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Appendix

This appendix includes further details on the experiment setup and analysis of the paper "The Impact
of Coreset Selection on Spurious Correlations and Group Robustness".

• A - Details of all the datasets used in our extensive analysis, including their bias levels

• B - Implementation details of the analysis pipeline, model details and hyperparameters

• C.1 - Additional results corresponding to Section ?? of the main paper

• C.2 - Additional results corresponding to Section ?? of the main paper

• C.3 - Additional results corresponding to Section ?? of the main paper

• C.4 - Further exploration into difficult coresets in small data regime

Our results and code are publicly available here

A Datasets, Characterization scores, and Policies

cMNIST (c-Mn) [1]- A simple synthetic version of the MNIST [2] dataset where colors have been
added to the images of the numbers. Each digit is spuriously correlated with a specific color.

Waterbirds (WB) [3]- constructed by placing images from the Caltech-UCSD Birds-200-2011 [4]
dataset over backgrounds from the Places [5] dataset. The task is to classify whether a bird is a
landbird or a waterbird, where the spurious attribute is the background (water or land).

Urbancars [6]- The task is the classification of car images into urban cars and country cars. There
are 2 different spurious attributes that result in three different sub-datasets. Urbancars-C (UC-C) has
a co-occurring object from urban and country contexts as the spurious feature, whereas Urbancars-B
(UC-B) has backgrounds as the spurious feature. Urbancars-A (UC-A) has both spurious features
resulting in 8 different subgroups.

Metashift (MSh) [7] MetaShift is a general method of creating image datasets from the Visual
Genome project [8]. We use the Cat vs. Dog dataset, where the spurious attribute is the image
background. Cats and more likely to be indoors, and dogs are more likely to be outdoors. We use the
"unmixed" version according to the original implementation.
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Nicospurious (Nic-S) [9, 10] NICO++ is a large-scale benchmark for domain generalization. We
only use their training dataset, which consists of 60 classes and 6 common attributes (autumn, dim,
grass, outdoor, rock, water). To transform this dataset into the spurious correlation setting, we use the
method followed by [10]

Civilcomments (CC) [11]- a text classification task where the goal is to classify a given comment as
"toxic" or "neutral". Following prior works [12] we use the coarse version of the dataset where the
presence of the spurious feature entails the comment containing mentions of any of these categories:
male, female, LGBT, black, white, Christian, Muslim, other religion. The presence of this spurious
feature is correlated with the label "toxic".

MultiNLI (MNL) [13, 3]- is also a text classification task where a pair of sentences belongs to one
of the three classes: Negation, Entailment, and Neutral. Spurious feature is the presence of negation
words such as "no" or "never" and it is spuriously correlated with the Negation class.

Celeb-A hair (Cel-A) [14]- We select to implement the binary classification on the hair-color attribute
to "Blond" and "non-Blond". The gender of the person is claimed to be the spurious feature. The
correlation is between Female gender and being blonde.

Dataset #Classes #Attributes MaxGroup MinGroup Bias Level
cMNIST [1] 10 10 5890 (10.71%) 13 (0.02%) 10.38
Waterbirds [3] 2 2 3498 (72.95%) 56 (1.17%) 3.67
Urbancars-C [6] 2 2 3800 (47.50%) 200 (2.50%) 1.90
Metashift [7] 2 2 789 (34.67%) 196 (8.61%) 1.41
Civilcomments [11] 2 2 148186 (55.08%) 12731 (4.73%) 1.45
Nico-spurious [10, 9] 6 6 3030 (32.53%) 6 (0.06%) 11.06
Urbancars-B [6] 2 2 3800 (47.50%) 200 (2.50%) 1.90
Urbancars-A [6] 2 4 3610 (45.12%) 10 (0.12%) 1.99
MultiNLI [3, 13] 3 2 67376 (32.68%) 1521 (0.74%) 2.28
Celeb-A hair [14] 2 2 71629 (44.01%) 1387 (0.85%) 1.62

Table 1: Dataset statistics including the number of classes, attributes, the largest/smallest
subgroups, and bias levels.

