17].

We now define the spatial infinitesimal generators for our forward and backward process. We will
change our treatment of the time variable compared to the main text. Both our forward and backward
processes will run from t = 0 to t = T , with the true time reversal of X following the forward
process satisfying (Yt)t∈[0,T] = (XT−t)t∈[0,T]. Further, we will write −→g t as gt and←−g t = gT−t as
we do not learn g and this is the optimal relation from the time reversal. We define

L̂t(f)(X) =
−→
b t(X)·∇f(X)+ 1

2g
2
t∆f(X)+

→
λ t(X)

∑N
m=1

∫
y∈Rmd f(Y)(

−→
K t(Y|X)−δX(Y))dy,

as well as

K̂t(f)(X) =
←−
b θ

t (X)·∇f(X)+ 1
2g

2
T−t∆f(X)+

←−
λ θ

t (X)
∑N

m=1

∫
y∈Rmd f(Y)(

←−
Kθ

t (Y|X)−δX(Y))dy

where ∆ = (∇·∇) is the Laplace operator and δ is a dirac delta onX i.e.
∑N

m=1

∫
y∈Rmd δX(Y)dy =

1 and
∑N

m=1

∫
y∈Rmd f(Y)δX(Y)dy = f(X).

Verifying Assumption 1. The first step in the proof is to verify Assumption 1 in [17]. Letting
νt(X) = pT−t(X), we assume we can write ∂tpt(X) = K̂∗t pt(X) in the formMν + cν = 0 for
some function c : S → R, whereM is the generator of another auxiliary process on S and K̂∗t is the
adjoint operator which satisfies ⟨K̂∗t f, h⟩ = ⟨f, K̂th⟩ i.e.∑N

n=1

∫
x∈Rnd h(X)K̂∗t (f)(X)dx =

∑N
n=1

∫
x∈Rnd f(X)K̂t(h)(X)dx

We now find K̂∗t . We start by substituting in the form for K̂t,∑N
n=1

∫
x∈Rnd f(X)K̂t(h)(X)dx =

∑N
n=1

∫
x∈Rnd f(X){(

←−
b θ

t (x) · ∇h)(X) + 1
2g

2
T−t∆h(X)+

←−
λ θ

t (X)
∑N

m=1

∫
y∈Rmd h(Y)(

←−
Kθ

t (Y|X)− δX(Y))dy}dx
We first focus on the RHS terms corresponding to the diffusion part of the process∑N

n=1

∫
x∈Rnd f(X){(

←−
b θ

t · ∇h)(X) + 1
2g

2
T−t∆h(X)}dx

=
∑N

n=1

∫
x∈Rnd f(X)(

←−
b θ

t · ∇h)(X) + 1
2g

2
T−tf(X)∇ · ∇h(X)dx

=
∑N

n=1

∫
x∈Rnd f(X)(

←−
b θ

t · ∇h)(X) + 1
2g

2
T−th(X)∇ · ∇f(X)dx

=
∑N

n=1

∫
x∈Rnd −h(X)∇ · (f

←−
b θ

t)(X) + 1
2g

2
T−th(X)∇ · ∇f(X)dx

=
∑N

n=1

∫
x∈Rnd h(X){−∇ · (f

←−
b θ

t)(X) + 1
2g

2
T−t∇ · ∇f(X)}dx

=
∑N

n=1

∫
x∈Rnd h(X){−f(X)∇ ·

←−
b θ

t (X)−∇f(X) ·
←−
b θ

t (X) + 1
2g

2
T−t∇ · ∇f(X)}dx.

19

where we apply integration by parts twice to arrive at the third line and once to arrive at the fourth
line. We now focus on the RHS term corresponding to the jump part of the process∑N

n=1

∫
x∈Rnd f(X){

←−
λ θ

t (X)
∑N

m=1

∫
y∈Rmd h(Y)(

←−
Kθ

t (Y|X)− δX(Y))dy}dx

=
∑N

m=1

∫
y∈Rmd h(Y){

∑N
n=1

∫
x∈Rnd f(X)

←−
λ θ

t (X)(
←−
Kθ

t (Y|X)− δX(Y))dx}dy

=
∑N

n=1

∫
x∈Rnd h(X){

∑N
m=1

∫
y∈Rmd f(Y)

←−
λ θ

t (Y)(
←−
Kθ

t (X|Y)− δY(X))dy}dx,

where on the last line we have relabelled X to Y and Y to X. Putting both re-arranged forms for the
RHS together, we obtain∑N

n=1

∫
x∈Rnd h(X)K̂∗t (f)(X)dx =∑N

n=1

∫
x∈Rnd h(X){−f(X)∇ ·

←−
b θ

t (X)−∇f(X) ·
←−
b θ

t (X) + 1
2g

2
T−t∇ · ∇f(X)+∑N

m=1

∫
y∈Rmd f(Y)

←−
λ θ

t (Y)(
←−
Kθ

t (X|Y)− δY(X))dy}dx.

We therefore have

K̂∗t (f)(X) =− f(X)∇ ·
←−
b θ

t (X)−∇f(X) ·
←−
b θ

t (X) + 1
2g

2
T−t∆f(X)+∑N

m=1

∫
y∈Rmd f(Y)

←−
λ θ

t (Y)(
←−
Kθ

t (X|Y)− δX(Y))dy.

Now we re-write ∂tpt(X) = K̂∗t pt(x) in the formMν + cν = 0. We start by re-arranging

∂tpt(X) = K̂∗t pt(X) =⇒ 0 = ∂tνt(X) + K̂∗T−tνt(X).

Substituting in our form for K̂∗t we obtain

0 =∂tνt(X)− νt(X)∇ ·
←−
b θ

T−t(X)−
←−
b θ

T−t(X) · ∇νt(X) + 1
2g

2
t∆νt(X)

+
∑N

m=1

∫
y∈Rmd νt(Y)

←−
λ θ

T−t(Y)(
←−
Kθ

T−t(X|Y)− δX(Y))dy (12)

We define our auxiliary process to have generatorM = ∂t + M̂t with

M̂t(f)(X) = bM
t (X)·∇f(X)+ 1

2g
2
t∆f(X)+λM

t (X)
∑N

m=1

∫
y∈Rmd f(Y)(KM

t (Y|X)−δX(Y))dy

which is a jump diffusion process with drift bM
t , diffusion coefficient gt, rate λM

t and transition
kernel KM

t . Then if we have bM
t = −

←−
b θ

T−t,

λM
t (X) =

∑N
m=1

∫
y∈Rmd

←−
λ θ

T−t(Y)
←−
Kθ

T−t(X|Y)dy, (13)

and
KM

t (Y|X) ∝
←−
λ θ

T−t(Y)
←−
Kθ

T−t(X|Y). (14)

Then we have (12) can be rewritten as

0 =∂tνt(X)− νt(X)∇ ·
←−
b θ

T−t(X) + bM
t (X) · ∇νt(X) + 1

2g
2
t∆νt(X)

− νt(X)
←−
λ θ

T−t(X) + νt(X)
∑N

m=1

∫
y∈Rmd

←−
λ θ

T−t(Y)
←−
Kθ

T−t(X|Y)dy+

λM
t (x)

∑N
m=1

∫
y∈Rmd νt(Y)(KM

t (Y|X)− δX(Y))dy

which is in the formM(ν)(X̄) + c(X̄)ν(X̄) = 0 if we let

c(X̄) = −∇ ·
←−
b θ

T−t(X)−
←−
λ θ

T−t(X) +
∑N

m=1

∫
y∈Rmd

←−
λ θ

T−t(Y)
←−
Kθ

T−t(X|Y)dy.

Verifying Assumption 2. Now that we have verified Assumption 1, the second step in the proof is
Assumption 2 from [17]. We assume there is a bounded measurable function α : S → (0,∞) such

20

that αMf = L(fα) − fLα for all functions f : X → R such that f ∈ D(M) and fα ∈ D(L).
Substituting inM and L we get

αt(X)[∂tf(X)−
←−
b θ

T−t(X) · ∇f(X)

+ 1
2g

2
t∆f(X) + λM

t (X)
∑N

m=1

∫
y∈Rmd f(Y)(KM

t (Y|X)− δX(Y))dy]

= ∂t(fαt)(X) +
−→
b t(X) · ∇(fαt)(X) + 1

2g
2
t∆(fαt)(X)

+
→
λ t(X)

∑N
m=1

∫
y∈Rmd f(Y)αt(Y)(

−→
K t(Y|X)− δX(Y))dy

− f(X)[∂tαt(X) +
−→
b t(X) · ∇αt(X) + 1

2g
2
t∆αt(X)

+
→
λ t(X)

∑N
m=1

∫
y∈Rmd αt(Y)(

−→
K t(Y|X)− δX(Y))dy] (15)

Since f does not depend on time, ∂tf(X) = 0 and ∂t(fαt)(X) = f(X)∂tαt(X) thus the ∂t terms
on the RHS also cancel out. Comparing terms on the LHS and RHS relating to the diffusion part of
the process we obtain

− αt(X)(
←−
b θ

T−t(X) · ∇f(X)) + 1
2αt(X)g2t∆f(X) =

−→
b t(X) · ∇(fαt)(X) + 1

2g
2
t∆(fαt)(X)− f(X)

−→
b t(X) · ∇αt(X)− 1

2f(X)g2t∆αt(X).