B Experiment settings, models, and hyperparameters

B.1 Class balancing

Prior work has shown that sample importance scores when used directly as a coreset selection can
cause unintended class imbalances in the resulting coreset [15]. Another work [16] also perform a
form of class balancing to ensure that none of the underrepresented classes are completely excluded
from the selected subset. Since our experiments involve very small coreset sizes, and since the class
labels are readily available, we implement a uniform class balancing strategy.

However, it should be noted that the datasets originally have imbalanced class distributions. Therefore,
we calculate the ideal number of samples that each class should represent for a desired coreset size
(equal proportions from all available classes), then if a particular class does not have enough samples,
we iteratively divide the shortfall among the remaining classes until a distribution as close as possible
to uniform is obtained.

B.2 Baselines

Once the class-balancing has been applied and the number of samples to be picked from each class is
calculated, the Random (R) selection policy uses uniform random selection on separate classes.

Random-groupbalanced (R-Gbal) baseline is implemented as an oracle baseline since it utilizes the
group labels of each samples, that we assume we do not have in the current setting. First, based on
the class-balancing constraint, we calculate the number of samples that should/could be sampled
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from each class. Then, within each class, we calculate the number of samples from each group that
can be sampled such that the group distribution within each class is as close to uniform as possible.
If a group does not have enough samples to create a uniform distribution, the shortfall is iteratively
divided equally among the remaining groups until they run out of samples. This way, for a given size
of coreset, the R-Gbal baseline selects the most group-balanced coreset possible without repeating
the same samples (oversampling).

B.3 Training surrogate model

For datasets Waterbirds, Urbancars, Metashift, Nicospurious, Celeb-A hair, we trained a
ResNet50 [17] initialized with pretrained weights from Imagenet to calculate the sample-level scores
for the learning-based selection methods. Following the setting proposed by [18], we trained the
models with SGD with a constant learning rate of 0.001, momentum of 0.9, batch size 32 and a
weight decay of 0.01. Following the previous work [19], for EL2N and Uncertainty, we trained the
model for 20 epochs, and for Forgetting, we trained for 200 epochs

For cMNIST, we trained a ResNet18 [17] initialized with pretrained weights from Imagenet to
calculate the sample-level scores for the learning-based selection methods. We trained the models
with SGD with a constant learning rate of 0.001, momentum of 0.9, batch size 32 and a weight decay
of 0.01. For EL2N and Uncertainty, we trained the model for 20 epochs, and for Forgetting, we
trained for 200 epochs

For Civilcomments, MultiNLI, we trained a pretrained Bert [20] model with Adam with learning
rate 1e-5 and momentum 0.9 to calculate the sample-level scores for the learning-based selection
methods. For EL2N and Uncertainty, we trained the model for 5 epochs, and for Forgetting, we
trained for 20 epochs

For embedding-based methods: SelfSup and SupProto, we used the same model and pretrained
weights as above, but did not train the feature extractor on the specific dataset; instead we extract the
features for each sample from the penultimate layer. For the fine-tuned versions of the embedding-
based scores: SelfSup (finetuned) and SupProto (finetuned) were first fine-tuned with supervision
using the same training setting as EL2N, and the features are then extracted from the penultimate
layer.

B.4 Training downstream model

The same training recipe and models as the surrogate model were used here, except for the number of
epochs trained. Since we compare models trained on a variety of coreset sizes, we keep the number
of training iterations for each model constant. We train each model for a specific number of epochs
such that the total number of iterations is equal to the number of iterations had the model been trained
on the complete dataset for n epochs. (Eg: for a coreset of size 2%, and n is 100, the scaled number
of training epochs would be 100/0.02 ≃ 5000). We set n for each dataset as follows: n =100 for
cMNIST, Waterbirds, Urbancars, Metashift, Nicospurious, n =50 for Celeb-A h, and n =10 for
Civilcomments, MultiNLI.

All models were trained with standard ERM with Stochastic Gradient Descent. All individual
trainings were done on RTX-3090 GPUs with 24GB of VRAM. Total estimated compute for all
experiments of this work is around 7,500 GPU hours.

C Extended results

C.1 Embedding-based characterization scores run a lower risk of inadver-
tently exacerbating bias compared to learning-based characterizations

Here we present the extended results corresponding to Section ?? from the main paper. Figure 1
contains the average precision evaluation of each characterization score on each dataset, when
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Figure 1: Classifying bias-conflicting samples using characterization scores. We measure the Average
Precision of three learning-based methods (EL2N [19], Uncertainty [21] and Forgetting [22]) and two embedding-
based methods (SelfSup [16] and SupProto [23]) at classifying bias-conflicting vs bias-aligning samples.
The shaded bars on the embedding-based methods represent the results for scores generated from fine-tuned
embeddings.

evaluated as a predictor for detecting bias conflicting samples. The random baseline is calculated
by randomly ordering all the samples and then thresholding them at each level to calculate average
precision, whereas the error bars represent the standard deviation. Therefore the average precision
on random selection represents the overall proportion of bias-conflicting samples in the dataset.
We see that across all datasets, leaning-based characterizations capture a much stronger signal that
distinguishes bias conflicting samples from bias-aligning samples. We stipulate that this strong
correlation between the characterization score and the bias-alignment of the samples can in turn cause
inadvertent bias exacerbation when used as a metric for data selection. On the more challenging
real-world datasets (Urbancars [6], Metashift [7], and Civilcomments [11], and Nico-spurious [10]),
embedding-based methods do not appear to order the samples according to their bias levels (i.e.,
have near-random AP); even finetuning these embeddings (depicted by the shaded bars) does not
significantly change these findings. It is also noteworthy that for datasets with more natural and
complex spurious features (Urbancars-all [10], CelebAhair [14], and MultiNLI [13, 3], learning-based
and embedding-based characterizations seem to capture signals of comparable strength.
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C.2 Coreset bias level is not a consistent indicator of downstream robustness

In this section we include the extended results corresponding to Section ?? of the main paper.
Figure 2 shows bias-levels, worst-group accuracy, and average accuracy for Difficult and Easy
selection policies using EL2N [24] scores along with the baselines. The observations we outlined in
the main paper consistently appear across all the datasets of the analysis. Coresets selected using
the Difficult policies consistently have lower level of bias compared to those selected using the Easy
policy. However, in the middle column we see that it does not always lead to improved robustness: the
Difficult coresets lead to more robust classifiers only when the coreset size is “sufficiently large.”
What constitutes “sufficiently large” appears to further vary empirically between the 10 datasets used
in this analysis. Furthermore, in the small data regime, the robustness of models for Difficult coresets
becomes unintuitively low, despite the bias levels being the lowest out of all policies.

Corresponding numerical results (along with Median and Stratified selection policies) are shown
in Table 2 and Table 3 respectively for moderate coreset sizes and very small coreset sizes. In the
moderately sized coresets (40% and 60%), Difficult selections of EL2N scores yield high robustness,
however this pattern is not consistent in the small coresets of 10% and 5%.

Extended results for all scoring methods and all selection policies for 40% selection rate is shown in
Table 4