Therefore, we get

− αt(X)(
←−
b θ

T−t(X) · ∇f(X)) + 1
2αt(X)g2t∆f(X) =

−→
b t(X) · (f(X)∇αt(X) + αt(X)∇f(X))

+ 1
2g

2
t

(
2∇f(X) · ∇αt(X) + f(X)∆αt(X) + αt(X)∆f(X)

)
− f(X)

−→
b t((X) · ∇αt(X)− 1

2f(X)g2t∆αt(X).

Simplifying the above expression, we get

−αt(X)(
←−
b θ

T−t(X) · ∇f(X)) = αt(X)
−→
b t(X) · ∇f(X) + g2t∇f(X) · ∇αt(X)

(−αt(X)
←−
b θ

T−t(X)) · ∇f(X) = (αt(X)
−→
b t(X) + g2t∇αt(X)) · ∇f(X).

This is true for any f implying

−αt(X)
←−
b θ

T−t(X) = αt(X)
−→
b t(X) + g2t∇αt(X).

This implies that αt(X) satisfies

∇ logαt(X) = − 1
g2
t
(
−→
b t(X) +

←−
b θ

T−t(X)) (16)

Comparing terms from the LHS and RHS of (15) relating to the jump part of the process we obtain

αt(X)λM
t (X)

∑N
m=1

∫
y∈Rmd f(Y)(KM

t (Y|X)− δX(Y))dy =

→
λ t(X)

∑N
m=1

∫
y∈Rmd f(Y)αt(Y)(

−→
K t(Y|X)− δX(Y))dy

− f(X)
→
λ t(X)

∑N
m=1

∫
y∈Rmd αt(Y)(

−→
K t(Y|X)− δX(Y))dy.

Hence, we have

αt(X)
∑N

m=1

∫
y∈Rmd f(Y)λM

t (X)KM
t (Y|X)dy − αt(X)λM

t (X)f(X) =

→
λ t(X)

∑N
m=1

∫
y∈Rmd f(Y)αt(Y)

−→
K t(Y|X)dy

− f(X)
→
λ t(X)

∑N
m=1

∫
y∈Rmd αt(Y)

−→
K t(Y|X)dy.

Recalling the definitions of λM
t (X) and KM (Y|X), (13) and (14), we get

αt(X)
∑N

m=1

∫
y∈Rmd f(Y)

←−
λ θ

T−t(Y)
←−
Kθ

T−t(X|Y)dy

− αt(X)f(X)
∑N

m=1

∫
y∈Rmd

←−
λ θ

T−t(Y)
←−
Kθ

T−t(X|Y)dy =

→
λ t(X)

∑N
m=1

∫
y∈Rmd f(Y)αt(Y)

−→
K t(Y|X)dy

− f(X)
→
λ t(X)

∑N
m=1

∫
y∈Rmd αt(Y)

−→
K t(Y|X)dy.

21

This equality is satisfied if αt(X) follows the following relation

αt(Y) = αt(X)

←−
λ θ

T−t(Y)
←−
Kθ

T−t(X|Y)
→
λ t(X)

−→
K t(Y|X)

for n ̸= m (17)

We only require this relation to be satisfied for n ̸= m because both
−→
K t(Y|X) and

←−
Kθ

T−t(X|Y)

are 0 for n = m. We note at this point, as in [17], that if we have αt(X) = 1/pt(X) and
←−
λ θ

T−t

and
←−
Kθ

T−t(X|Y) equal to the true time-reversals, then both (16), and (17) are satisfied. However,
αt(X) = 1/pt(X) is not the only αt to satisfy these equations. (16) and (17) can be thought of as
enforcing a certain parameterization of the generative process in terms of αt [17].

Concluding the proof. Now for the final part of the proof, we substitute our value for α into the IISM
loss from [17] which is equal to the negative of the evidence lower bound on Epdata(X0)[log p

θ
0(X0)]

up to a constant independent of θ. Defining βt(Xt) = 1/αt(Xt), we have

IISM(β) =
∫ T

0
Ept(Xt)[

L̂∗
t βt(Xt)
βt(Xt)

+ L̂t log βt(Xt)]dt.

We split the spatial infintesimal generator of the forward process into the generator corresponding to
the diffusion and the generator corresponding to the jump part, L̂ = L̂diff

t + L̂J
t with

L̂diff
t (f)(X) =

−→
b t(X) · ∇f(X) + 1

2g
2
t∆f(X).

and
L̂J
t(f)(X) =

→
λ t(X)

∑N
m=1

∫
y∈Rmd f(Y)(

−→
K t(Y|X)− δX(Y))dy.

By comparison with the approach to find the adjoint K̂∗t , we also have L̂∗t = L̂diff∗
t + L̂J∗

t with

L̂diff∗
t (f)(X) = −f(X)∇ ·

−→
b t(X)−∇f(X) ·

−→
b t(X) + 1

2g
2
t∆f(X).

In addition, we get

L̂J∗
t (f)(X) =

∑N
m=1

∫
y∈Rmd f(Y)

→
λ t(Y)(

−→
K t(X|Y)− δX(Y))dy.

Finally, IISM becomes

IISM(β) =
∫ T

0
Ept(Xt)[

L̂diff∗
t βt(Xt)
βt(Xt)

+ L̂diff
t log βt(Xt)]dt+

∫ T

0
Ept(Xt)[

L̂J∗
t βt(Xt)
βt(Xt)

+ L̂J log βt(Xt)]dt

= Idiff
ISM(β) + IJ

ISM(β),

where we have named the two terms corresponding to the diffusion and jump part of the process as
Idiff

ISM, IJ
ISM respectively. For the diffusion part of the loss, we use the denoising form of the objective

proven in Appendix E of [17] which is equivalent to Idiff
ISM up to a constant independent of θ

Idiff
ISM(β) =

∫ T

0
Ep0,t(X0,Xt)[

L̂diff
t (pt|0(·|X0)αt(·))(Xt)

pt|0(Xt|X0)αt(Xt)
− L̂diff

t log(pt|0(·|X0)αt(·))(Xt)]dt+ const.

To simplify this expression, we first re-arrange L̂diff
t (h) for some general function h : S → R.

L̂diff
t (h)

h
− L̂diff

t (log h) =
−→
b t·∇h

h + 1
2g

2
t
∆h
h −

−→
b t · ∇ log h− 1

2g
2
t∆ log h

= 1
2g

2
t (
∇·∇h

h −∇ · ∇ log h)

= 1
2g

2
t ∥∇ log h∥2.

Setting h = pt|0(·|X0)αt(·), our diffusion part of the loss becomes

Idiff
ISM(β) = 1

2

∫ T

0
g2tEp0,t(X0,Xt)[∥∇ log pt|0(Xt|X0) +∇ logαt(Xt)∥2]dt+ const

We then directly parameterize∇ logαt(Xt) as −sθt (Xt)

Idiff
ISM(β) = 1

2

∫ T

0
g2tEp0,t(X0,Xt)[∥∇ log pt|0(Xt|X0)− sθt (Xt)∥2]dt+ const.

22

We now focus on the expectation within the integral to re-write it in an easy to calculate form

Ep0,t(X0,Xt)[∥∇ log pt|0(Xt|X0)− sθt (Xt)∥2]
= Ep0,t(X0,Xt)[∥sθt (Xt)∥2 − 2sθt (Xt)

T∇ log p0,t(X0,Xt)] + const

Now we note that we can re-write ∇ log p0,t(X0,Xt) using Mt where Mt is a mask variable
Mt ∈ {0, 1}n0 that is 0 for components of X0 that have been deleted to get to Xt and 1 for
components that remain in Xt.

∇ log p0,t(X0,Xt) =
1

p0,t(X0,Xt)
∇p0,t(X0,Xt)

= 1
p0,t(X0,Xt)

∇
∑

Mt
p0,t(X0,Xt,Mt)

=
∑

Mt

1
p0,t(X0,Xt)

∇p0,t(X0,Xt,Mt)

=
∑

Mt

p(nt,Mt,X0)
p0,t(X0,Xt)

∇pt|0(xt|nt,X0,Mt)

=
∑

Mt

p(Mt|X0,Xt)
p(xt|nt,X0,Mt)

∇pt|0(xt|nt,X0,Mt)

= Ep(Mt|X0,Xt)[∇ log pt|0(xt|nt,X0,Mt)]

Substituting this back in we get

Ep0,t(X0,Xt)[∥∇ log pt|0(Xt|X0)− sθt (Xt)∥2]
= Ep0,t(X0,Xt)[∥sθt (Xt)∥2 − 2sθt (Xt)

TEp(Mt|X0,Xt)[∇ log pt|0(xt|nt,X0,Mt)]] + const

= Ep0,t(X0,Xt,Mt)[∥∇ log pt|0(xt|nt,X0,Mt)− sθt (Xt)∥2] + const.

Therefore, the diffusion part of IISM can be written as

Idiff
ISM(β) = T

2 EU(t;0,T)p0,t(X0,Xt,Mt)[g
2
t ∥∇ log pt|0(xt|nt,X0,Mt)− sθt (Xt)∥2] + const.

We now focus on the jump part of the loss IJ
ISM. We first substitute in L̂J

t and L̂J∗
t

IJ
ISM =

∫ T

0
Ept(Xt)[

∑
m

∫
y∈Rmd

→
λ t(Y) βt(Y)

βt(Xt)
(
−→
K t(Xt|Y)− δY(Xt))dy+

→
λ t(Xt)

∑N
m=1

∫
y∈Rmd

−→
K t(Y|Xt) log βt(Y)dy −→λ t(Xt) log βt(Xt)]dt.