Baselines EL2N [24] scores SelfSup [16] scores
Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
WB 58.2 (96.6) 83.3 (97.7) 74.6 (98.0) 73.1 (97.3) 50.5 (96.4) 30.2 (95.2) 50.9 (96.1) 51.0 (96.4) 69.2 (97.1) 37.1 (90.2)
c-Mn 62.0 (99.8) 84.4 (99.9) 87.2 (99.9) 74.0 (99.9) 0.0 (99.0) 0.0 (98.4) 83.0 (99.7) 83.5 (99.8) 44.0 (99.7) 0.0 (98.7)
CC 77.4 (88.8) 72.0 (89.6) 63.0 (84.3) 51.7 (91.8) 63.9 (80.5) 43.2 (68.1) 77.8 (87.7) 78.4 (88.3) 70.3 (90.4) 79.3 (86.0)
MSh 73.8 (88.3) 78.5 (87.2) 78.5 (90.6) 63.1 (89.3) 66.5 (88.5) 58.6 (86.4) 73.3 (88.3) 69.2 (90.3) 74.3 (89.1) 56.9 (87.5)
Nic-S 44.0 (93.9) 40.0 (94.9) 44.0 (95.8) 44.0 (95.3) 34.0 (95.1) 32.0 (93.7) 44.0 (95.0) 16.0 (93.3) 34.0 (93.4) 36.0 (94.3)
UC-C 52.0 (86.8) 61.6 (83.7) 54.0 (89.2) 51.2 (87.6) 46.4 (70.3) 49.6 (63.7) 42.0 (86.7) 48.4 (88.4) 54.4 (85.0) 44.0 (81.7)
UC-B 44.8 (90.2) 64.0 (87.6) 52.0 (90.1) 44.8 (89.5) 26.4 (90.4) 15.6 (91.8) 43.2 (87.9) 48.0 (88.8) 41.6 (90.6) 26.4 (89.4)
UC-C 16.8 (96.4) 50.4 (96.4) 23.2 (97.2) 19.2 (97.0) 6.4 (94.9) 7.2 (94.4) 11.2 (96.5) 17.6 (97.0) 20.8 (96.6) 9.6 (96.5)
MNL 60.5 (78.8) 57.6 (78.6) 46.0 (61.5) 65.6 (74.7) 61.8 (79.0) 46.0 (78.1) 55.2 (79.4) 60.8 (79.6) 55.7 (78.2) 58.3 (78.8)
Cel-A 58.9 (93.4) 71.1 (92.6) 38.3 (94.9) 47.8 (95.1) 68.9 (93.2) 79.0 (88.0) 41.7 (94.4) 66.1 (92.6) 63.3 (94.4) 78.9 (88.8)

(a) 40 percent
Baselines EL2N [24] scores SelfSup [16] scores

Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
WB 67.3 (97.3) 77.6 (98.0) 73.2 (97.9) 75.6 (97.4) 28.6 (95.3) 26.5 (94.9) 73.7 (97.6) 64.5 (97.1) 75.9 (97.5) 58.4 (94.8)
c-Mn 78.9 (99.5) 79.8 (99.5) 63.1 (99.5) 57.3 (99.6) 1.0 (99.1) 0.0 (99.0) 78.0 (99.7) 81.3 (99.8) 65.0 (99.7) 0.8 (99.4)
CC 72.4 (90.1) 70.8 (89.7) 55.4 (92.1) 53.7 (92.0) 55.5 (75.7) 57.3 (76.8) 69.4 (90.0) 71.2 (90.0) 69.7 (90.5) 61.6 (91.1)
MSh 75.4 (90.7) 75.4 (90.0) 70.8 (90.7) 70.8 (90.2) 70.7 (89.1) 67.5 (88.5) 75.9 (90.7) 75.4 (90.8) 76.4 (89.7) 61.5 (89.1)
Nic-S 42.0 (94.7) 40.0 (95.2) 40.0 (96.2) 38.0 (95.3) 34.0 (95.6) 32.0 (94.9) 40.0 (96.3) 34.0 (95.4) 34.0 (95.0) 44.0 (94.9)
UC-C 49.2 (87.5) 56.4 (85.2) 54.4 (89.3) 53.2 (89.3) 49.6 (74.9) 49.2 (73.7) 48.4 (87.7) 52.4 (90.1) 52.8 (88.6) 50.8 (85.4)
UC-B 48.8 (88.7) 58.0 (88.0) 53.6 (90.7) 49.6 (89.7) 26.0 (90.9) 24.4 (91.0) 47.6 (89.9) 49.2 (89.4) 49.6 (90.4) 39.2 (90.9)
UC-A 22.4 (97.2) 32.8 (97.5) 23.2 (97.3) 21.6 (97.5) 10.4 (96.0) 9.6 (95.9) 16.8 (97.1) 20.8 (96.9) 20.8 (97.2) 18.4 (97.3)
MNL 58.0 (80.1) 65.5 (80.5) 65.3 (73.9) 65.0 (79.6) 55.2 (80.4) 54.5 (80.4) 67.2 (79.6) 63.7 (80.7) 65.9 (79.4) 66.0 (79.5)
Cel-A 73.3 (93.9) 56.7 (95.3) 61.1 (95.2) 46.1 (95.2) 68.9 (94.3) 71.7 (93.0) 63.3 (94.1) 37.2 (95.8) 55.6 (95.4) 58.9 (94.5)

(b) 60 percent

Table 2: Worst-group accuracies and (Average accuracies) for different selection policies. For moderate
coreset sizes: 40% and 60%. The highest values of worst-group-accuracies are bolded, with second highest
values underlined. The least robust, indicated by the least value for worst-group accuracy is shaded in brown. In
general, Difficult selection policies with EL2N scores yield robust classifiers.