(18)

Noting that βt(Xt) = 1/αt(Xt), we get

βt(Xt)
βt(Y) =

←−
λ θ

T−t(Y)
←−
Kθ

T−t(Xt|Y)
→
λ t(Xt)

−→
Kt(Y|Xt)

for nt ̸= m (19)

or swapping labels for Xt and Y,

βt(Y)
βt(Xt)

=
←−
λ θ

T−t(Xt)
←−
Kθ

T−t(Y|Xt)→
λ t(Y)

−→
Kt(Xt|Y)

for nt ̸= m (20)

Substituting (19) into the second line and (20) into the first line of (18) and using the fact that
−→
K t(Xt|Y) = 0 for nt = m, we obtain

IJ
ISM =

∫ T

0
Ept(Xt)[

∑N
m=1\nt

∫
y∈Rmd

→
λ t(Y)

←−
λ θ

T−t(Xt)
←−
Kθ

T−t(Y|Xt)→
λ t(Y)

−→
Kt(Xt|Y)

−→
K t(Xt|Y)dy

−
∑N

m=1

∫
y∈Rmd

→
λ t(Y) βt(Y)

βt(Xt)
δY(Xt)dy

+
→
λ t(Xt)

∑N
m=1\nt

∫
y∈Rmd

−→
K t(Y|Xt){log βt(Xt)− log

←−
λ θ

T−t(Y)

− log
←−
Kθ

T−t(Xt|Y) + log
→
λ t(Xt) + log

−→
K t(Y|Xt)}dy

−→λ t(Xt) log βt(Xt)]dt.

Hence, we have

IJ
ISM =

∫ T

0
Ept(Xt)[

←−
λ θ

T−t(Xt)
∑N

m=1\nt

∫
y∈Rmd

←−
Kθ

T−t(Y|Xt)dy −
→
λ t(Xt)

βt(Xt)
βt(Xt)

+

→
λ t(Xt)

∑N
m=1\nt

∫
y∈Rmd

−→
K t(Y|Xt){− log

←−
λ θ

T−t(Y)− log
←−
Kθ

T−t(Xt|Y)}dy]dt+ const.

23

This can be rewritten as
IJ

ISM =
∫ T

0
Ept(Xt)[

←−
λ θ

T−t(Xt) +
→
λ t(Xt)E−→Kt(Y|Xt)

[− log
←−
λ θ

T−t(Y)− log
←−
Kθ

T−t(Xt|Y)]]dt+ const.

Therefore, we have

IJ
ISM = TEU(t;0,T)pt(Xt)

−→
Kt(Y|Xt)

[
←−
λ θ

T−t(Xt)−
→
λ t(Xt) log

←−
λ θ

T−t(Y)−→λ t(Xt) log
←−
Kθ

T−t(Xt|Y)] + const.

Finally, using the definition of the forward and backward kernels, i.e.
−→
K t(Y|Xt) =∑n

i=1 K
del(i|n)δdel(X,i)(Y) and

←−
Kθ

T−t(Xt|Y) =
∫
xadd

∑n
i=1 A

θ
t (x

add, i|Y)δins(Y,xadd,i)(Xt)dx
add,

we get

IJ
ISM = TEU(t;0,T)pt(Xt)[

∑N
m=1

∫
y∈Rmd

∑nt

i=1 K
del(i|nt)δdel(Xt,i)(Y)(

←−
λ θ

T−t(Xt)−
→
λ t(Xt) log

←−
λ θ

T−t(Y)

−→λ t(Xt) log
←−
Kθ

T−t(Xt|Y))dy] + const
We get
IJ

ISM = TEU(t;0,T)pt(Xt)Kdel(i|nt)δdel(Xt,i)
(Y)

[
←−
λ θ

T−t(Xt)−
→
λ t(Xt) log

←−
λ θ

T−t(Y)−→λ t(Xt) log
←−
Kθ

T−t(Xt|Y)] + const.
Therefore, we have
IJ

ISM = TEU(t;0,T)pt(Xt)Kdel(i|nt)δdel(Xt,i)
(Y)

[
←−
λ θ

T−t(Xt)−
→
λ t(Xt) log

←−
λ θ

T−t(Y)−→λ t(Xt) logA
θ
T−t(x

add, i|Y)] + const.

Putting are expressions for Idiff
ISM and IJ

ISM together we obtain
IISM =T

2 E[g
2
t ∥∇ log pt|0(xt|nt,X0,Mt)− sθt (Xt)∥2]+

TE[
←−
λ θ

T−t(Xt)−
→
λ t(Xt) log

←−
λ θ

T−t(Y)−→λ t(Xt) logA
θ
T−t(x

add, i|Y)] + const.

We get that −IISM gives us our evidence lower bound on Epdata(X0)[log p
θ
0(X0)] up to a constant that

does not depend on θ. In the main text we have used a time notation such that the backward process
runs backwards from t = T to t = 0. To align with the notation of time used in the main text we
change T − t to t on subscripts for

←−
λ θ

T−t and Aθ
T−t. We also will use the fact that→λ t(Xt) depends

only on the number of components in Xt,
→
λ t(Xt) =

→
λ t(nt).

L(θ) =− T
2 E[g

2
t ∥sθt (Xt)−∇xt log pt|0(xt|nt,X0,Mt)∥2]+

TE[−
←−
λ θ

t (Xt) +
→
λ t(nt) log

←−
λ θ

t (Y) +
→
λ t(nt) logA

θ
t (x

add, i|Y)] + const.

Tightness of the lower bound Now that we have derived the ELBO as in Proposition 2, we show
that the maximizers of the ELBO are tight, i.e. that they close the variational gap. We do this by
proving the general ELBO presented in [17] has this property and therefore ours, which is a special
case of this general ELBO, also has that the optimum parameters close the variational gap.

To state our proposition, we recall the setting of [17]. The forward noising process is denoted
(Yt)t≥0 and associated with an infinitesimal generator L̂ its extension (t,Yt)t≥0 is associated with
the infinitesimal generator L, i.e. L = ∂t + L̂. We also define the score-matching operator Φ given
for any f for which it is defined by

Φ(f) = L(f)/f − L(log(f)).
We recall that according to [17, Equation (8)] and under [17, Assumption 1, Assumption2], we have

log pT (Y0) ≥ E[log p0(YT)−
∫ T

0
L(v/β)/(v/β) + L(log β)dt],

with vt = pT−t for any t ∈ [0, T]. We define the variational gap Gap as follows

Gap = E[log pT (Y0)− log p0(YT) +
∫ T

0
L(v/β)/(v/β) + L(log β)dt].

In addition, using Itô Formula, we have that log vT (YT)− log v0(Y0) =
∫ T

0
L(v)dt. Assuming that

E[| log vT (YT)− log v0(Y0)|] < +∞, we get

Gap = E[
∫ T

0
−L(log v) + L(v/β)/(v/β) + L(log β)dt] = E[

∫ T

0
Φ(v/β)dt].

In particular, using [17, Proposition 1], we get that Gap ≥ 0 and Gap = 0 if and only if β ∝ v. In
addition, the ELBO is maximized if and only if β ∝ v, see [17, Equation 10] and the remark that
follows. Therefore, we have that: if we maximize the ELBO then the ELBO is tight. Combining this
with the fact that the ELBO is maximized at the time reversal [17], then we have that when our jump
diffusion parameters match the time reversal, our variational gap is 0.

24

Other approaches. Another way to derive the ELBO is to follow the steps of [15] directly, since
[17] is a general framework extending this approach. The key formulae to derive the result and the
ELBO is 1) a Feynman-Kac formula 2) a Girsanov formula. In the case of jump diffusions (with
jump in Rd) a Girsanov formula has been established by [22]. Extending this result to one-point
compactification space would allow us to prove directly Proposition 2 without having to rely on the
general framework of [17].

A.4 Proof of Proposition 3

We start by recalling the form for the time reversal given in Proposition 1
←−
λ ∗t (X) =

→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+ 1)

∫
yadd pt(ins(X,yadd, i))dyadd/pt(X).