5



Baselines EL2N [24] scores SelfSup [16] scores
Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
WB 44.7 (95.3) 89.0 (92.2) 31.9 (85.2) 51.1 (95.5) 42.7 (95.3) 24.8 (94.8) 35.1 (94.9) 26.3 (94.2) 41.3 (95.0) 29.1 (93.9)
c-Mn 0.0 (99.2) 95.3 (99.2) 88.6 (99.9) 8.0 (99.4) 0.0 (97.1) 0.0 (96.9) 36.9 (99.5) 24.7 (99.4) 0.0 (98.2) 0.0 (96.5)
CC 66.6 (77.3) 75.0 (81.2) 7.2 (11.1) 15.9 (19.1) 58.0 (91.0) 29.6 (56.0) 42.4 (62.6) 62.5 (75.9) 68.3 (78.9) 70.7 (80.8)
MSh 55.4 (85.4) 75.4 (87.5) 6.2 (33.0) 21.2 (51.2) 56.9 (85.4) 50.3 (83.0) 55.0 (85.1) 46.2 (84.8) 52.3 (86.4) 38.5 (83.5)
Nic-S 34.0 (90.6) 60.0 (88.8) 34.0 (90.2) 38.0 (89.9) 28.0 (93.1) 8.0 (88.7) 26.0 (92.3) 32.0 (93.0) 30.0 (90.0) 16.0 (82.2)
UC-C 44.4 (75.5) 52.8 (60.5) 27.2 (59.7) 44.8 (76.0) 47.6 (66.8) 46.0 (58.7) 21.2 (67.3) 40.8 (75.8) 48.0 (70.7) 38.8 (74.6)
UC-B 21.6 (89.3) 72.0 (78.1) 14.0 (70.3) 28.4 (85.1) 17.2 (90.0) 9.2 (90.4) 9.2 (75.2) 34.4 (84.6) 20.4 (89.9) 15.6 (86.0)
UC-A 6.4 (95.1) 62.4 (88.8) 11.2 (76.3) 15.2 (93.2) 6.4 (94.5) 3.2 (92.5) 0.8 (82.3) 8.8 (93.2) 9.6 (95.5) 4.8 (95.2)
MNL 32.5 (69.4) 62.3 (69.4) 3.2 (17.5) 22.2 (30.7) 41.7 (74.9) 37.7 (64.4) 25.1 (60.1) 34.3 (68.4) 51.2 (71.1) 29.7 (70.5)
Cel-A 47.2 (94.8) 83.3 (92.0) 40.0 (82.1) 51.1 (89.2) 41.1 (93.6) 80.6 (88.0) 81.4 (86.7) 64.4 (94.0) 62.2 (93.2) 80.9 (85.3)