We then introduce a marginalization over X0

←−
λ ∗t (X) =

→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+ 1)

∫
yadd

∑
n0

∫
x0

p0,t(X0, ins(X,yadd, i))dx0dy
add/pt(X)

=
→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+ 1)

∫
yadd

∑
n0

∫
x0

p0(X0)
pt(X) pt|0(ins(X,yadd, i)|X0)dx0dy

add

=
→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+ 1)

∫
yadd

∑
n0

∫
x0

p0|t(X0|X)

pt|0(X|X0)
pt|0(ins(X,yadd, i)|X0)dx0dy

add

=
→
λ t(n+ 1)

∑n+1
i=1 Kdel(i|n+ 1)

∫
yadd

∑
n0

∫
x0

p0|t(n0|X)p0|t(x0|X,n0)

pt|0(n|X0)pt|0(x|X0,n)
×

pt|0(n+ 1|X0)pt|0(z(X,yadd, i)|X0, n+ 1)dx0dy
add

where (n+ 1, z(X,yadd, i)) = ins(X,yadd, i). Now using the fact the forward component deletion
process does not depend on x0, only n0, we have pt|0(n|X0) = pt|0(n|n0) and pt|0(n + 1|X0) =
pt|0(n+ 1|n0). Using this result, we get

←−
λ ∗t (X) =

→
λ t(n+ 1)

∑
n0
{pt|0(n+1|n0)

pt|0(n|n0)
p0|t(n0|X)×∫

x0

∑n+1
i=1 Kdel(i|n+1)

∫
yadd pt|0(z(X,yadd,i)|X0,n+1)dyadd

pt|0(x|X0,n)
p0|t(x0|X, n0)dx0}. (21)

We now focus on the probability ratio within the integral over x0. We will show that this ratio is 1.
We start with the numerator, introducing a marginalization over possible mask variables between X0

and (n+ 1, z), denoted M (n+1) with M (n+1) having n+ 1 ones and n0 − (n+ 1) zeros.∑n+1
i=1 Kdel(i|n+ 1)

∫
yadd pt|0(z(X,yadd, i)|X0, n+ 1)dyadd

=
∑n+1

i=1 Kdel(i|n+ 1)
∑

M(n+1)

∫
yadd pt|0(M

(n+1), z(X,yadd, i)|X0, n+ 1)dyadd

=
∑

M(n+1)

∑n+1
i=1 Kdel(i|n+ 1)pt|0(M

(n+1)|X0, n+ 1)
∫
yadd pt|0(z(X,yadd, i)|X0, n+ 1,M (n+1))dyadd

Now, for our forward process we have

pt|0(z(X,yadd, i)|X0, n+ 1,M (n+1)) =
∏n+1

j=1 N (z(j);
√
αtM

(n+1)(X0)
j , (1− αt)Id)

where z is shorthand for z(X,yadd, i), z(j) is the vector in Rd for the jth component of z and
M (n+1)(X0)

j is the vector in Rd corresponding to the component in X0 corresponding to the jth
one in the M (n+1) mask. Integrating out yadd we have∫
yadd pt|0(z(X,yadd, i)|X0, n+1,M (n+1))dyadd =

∏n
j=1N (x(j);

√
αtM

(n+1)\i(X0)
j , (1−αt)Id),

where M (n+1)\i denotes a mask variable obtained by setting the ith one of M (n+1) to zero. Hence,
we have ∑n+1

i=1 Kdel(i|n+ 1)
∫
yadd pt|0(z(X,yadd, i)|X0, n+ 1)dyadd

=
∑

M(n+1)

∑n+1
i=1 Kdel(i|n+ 1)pt|0(M

(n+1)|X0, n+ 1)∏n
j=1N (x(j);

√
αtM

(n+1)\i(X0)
j , (1− αt)Id). (22)

We now re-write the denominator from (21) introducing a marginalization over mask variables, M (n)

pt|0(x|X0, n) =
∑

M(n) pt|0(M
(n)|X0, n)pt|0(x|M (n),X0, n). (23)

25

We use the following recursion for the probabilities assigned to mask variables

pt|0(M
(n)|X0, n) =

∑
M(n+1)

∑n+1
i=1 I{M (n+1)\i = M (n)}Kdel(i|n+1)pt|0(M

(n+1)|X0, n+1).

Substituting this into (23) gives

pt|0(x|X0, n) =
∑

M(n)

∑
M(n+1)

∑n+1
i=1 I{M (n+1)\i = M (n)}Kdel(i|n+ 1)×

pt|0(M
(n+1)|X0, n+ 1)pt|0(x|M (n),X0, n)

=
∑

M(n)

∑
M(n+1)

∑n+1
i=1 I{M (n+1)\i = M (n)}Kdel(i|n+ 1)

× pt|0(M
(n+1)|X0, n+ 1)

∏n
j=1N (x(j);

√
αtM

(n)(X0)
j , (1− αt)Id)

=
∑

M(n+1)

∑n+1
i=1 Kdel(i|n+ 1)pt|0(M

(n+1)|X0, n+ 1)

×
∏n

j=1N (x(j);
√
αtM

(n+1)\i(X0)
j , (1− αt)Id).

By comparing with (22), we can see that

pt|0(x|X0, n) =
∑n+1

i=1 Kdel(i|n+ 1)
∫
yadd pt|0(z(X,yadd, i)|X0, n+ 1)dyadd.

This shows that the probability ratio in (21) is 1. Therefore, we have
←−
λ ∗t (X) =

→
λ t(n+ 1)

∑
n0
{pt|0(n+1|n0)

pt|0(n|n0)
p0|t(n0|X)

∫
x0

p0|t(x0|X, n0)dx0}

=
→
λ t(n+ 1)

∑
n0

pt|0(n+1|n0)

pt|0(n|n0)
p0|t(n0|X),

which concludes the proof.

pt|0(n|n0) can be analytically calculated when→λ t(n) is of a simple enough form. When→λ t(n)
does not depend on n then the dimension deletion process simply becomes a time inhomogeneous
Poisson process. Therefore, we would have

pt|0(n|n0) =
(
∫ t
0

→
λ sds)

n0−n

(n0−n)! exp(−
∫ t

0

→
λ sds).

In our experiments we set →λ t(n = 1) = 0 to stop the dimension deletion process when we
reach a single component. If we have →λ t(n) =

→
λ t(m) for all n,m > 1 then we can still use

the time inhomogeneous Poisson process formula for n > 1 and find the probability for n = 1,
pt|0(n = 1|n0) by requiring pt|0(n|n0) to be a valid normalized distribution. Therefore, for the case
that→λ t(n) =

→
λ t(m) for all n,m > 1 and→λ t(n = 1) = 0, we have

pt|0(n|n0) =


(
∫ t
0

→
λ sds)

n0−n

(n0−n)! exp(−
∫ t

0

→
λ sds) 1 < n ≤ n0

1−
∑n0

m=2
(
∫ t
0

→
λ sds)

n0−m

(n0−m)! exp(−
∫ t

0

→
λ sds) n = 1

In cases where →λ t(n) depends on n not just for n = 1, pt|0(n|n0) can become more difficult to
calculate analytically. However, since the probability distributions are all 1-dimensional over n, it is
very cheap to simply simulate the forward dimension deletion process many times and empirically
estimate pt|0(n|n0) although we do not need to do this for our experiments.

A.5 The Objective is Maximized at the Time Reversal

In this section, we analyze the objective L(θ) as a standalone object and determine the optimum
values for sθt ,

←−
λ θ

t and Aθ
t directly. This is in order to gain intuition directly into the learning signal of

L(θ) without needing to refer to stochastic process theory.

The definition of L(θ) as in the main text is

L(θ) = −T
2 E[g

2
t ∥sθt (Xt)−∇xt

log pt|0(xt|X0, nt,Mt)∥2]+

TE[−
←−
λ θ

t (Xt) +
→
λ t(nt) log

←−
λ θ

t (Y) +
→
λ t(nt) logA

θ
t (x

add
t , i|Y)] + C.

with the expectations taken over U(t; 0, T)p0,t(X0,Xt,Mt)K
del(i|nt)δdel(Xt,i)(Y).

26

Continuous optimum. We start by analysing the objective for sθt . This part of L(θ) can be written
as

− 1
2

∫ T

0
g2tEp0,t(X0,Xt,Mt)[∥sθt (Xt)−∇xt

log pt|0(xt|X0, nt,Mt)∥2]dt
We now use the fact that the function that minimizes an L2 regression problem min

f
Ep(x,y)[∥f(x)−

y∥2] is the conditional expectation of the target f∗(x) = Ep(y|x)[y]. Therefore the optimum value for
sθt (Xt) is

s∗t (Xt) = Ep(Mt,X0|Xt)[∇xt log pt|0(xt|X0, nt,Mt)]

=
∑

Mt

∑N
n0=1

∫
x0∈Rn0d p(Mt, n0,x0|Xt)∇xt log pt|0(xt|x0, n0, nt,Mt)dx0

=
∑

Mt

∑N
n0=1

∫
x0∈Rn0d

p(Mt,n0,x0|Xt)
pt|0(xt|x0,n0,nt,Mt)

∇xt
pt|0(xt|x0, n0, nt,Mt)dx0

=
∑

Mt

∑N
n0=1

∫
x0∈Rn0d

p(x0,n0,nt,Mt)
p(nt,xt)

∇xtpt|0(xt|x0, n0, nt,Mt)dx0

= 1
p(nt,xt)

∑
Mt

∑N
n0=1

∫
x0∈Rn0d ∇xt

p(xt,x0, n0, nt,Mt)dx0

= 1
p(nt,xt)

∇xt

∑
Mt

∑N
n0=1

∫
x0∈Rn0d p(xt,x0, n0, nt,Mt)dx0

= 1
p(nt,xt)

∇xtp(xt, nt) = ∇xt log p(Xt).

Therefore, the optimum value for sθt (Xt) is∇xt log p(Xt) which is the value that gives
←−
b t to be the

time reversal of
−→
b t as stated in Proposition 1.

Jump rate optimum. The learning signal for
←−
λ θ

t comes from these two terms in L(θ)

TE[−
←−
λ θ

t (Xt) +
→
λ t(nt) log

←−
λ θ

t (Y)] (24)

This expectation is maximized when for each test input Z and test time t, we have the following
expression maximized

−pt(Z)
←−
λ θ

t (Z) +
∑nz+1

i=

∫
yadd pt(ins(Z,yadd, i))Kdel(i|nz + 1)dyadd ×→λ t(nz + 1) log

←−
λ θ

t (Z),

because pt(Z) is the probability Z gets drawn as a full sample from the forward process and∑nz+1
i=

∫
yadd pt(ins(Z,yadd, i))Kdel(i|nz + 1)dyadd is the probability that a sample one component

bigger than Z gets drawn from the forward process and then a component is deleted to get to Z.
Therefore the first probability is the probability that test input Z and test time t appear as the first
term in (24) whereas the second probability is the probability that test input Z and test time t appear
as the second term in (24).

We now use the fact that, for constants b and c,

argmaxa − ba+ c log a = c
b .

We therefore have the optimum
←−
λ θ

t (Z) as

←−
λ ∗t (Z) =

→
λ t(nz + 1)

∑nz+1
i=

∫
yadd pt(ins(Z,yadd,i))Kdel(i|nz+1)dyadd

pt(Z)

which is the form for the time-reversal given in Proposition (1).

Jump kernel optimum. Finally, we analyse the part of L(θ) for learning Aθ
t (x

add
t , i|Y),

TE[→λ t(nt) logA
θ
t (x

add
t , i|Y)]

=
∫ T

0
Ept(Xt)Kdel(i|nt)δdel(Xt,i)

(Y)[
→
λ t(nt) logA

θ
t (x

add
t , i|Y)]dt

=
∫ T

0
Ept(nt)[

→
λ t(nt)Ept(xt|nt)Kdel(i|nt)δdel(Xt,i)

(Y)[logA
θ
t (x

add
t , i|Y)]]dt.

We now re-write the joint probability distribution that the inner expectation is taken with respect to,

pt(xt|nt)K
del(i|nt)δdel(Xt,i)(Y) = p̃(Y|nt)p(x

add
t , i|Y)δy(x

base
t).

27

with
p̃(Y|nt) =

∑nt

i=1

∫
xt

pt(xt|nt)K
del(i|nt)δdel(xt,i)(Y)dxt,

and
p(xadd

t , i|Y) ∝ pt(xt|nt)K
del(i|nt),

and xbase
t ∈ R(nt−1)d referring to the nt − 1 components of xt, that are not xadd

t i.e. Xt =
ins((xbase

t , nt − 1),xadd
t , i). We then have

TE[→λ t(nt) logA
θ
t (x

add
t , i|Y)]

=
∫ T

0
Ept(nt)[

→
λ t(nt)Ep̃(Y|nt)p(xadd

t ,i|Y)δy(xbase
t)[logA

θ
t (x

add
t , i|Y)]]dt

=
∫ T

0
Ept(nt)[

→
λ t(nt)Ep̃(Y|nt)p(xadd

t ,i|Y)δy(xbase
t)[logA

θ
t (x

add
t , i|Y)]]dt

−
∫ T

0
Ept(nt)[

→
λ t(nt)Ep̃(Y|nt)p(xadd

t ,i|Y)δy(xbase
t)[log p(x

add
t , i|Y)]]dt+ const

=
∫ T

0
Ept(nt)[

→
λ t(nt)Ep̃(Y|nt)δy(xbase

t)[−KL(p(xadd
t , i|Y) ||Aθ

t (x
add
t , i|Y)]]dt+ const.

Therefore, the optimum Aθ
t (x

add
t , i|Y) which maximizes this part of L(θ) is

A∗t (x
add
t , i|Y) = p(xadd

t , i|Y) ∝ pt(Xt)K
del(i|nt).

which is the same form as given in Proposition 1.

B Training Objective

We estimate our objective L(θ) by taking minibatches from the expectation
U(t; 0, T)p0,t(X0,Xt,Mt)K

del(i|nt)δdel(Xt,i)(Y). We first sample t ∼ U(t; 0, T) and then
take samples from our dataset X0 ∼ pdata(X0). In order to sample pt|0(Xt,Mt|X0) we need
to both add noise, delete dimensions and sample a mask variable. Since the Gaussian noising
process is isotropic, we can add a suitable amount of noise to all dimensions of X0 and then delete
dimensions of that noised full dimensional value. More specifically, we first sample X̃t = (n0, x̃t)

with x̃t ∼ N (x̃t;
√
αtx0, (1 − αt)In0d) for αt = exp

(
−
∫ t

0
β(s)ds

)
using the analytic forward

equations for the VP-SDE derived in [3]. Then we sample the number of dimensions to delete.
This is simple to do when our rate function is independent of n except for the case when n = 1 at
which it is zero. We simply sample a Poisson random variable with mean parameter

∫ t

0

→
λ sds and

then clamp its value such that the maximum number of possible components that are deleted is
n0 − 1. This gives the appropriate distribution over n, pt|0(n|n0) as given in Section A.4. To sample
which dimensions are deleted, we can sample Kdel(i1|n0)K

del(i2|n0 − 1) . . .Kdel(in0−nt
|nt + 1)

from which we can create the mask Mt and apply it to X̃t to obtain Xt, Xt = Mt(X̃t). When
Kdel(i|n) = 1/n this is especially simple to do by simply randomly permuting the components of
X̃t, and then removing the final n0 − nt components.

As is typically done in standard diffusion models, we parameterize sθt in terms of a noise prediction
network that predicts ϵ where xt =

√
αtMt(x0) +

√
1− αtϵ, ϵ ∼ N (0, Intd). We then re-weight

the score loss in time such that we have a uniform weighting in time rather than the ‘likelihood
weighting’ with g2t [3, 21]. Our objective to learn sθt then becomes

−EU(t;0,T)pdata(X0)p(Mt,nt|X0)N (ϵ;0,Intd)

[
∥ϵθt (Xt)− ϵ∥2

]
with xt =

√
αtMt(x0) +

√
1− αtϵ, sθt (Xt) =

−1√
1−αt

ϵθt (Xt).

Further, by using the parameterization given in Proposition 3, we can directly supervise the value of
pθ0|t(n0|Xt) by adding an extra term to our objective. We can treat the learning of pθ0|t(n0|Xt) as a
standard prediction task where we aim to predict n0 given access to Xt. A standard objective for
learning pθ0|t(n0|Xt) is then the cross entropy

max
θ

Ep0,t(X0,Xt)

[
log pθ0|t(n0|Xt)

]
28

Our augmented objective then becomes

L̃(θ) = TE[−1

2
∥ϵθt (Xt)−ϵ∥2−

←−
λ θ

t (Xt)+
→
λ t(nt) log

←−
λ θ

t (Y)+
→
λ t(nt) logA

θ
t (x

add
t , i|Y)+γ log pθ0|t(n0|Xt)]

(25)
where the expectation is taken with respect to

U(t; 0, T)pdata(X0)p(Mt, nt|X0)N (ϵ; 0, Intd)K
del(i|nt)δdel(Xt,i)(Y)

where xt =
√
αtMt(x0) +

√
1− αtϵ and γ is a loss weighting term for the cross entropy loss.

C Trans-Dimensional Diffusion Guidance

To guide an unconditionally trained model such that it generates datapoints consistent with
conditioning information, we use the reconstruction guided sampling approach introduced in [9].
Our conditioning information will be the values for some of the components of X0, and thus the
guidance should guide the generative process such that the rest of the components of the generated
datapoint are consistent with those observed components. Following the notation of [9], we denote
the observed components as xa ∈ Rnad and the components to be generated as xb ∈ Rnbd. Our
trained score function sθt (Xt) approximates ∇xt

log pt(Xt) whereas we would like the score to
approximate ∇xt

log pt(Xt|xa
0). In order to do this, we will need to augment our unconditional

score sθt (Xt) such that it incorporates the conditioning information.

We first focus on the dimensions of the score vector corresponding to xa. These can be calculated
analytically from the forward process

∇xa
t
log p(Xt|xa

0) = ∇xa
t
log pt|0(x

a
t |xa

0 , nt)

with pt|0(x
a
t |xa

0 , nt) = N (xa
t ;
√
αtx

a
0 , (1 − αt)Inad). Note that we assume a correspondence

between xa
t and xa

0 . For example, in video if we condition on the first and last frame, we assume
that the first and last frame of the current noisy xt correspond to xa

0 and guide them towards
their observed values. For molecules, the point cloud is permutation invariant and so we can
simply assume the first na components of xt correspond to xa

0 and guide them to their observed values.

Now we analyse the dimensions of the score vector corresponding to xb. We split the score as

∇xb
t
log p(Xt|xa

0) = ∇xb
t
log p(xa

0 |Xt) +∇xb
t
log pt(Xt)

p(xa
0 |Xt) is intractable to calculate directly and so, following [9], we approximate it with

N (xa
0 ; x̂

θa
0 (Xt),

1−αt

αt
Inad) where x̂θa

0 (Xt) is a point estimate of xa
0 given from sθt (Xt) calculated

as

x̂θa
0 (Xt) =

xa
t + (1− αt)s

θ
t (Xt)

a

√
αt

where again we have assumed a correspondence between xa
t and xa

0 . Our approximation for
∇xb

t
log p(xa

0 |Xt) is then

∇xb
t
log p(xa

0 |Xt) ≈ −∇xb
t

αt

2(1− αt)
∥xa

0 − x̂θa
0 (Xt)∥2

which can be calculated by differentiating through the score network sθt .

We approximate
←−
λ ∗t (Xt|xa

0) and A∗t (y
add, i|Xt,x

a
0), with their unconditional forms

←−
λ θ

t (Xt) and
Aθ

t (y
add, i|Xt). We find this approximation still leads to valid generations because the guidance of

the score network sθt , results in Xt containing the conditioning information which in turn leads to
←−
λ θ

t (Xt) guiding the number of components in Xt to be consistent with the conditioning information
too as verified in our experiments. Further, any errors in the approximation for Aθ

t (y
add, i|Xt) are

fixed by further applications of the guided score function, highlighting the benefits of our combined
autoregressive and diffusion based approach.

29

D Experiment Details

Our code is available at https://github.com/andrew-cr/jump-diffusion

D.1 Molecules

D.1.1 Network Architecture

Backbone For our backbone network architecture, we used the EGNN used in [8]. This is a
specially designed graph neural network applied to the point cloud treating it as a fully connected
graph. A special equivariant update is used, operating only on distances between atoms. We refer to
[8] for the specific details on the architecture. We used the same size network as used in [8]’s QM9
experiments, specifically there are 9 layers, with a hidden node feature size of 256. The output of the
EGNN is fed into a final output projection layer to give the score network output sθt (Xt).

Component number prediction To obtain pθ0|t(n0|Xt), we take the embedding produced by
the EGNN before the final output embedding layer and pass it through 8 transformer layers each
consisting of a self-attention block and an MLP block applied channel wise. Our transformer model
dimension is 128 and so we project the EGNN embedding output down to 128 before entering into
the transformer layers. We then take the output of the transformer and take the average embedding
over all nodes. This embedding is then passed through a final projection layer to give softmax logits
over the pθ0|t(n0|Xt) distribution.

Autoregressive Distribution Our Aθ
t (y

add, i|Xt) network has to predict the position and features
for a new atom when it is added to the molecule. Since the point cloud is permutation invariant, we
do not need to predict i and so we just need to parameterize Aθ

t (y
add|Xt). We found the network

to perform the best if the network first predicts the nearest atom to the new atom and then a vector
from that atom to the location of the new atom. To achieve this, we first predict softmax logits
for a distribution over the nearest atom by applying a projection to the embedding output from the
previously described transformer block. During training, the output of this distribution can be directly
supervised by a cross entropy loss. Given the nearest atom, we then need to predict the position
and features of the new atom to add. We do this by passing in the embedding generated by the
EGNN and original point cloud features into a new transformer block of the same size as that used
for pθ0|t(n0|Xt). We also input the distances from the nearest atom to all other atoms in the molecule
currently as an additional feature. To obtain the position of the new atom, we will take a weighted
sum of all the vectors between the nearest atom and other atoms in the molecule. This is to make
it easy for the network to create new atoms ‘in plane’ with existing atoms which is useful for e.g.
completing rings that have to remain in the same plane. To calculate the weights for the vectors, we
apply an output projection to the output of the transformer block. The new atom features (atom type
and charge) are generated by a separate output projection from the transformer block. For the position
and features, Aθ

t (y
add|Xt) outputs both a mean and a standard deviation for a Gaussian distribution.

For the position distribution, we set the standard deviation to be isotropic to remain equivariant to
rotations. In total our model has around 7.3 million parameters.

D.1.2 Training

We train our model for 1.3 million iterations at a batch size of 64. We use the Adam optimizer with
learning rate 0.00003. We also keep a running exponential moving average of the network weights
that is used during sampling as is standard for training diffusion models [2, 3, 16] with a decay
parameter of 0.9999. We train on the 100K molecules contained in the QM9 training split. We model
hydrogens explicitly. Training a model requires approximately 7 days on a single GPU which was
done on an Academic cluster.

In [8] the atom type is encoded as a one-hot vector and diffused as a continuous variable along with
the positions and charge values for all atoms. They found that multiplying the one-hot vectors by
0.25 to boost performance by allowing the atom-type to be decided later on in the diffusion process.
We instead multiply the one-hot vectors by 4 so that atom-type is decided early on in the diffusion
process which improves our guided performance when conditioning on certain atom-types being

30

https://github.com/andrew-cr/jump-diffusion

present. We found our model is robust to this change and achieves similar sample quality to [8] as
shown in Table 2.

When deleting dimensions, we first shuffle the ordering of the nodes and then delete the final n0 − nt

nodes. The cross entropy loss weighting in (25) is set to 1.

Following [8] we train our model to operate within the center of mass (CoM) zero subspace of
possible molecule positions. The means, throughout the forward and backward process, the average
position of an atom is 0. In our transdimensional framework, this is achieved by first deleting any
atoms required under the forward component deletion process. We then move the molecule such
that its CoM is 0. We then add CoM free noise such that the noisy molecule also has CoM= 0. Our
score model sθt is parameterized through a noise prediction model ϵθt which is trained to predict the
CoM free noise that was added. Therefore, our score network learns suitable directions to maintain
the process on the CoM= 0 subspace. For the position prediction from Aθ

t (y
add|Xt) we train it to

predict the new atom position from the current molecules reference frame. When the new atom is
added, we then update all atom positions such that CoM= 0 is maintained.

D.1.3 Sampling

During sampling we found that adding corrector steps [3] improved sample quality. Intuitively,
corrector steps form a process that has pt(X) as its stationary distribution rather than the process
progressing toward p0(X). We use the same method to determine the corrector step size ζ as in
[3]. For the conditional generation tasks, we also found it useful to include corrector steps for the
component generation process. As shown in [29], corrector steps in discrete spaces can be achieved
by simulating with a rate that is the addition of the forward and backward rates. We achieve this in
the context of trans-dimensional modeling by first simulating a possible insertion using

←−
λ θ

t and then
simulating a possible deletion using→λ t. We describe our overall sampling algorithm in Algorithm 2.

Algorithm 2: Sampling the Generative Process with Corrector Steps
Input: Number of corrector steps C
t← T
X ∼ pref(X) = I{n = 1}N (x; 0, Id)
while t > 0 do

if u <
←−
λ θ

t (X)δt with u ∼ U(0, 1) then
Sample xadd, i ∼ Aθ

t (x
add, i|X)

X← ins(X,xadd, i)
end
x← x−

←−
b θ

t (X)δt+ gt
√
δtϵ with ϵ ∼ N (0, Ind)

for c = [1, . . . , C] do
x← x+ ζsθt−δt(X) +

√
2ζϵ with ϵ ∼ N (0, Ind)

if u <
←−
λ θ

t−δt(X)δt with u ∼ U(0, 1) then
Sample xadd, i ∼ Aθ

t−δt(x
add, i|X)

X← ins(X,xadd, i)
end
if u <

→
λ t−δt(n)δt with u ∼ U(0, 1) then

X← del(X, i) with i ∼ Kdel(i|n)
end

end
X← (n,x), t← t− δt

end

D.1.4 Evaluation

Unconditional For our unconditional sampling evaluation, we start adding corrector steps when
t < 0.1T in the backward process and use 5 corrector steps without the corrector steps on the number
of components. We set δ = 0.05 for t > 0.5T and δ = 0.001 for t < 0.5T such that the total number

31

0 5 10 15 20 25 30
Number of atoms

0.000

0.025

0.050

0.075

0.100

0.125

0.150

De
ns

ity

Dataset
Samples

Figure 6: Distribution of the size of molecules in the QM9 dataset as measured through the number
of atoms versus the distribution of the size of molecules generated by our unconditional model.

of network evaluations is 1000. We show the distribution of sizes of molecules generated by our
model in Figure 6 and show more unconditional samples in Figure 7. We find our model consistently
generates realistic molecules and achieves a size distribution similar to the training dataset even
though this is not explicitly trained and arises from sampling our backward rate

←−
λ θ

t . Since we are
numerically integrating a continuous time process and approximating the true time reversal rate

←−
λ ∗t ,

some approximation error is expected. For this experiment, sampling all of our models and ablations
takes approximately 2 GPU days on Nvidia 1080Ti GPUs.

Conditional For evaluating applying conditional diffusion guidance to our model, we choose 10
conditioning tasks that each result in a different distribution of target dimensions. The task is to
produce molecules that include at least a certain number of target atom types. We then guide the first
set of atoms generated by the model to have these desired atom types. The tasks chosen are given
in Table 5. Molecules in the training dataset that meet the conditions in each task have a different
distribution of sizes. The tasks were chosen so that we have an approximately linearly increasing
mean number of atoms for molecules that meet the condition. We also require that there are at least
100 examples of molecules that meet the condition within the training dataset.

For sampling when using conditional diffusion guidance, we use 3 corrector steps throughout the
backward process with δt = 0.001. For these conditional tasks, we include the corrector steps on
the number of components. We show the distribution of dimensions for each task from the training
dataset and from our generated samples in Figure 8. Our metrics are calculated by first drawing
1000 samples for each conditioning task and then finding the Hellinger distance between the size
distribution generated by our method (orange diagonal hashing in Figure 8) and the size distribution
for molecules in the training dataset that match the conditions of the task (green no hashing in Figure
8). We find that indeed our model when guided by diffusion guidance can automatically produce a
size distribution close to the ground truth size distribution found in the dataset for that conditioning
value. We show samples generated by our conditionally guided model in Figure 9. We can see that
our model can generate realistic molecules that include the required atom types and are of a suitable
size. For this experiment, sampling all of our models and ablations takes approximately 13 GPU days
on Nvidia 1080Ti GPUs.

Interpolations For our interpolations experiments, we follow the set up of [8] who train a new
model conditioned on the polarizability of molecules in the dataset. We train a conditional version of
our model which can be achieved by simply adding in the polarizability as an additional feature input
to our backbone network and re-using all the same hyperparameters. We show more examples of
interpolations in Figure 10.

32

Figure 7: Unconditional samples from our model.

D.1.5 Ablations

For our main model, we set →λ t<0.1T = 0 to ensure that all dimensions are added with enough
generation time remaining for the diffusion process to finalize all state values. To verify this setting,
we compare its performance with→λ t<0.03T = 0 and→λ t<0.3T = 0. We show our results in Table
6. We find that the →λ t<0.03T = 0 setting to generate reasonable sample quality but incur some
extra dimension error due to the generative process sometimes observing a lack of dimensions near
t = 0 and adding too many dimensions. We observed the same effect in the paper for when setting
→
λ t to be constant for all t in Table 3. Further, the setting→λ t<0.3T = 0 also results in increased
dimension error due to there being less opportunity for the guidance model to supervise the number
of dimensions. We find that→λ t<0.1T = 0 to be a reasonable trade-off between these effects.

D.1.6 Uniqueness and Novelty Metrics

We here investigate sample diversity and novelty of our unconditional generative models. We measure
uniqueness by computing the chemical graph corresponding to each generated sample and measure
what proportion of the 10000 produced samples have a unique chemical graph amongst this set
of 10000 as is done in [8]. We show our results in Table 7 and find our TDDM method to have
slightly lower levels of uniqueness when compared to the fixed dimension diffusion model baseline.

33

Table 5: The 10 conditioning tasks used for evaluation. The number of each atom type required for
the task is given in columns 2− 5 whilst the average number of atoms in molecules that meet this
condition in the training dataset is given in the 6th column.

Task Carbon Nitrogen Oxygen Fluorine
Mean Number

of Atoms

1 4 1 2 1 11.9
2 4 3 1 1 13.0
3 5 2 1 1 13.9
4 6 0 1 1 14.6
5 5 3 1 0 16.0
6 6 3 0 0 17.2
7 6 1 2 0 17.7
8 7 1 1 0 19.1
9 8 1 0 0 19.9
10 8 0 1 0 21.0

0 10 20 300.0

0.1

0.2

0.3

0 10 20 300.0

0.2

0.4

0.6

0.8

1.0

0 10 20 300.0

0.2

0.4

0.6

0.8

0 10 20 300.0

0.2

0.4

0.6

0 10 20 300.0

0.1

0.2

0.3

0.4

0 10 20 300.0

0.1

0.2

0.3

0 10 20 300.0

0.1

0.2

0.3

0.4

0 10 20 300.0

0.1

0.2

0.3

0 10 20 300.0

0.1

0.2

0.3

0 10 20 300.0

0.1

0.2

0.3

Number of atoms

De
ns

ity

Figure 8: Distribution of molecule sizes for each conditioning task. Tasks 1 − 5 are shown left
to right in the top row and tasks 6 − 10 are shown left to right in the bottom row. We show the
unconditional size distribution from the dataset in blue vertical/horizontal hashing, the size distribution
of our conditionally generated samples in orange diagonal hashing and finally the size distribution
for molecules in the training dataset that match the conditions of each task (the ground truth size
distribution) in green no hashing.

Measuring novelty on generative models trained on the QM9 dataset is challenging because the
QM9 dataset contains an exhaustive enumeration of all molecules that satisfy certain predefined
constraints [46], [8]. Therefore, if a novel molecule is produced it means the generative model has
failed to capture some of the physical properties of the dataset and indeed it is found in [8] that during
training, as the model improved, novelty decreased. Novelty is therefore not typically included in
evaluating molecular diffusion models. For completeness, we include the novelty scores in Table 7 as
a comparison to the results presented in [8] Appendix C. We find that our samples are closer to the
statistics of the training dataset whilst still producing ‘novel’ samples at a consistent rate.

D.2 Video

D.2.1 Dataset

We used the VP2 benchmark, which consists of 35 000 videos, each 35 frames long. The videos
are evenly divided among seven tasks, namely: push {red, green, blue} button, open
{slide, drawer}, push {upright block, flat block} off table. The 5000 videos for
each task were collected using a scripted task-specific policy operating in the RoboDesk environ-
ment [40]. They sample an action vector at every step during data generation by adding i.i.d. Gaussian

34

Figure 9: Samples generated by our model when conditional diffusion guidance is applied. Each row
represents one task with task 1 at the top, down to task 10 at the bottom. For each task, 10 samples
are shown in each row.

noise to each dimension of the action vector output by the scripted policy. For each task, they sample
2500 videos with noise standard deviation 0.1 and 2500 videos with standard deviation 0.2. We filter
out the lower-quality trajectories sampled with noise standard deviation 0.2, and so use only the
17 500 videos (2500) per task with noise standard deviation 0.1. We convert these videos to 32× 32
resolution and then, so that the data we train on has varying lengths, we create each training example
by sampling a length l from a uniform distribution over {2, . . . , 35} and then taking a random l-frame
subset of the video.

D.2.2 Forward Process

The video domain differs from molecules in two important ways. The first is that videos cannot be
reasonably treated as a permutation-invariant set. This is because the order of the frames matters.
Secondly, generating a full new component for the molecules with a single pass autoregressive
network is feasible, however, a component for the videos is a full frame which is challenging for a
single pass autoregressive network to generate. We design our forward process to overcome these
challenges.

35

Figure 10: Interpolations showing a sequence of generations for linearly increasing polarizability
from 39Bohr3 to 66Bohr3 with fixed random noise. Each row shows an individual interpolation with
Bohr3 increasing from left to right.

36

Table 6: Ablation of when to set the forward rate to 0 on the conditional molecule generation task.
We report dimension error as the average Hellinger distance between the generated and ground truth
conditional dimension distributions as well as average sample quality metrics. Metrics are reported
after 620k training iterations.

Method Dimension Error % Atom stable % Molecule Stable % Valid
−→
λ t<0.03T = 0 0.227±0.16 91.5±3.7 56.5±9.8 72.0±11
−→
λ t<0.1T = 0 0.162±0.071 92.4±2.8 53.9±12 72.7±9.6
−→
λ t<0.3T = 0 0.266±0.11 92.0±3.2 53.5±13 66.6±12

Table 7: Uniqueness and novelty metrics on unconditional molecule generation. We produce 10000
samples for each method and measure validity using RDKit. Uniquenss is judged as whether the
chemical graph is unique amongst the 10000 produced samples. Amongst the valid and unique
molecules, we then find the percentage that have a chemical graph not present in the training dataset.

Method % Valid % Valid and Unique
Percentage of Valid and Unique

Molecules that are Novel

FDDM [8] 91.9 90.7 65.7

TDDM (ours) 92.3 89.9 53.6
TDDM, const

−→
λ t 86.7 84.4 56.9

TDDM,
−→
λ t<0.9T = 0 89.4 86.1 51.3

TDDM w/o Prop. 3 87.1 85.9 63.3

We define our forward process to delete frames in a random order. This means that during generation,
frames can be generated in any order in the reverse process, enabling more conditioning tasks since
we can always ensure that whichever frames we want to condition on are added first. Further, we use
a non-isotropic noise schedule by adding noise just to the frame that is about to be deleted. Once it
is deleted, we then start noising the next randomly chosen frame. This is so that, in the backward
direction, when a new frame is added, it is simply Gaussian noise. Then the score network will fully
denoise that new frame before the next new frame is added. We now specify exactly how our forward
process is constructed.

We enable random-order deletion by applying an initial shuffling operation occurring at time
t = 0. Before this operation, we represent the video x as an ordered sequence of frames,
x0 = [x1,x2, . . . ,xn0

]. During shuffling, we sample a random permutation π of the integers
1, . . . , n0. Then the frames are kept in the same order, but annotated with an index variable so that
we have x0+ = [(x

(1)
0+ , π(1)), (x

(2)
0+ , π(2)), . . . , (x

(n0)
0+ , π(n0))].

We will run the forward process from t = 0 to t = 100N . We will set the forward rate such we delete
down from nt to nt − 1 at time (N − nt + 1)100. This is achieved heuristically by setting

→
λ t(nt) =

{
0 for t < (N − nt + 1)100,

∞ for t ≥ (N − nt + 1)100.

We can see that at time t = (N −nt +1)100 we will quickly delete down from nt to nt− 1 at which
point→λ t(nt) will become 0 thus stopping deletion until the process arrives at the next multiple of
100 in time. When we hit a deletion event, we delete the frame from Xt that has the current highest
index variable π(n). In other words

Kdel(i|Xt) =

{
1 for nt = x

(i)
t [2],

0 otherwise

where we use x
(i)
t [2] to refer to the shuffle index variable for the ith current frame in xt.

We now provide an example progression of the forward deletion process. Assume we have n0 = 4,
N = 5 and sample a permutation such that π(1) = 3, π(2) = 2, π(3) = 4, and π(4) = 1. Initially

37

the state is augmented to include the shuffle index. Then the forward process progresses from t = 0
to t = 500 with components being deleted in descending order of the shuffle index

x0+ = [(x
(1)
t , 3), (x

(2)
t , 2), (x

(3)
t , 4), (x

(4)
t , 1)]

x100+ = [(x
(1)
t , 3), (x

(2)
t , 2), (x

(3)
t , 4), (x

(4)
t , 1)]

x200+ = [(x
(1)
t , 3), (x

(2)
t , 2), (x

(4)
t , 1)]

x300+ = [(x
(2)
t , 2), (x

(4)
t , 1)]

x400+ = [(x
(4)
t , 1)]

In this example, due to the random permutation sampled, the final video frame remained after all
others had been deleted. Note that the order of frames is preserved as we delete frames in the forward
process although the spacing between them can change as we delete frames in the middle.

Between jumps, we use a noising process to add noise to frames. The noising process is non-isotropic
in that it adds noise to different frames at different rates such that the a frame is noised only in the
time window immediately preceding its deletion. For component i ∈ [1, . . . , nt], we set the forward
noising process such that pt|0(x

(i)
t |x

(i)
0 ,Mt) = N (x

(i)
t ;x

(i)
0 , σt(x

(i)
t)2) where x(i)

0 is the clean frame
corresponding to x

(i)
t as given by the mask Mt and σt(x

(i)
t) follows

σt(x
(i)
t) =


0 for t < (N − x

(i)
t [2])100,

100 for t > (N − x
(i)
t [2])100,

t− (N − x
(i)
t [2])100 for (N − x

(i)
t [2])100 ≤ t ≤ (N − x

(i)
t [2] + 1)100

where we again use x(i)
t [2] for the shuffle index of component i. This is the VE-SDE from [3] applied

to each frame in turn. We note that we only add noise to the state values on not the shuffle index itself.

The SDE parameters that result in the VE-SDE are
−→
b t = 0 and −→g t =

√
2t− 2(N − x

(i)
t [2])100.

D.2.3 Sampling the Backward Process

When t is not at a multiple of 100, the forward process is purely adding Gaussian noise, and so the
reverse process is also purely operating on the continuous dimensions. We use the Heun sampler
proposed by [16] to update the continuous dimensions in this case, and also a variation of their
discretisation of t - specifically to update from e.g. t = 600 to t = 500, we use their discretization of
t as if the maximum value was 100 and then offset all values by 500.

To invert the dimension deletion process, we can use Proposition 3 to derive our reverse dimension
generation process. We re-write our parameterized

←−
λ θ

t using Proposition 3 as

←−
λ θ

t (Xt) =
→
λ t(nt + 1)Epθ

0|t(n0|Xt)

[
pt|0(nt + 1|n0)

pt|0(nt|n0)

]
At each time multiple of 100 in the backward process, we will have an opportunity to add a component.
At this time point, we estimate the expectation with a single sample n0 ∼ pθ0|t(n0|Xt). If n0 > nt

then
←−
λ θ

t (Xt) =∞. The new component will then be added at which point
←−
λ θ

t (Xt) becomes 0 for
the remainder of this block of time due to nt becoming nt + 1. If n0 = nt then

←−
λ θ

t (Xt) = 0 and no
new component is added.

←−
λ θ

t (Xt) will continue to be 0 for the remainder of the backward process
once an opportunity to add a component is not used.

When a new frame is added, we use Aθ
t (y

add, i|Xt) to decide where the frame is added and its initial
value. Since when we delete a frame it is fully noised, Aθ

t (y
add, i|Xt) can simply predict Gaussian

noise for the new frame yadd. However, Aθ
t (y

add, i|Xt) will still learn to predict a suitable location i
to place the new frame such that backward process is the reversal of the forward.

We give an example simulation from the backward generative process in Figure 11.

38

Figure 11: An example simulation of the backward generative process conditioned on the first and
last frame. Note how the process first adds a new frame and then fully denoises it before adding the
next frame. Since the first and last frame are very similar, the process produces a short video.

D.2.4 Network Architecture

Our video diffusion network architecture is based on the U-net used by [42], which takes as input
the index of each frame within the video, and uses the differences between these indices to control
the interactions between frames via an attention mechanism. Since, during generation, we do not
know the final position of each frame within the x0, we instead pass in its position within the ordered
sequence xt.

One further difference is that, since we are perform non-isotropic diffusion, the standard deviation
of the added noise will differ between frames. We adapt to this by performing preconditioning, and
inputting the timestep embedding, separately for each frame x

(i)
t based on σt(x

(i)
t) instead of basing

them on the global diffusion timestep t. Our timestep embedding and pre- and post-conditioning of
network inputs/outputs are as suggested by [16], other than being done on a per-frame basis. The
architecture from [42] with these changes applied then gives us our score network sθt .

While it would be possible to train a single network that estimates the score and all quantities needed
for modelling jumps, we chose to train two separate networks in order to factorize our exploration
of the design space. These were the score network sθt , and the rate and index prediction network
modeling pθ0|t(n0|Xt) and Aθ

t (i|Xt). The rate and index prediction network is similar to the first half
of the score network, in that it uses all U-net blocks up to and including the middle one. We then
flatten the 512× 4× 4 hidden state for each frame after this block such that, for an nt frame input,
we obtain a nt × 8192 hidden state. These are fed through a 1D convolution with kernel size 2 and
zero-padding of size 1 on each end, reducing the hidden state to (nt + 1)× 128, which is in turn fed

39

through a ReLU activation function. This hidden state is then fed into three separate heads. One
head maps it to the parameters of Aθ

t (i|Xt) via a 1D convolution of kernel size 3. The output of size
(nt + 1) is fed through a softmax to provide the categorical distribution Aθ

t (i|Xt). The second head
averages the hidden state over the “frame” dimension, producing a 128-dimensional vector. This is
fed through a single linear layer and a softmax to parameterize pθ0|t(n0|Xt). Finally, the third head
consists of a 1D convolution of kernel size 3 with 35 output channels. The (nt + 1)× 35 output is
fed through a softmax to parameterize distributions over the number of frames that were deleted from
X0 which came before the first in xt, the number of frames from X0 which were deleted between
each pair of frames in xt, and the number deleted after the last frame in xt. We do not use this head
at inference-time but found that including it improved the performance of the other heads by helping
the network learn better representations.

For a final performance improvement, we note that under our forward process there is only ever one
“noised” frame in xt, while there are sometimes many clean frames. Since the cost of running our
architecture scales with the number of frames, running it on many clean frames may significantly
increase the cost while providing little improvement to performance. We therefore only feed into the
architecture the “noised” frame, the two closest “clean” frames before it, and the two closest “clean”
frames after it. See our released source code for the full implementation of this architecture.

D.2.5 Training

To sample t during training, we adapt the log-normal distribution suggested by [16] in the context
of isotropic diffusion over a single image. To apply it to our non-isotropic video diffusion, we first
sample which frames have been deleted, which exist with no noise, and which have had noise added,
by sampling the timestep from a uniform distribution and simulating our proposed forward process.
We then simply change the noise standard deviation for the noisy frame, replacing it with a sample
from the log-normal distribution. The normal distribution underlying our log-normal has mean
−0.6 and standard deviation 1.8. This can be interpreted as sampling the timestep from a mixture
of log-normal distributions, 1

N

∑N−1
i=0 LN (t− 100i;−0.6, 1.82). Here, the mixture index i can be

interpreted as controlling the number of deleted frames.

We use the same loss weighting as [16] but, similarly to our use of preconditioning, compute the
weighting separately for each frame x

(i)
t as a function of σt(x

(i)
t) to account for the non-isotropic

noise.

D.2.6 Perceptual Quality Metrics

We now verify that our reverse process does not have any degradation in quality during the generation
as more dimensions are added. We generate 10000 videos and throw away the 278 that were sampled
to have only two frames. We then compute the FID score for individual frames in each of the
remaining 9722 videos. We group together the scores for all the first frames to be generated in the
reverse process and then for the second frame to be generated and so on. We show our results in Table
8. We find that when a frame is inserted has no apparent effect on perceptual quality and conclude
that there is no overall degradation in quality as our sampling process progresses. We note that the
absolute value of these FID scores may not be meaningful due to the RoboDesk dataset being far out
of distribution for the Inception network used to calculate FID scores. We can visually confirm good
sample quality from Figure 5.

Table 8: FID for video frames grouped by when they were inserted during sampling.
1st 2nd 3rd 3rd last 2nd last last

34.2 34.9 34.7 34.2 34.1 34.4

E Broader Impacts

In this work, we presented a general method for performing generative modeling on datasets of
varying dimensionality. We have not focused on applications and instead present a generic method.

40

Along with other generic methods for generative modeling, we must consider the potential negative
social impacts that these models can cause when inappropriately used. As generative modeling
capabilities increase, it becomes simpler to generate fake content which can be used to spread
misinformation. In addition to this, generative models are becoming embedded into larger systems
that then have real effects on society. There will be biases present within the generations created
by the model which in turn can reinforce these biases when the model’s outputs are used within
wider systems. In order to mitigate these harms, applications of generative models to real world
problems must be accompanied with studies into their biases and potential ways they can be misused.
Further, public releases of models must be accompanied with model cards [47] explaining the biases,
limitations and intended uses of the model.

41