(a) 5 percent
Baselines EL2N [24] scores SelfSup [16] scores

Dataset R R-Gbal Diff Strat Med Eas Diff Strat Med Eas
WB 40.5 (95.3) 88.6 (95.6) 68.5 (96.7) 67.4 (96.3) 47.2 (95.9) 29.1 (95.1) 40.8 (94.8) 34.7 (95.3) 55.9 (96.0) 23.9 (92.4)
c-Mn 24.8 (99.4) 95.0 (99.5) 87.9 (99.9) 47.0 (99.8) 0.0 (98.1) 0.0 (97.3) 69.4 (99.6) 73.4 (99.6) 0.0 (98.8) 0.0 (96.5)
CC 77.9 (85.3) 72.2 (80.3) 5.0 (10.0) 18.7 (21.9) 80.6 (88.4) 34.8 (58.1) 57.0 (73.4) 66.6 (79.3) 68.3 (79.8) 68.4 (79.3)
MSh 58.5 (88.4) 81.7 (88.8) 11.4 (42.9) 63.1 (82.2) 67.5 (87.3) 54.5 (84.7) 57.1 (85.4) 56.9 (87.7) 58.5 (86.8) 38.5 (84.7)
Nic-S 32.0 (94.2) 40.0 (81.2) 36.0 (95.4) 50.0 (92.3) 30.0 (94.0) 16.0 (91.2) 30.0 (94.5) 26.0 (93.5) 26.0 (91.9) 28.0 (88.3)
UC-C 48.8 (75.4) 60.0 (67.0) 53.6 (83.0) 46.0 (80.0) 46.4 (65.9) 47.6 (57.4) 27.6 (73.0) 46.4 (81.8) 48.8 (74.8) 40.4 (75.9)
UC-B 32.4 (88.8) 76.4 (82.1) 44.4 (86.4) 28.0 (88.1) 21.6 (90.6) 11.2 (90.7) 17.6 (80.6) 36.0 (88.1) 26.0 (89.9) 17.6 (88.1)
UC-A 8.8 (95.7) 64.8 (92.7) 27.2 (94.3) 13.6 (94.9) 5.6 (94.4) 4.8 (92.4) 3.2 (88.9) 11.2 (96.4) 11.2 (95.5) 6.4 (94.8)
MNL 58.4 (73.6) 63.2 (73.2) 7.7 (19.5) 12.7 (27.6) 46.5 (77.8) 45.6 (70.6) 38.6 (67.7) 48.6 (73.7) 44.9 (74.1) 43.6 (74.2)
Cel-A 75.6 (92.0) 76.1 (92.0) 41.7 (90.1) 63.3 (91.8) 72.8 (92.6) 70.2 (79.4) 77.2 (84.8) 76.7 (91.4) 48.3 (92.1) 76.6 (82.1)

(b) 10 percent

Table 3: Worst-group accuracies and (Average accuracies) for different selection policies. For very small
coreset sizes: 5% and 10%. The highest values of worst-group-accuracies are bolded, with second highest
values underlined. The least robust, indicated by the least value for worst-group accuracy is shaded in brown.
Difficult selection suffers from a large drop in both average and worst-group accuracies, especially in EL2N.
Selection policies that incorporate less difficult samples tend to yield comparatively higher robustness.

Dataset Baselines EL2N [19] Uncertainty [21] Forgetting [22] SelfSup [16] SupProto [23]
R R-gbal Diff Strat Med Eas Diff Strat Med Eas Diff Strat Med Eas Diff Strat Med Eas Diff Strat Med Eas

C-Mn 62.0 84.4 87.72 74.0 0.0 0.0 37.8 82.3 1.0 0.0 9.9 4.0 0.0 0.0 83.0 83.5 44.0 0.0 87.0 48.5 0.0 0.0
WB 58.2 83.3 74.6 73.1 50.5 30.2 72.6 71.2 51.0 28.2 75.4 79.6 53.8 52.0 50.9 51.0 69.2 37.1 66.5 58.8 59.4 30.0
UC-c 52.0 61.6 54.0 51.2 46.4 49.6 54.8 55.2 46.4 50.4 51.2 54 31.6 31.6 42.0 48.4 54.4 44.0 46.8 50.4 50.0 44.8
MSh 73.8 78.5 78.5 63.1 66.5 58.6 73.8 69.2 70.2 65.4 71.7 76.4 46.6 48.7 73.3 69.2 74.3 56.9 67.0 73.8 72.3 58.5
CC 77.4 72.0 63.0 51.7 63.9 43.2 60.2 64.2 61.0 75.2 60.9 65.3 82.0 79.5 77.8 78.4 70.3 79.3 76.2 77.1 74.1 75.2
Nic-s 44.0 40.0 44.0 44.0 34.0 32.0 44.0 42.0 36.0 30.0 44.0 40.0 46.0 40.0 44.0 16.0 34.0 36.0 38.0 42.0 42.0 38.0
UC-b 44.8 64.0 52.0 44.8 26.4 15.6 52.8 53.2 26.0 15.6 47.6 50.8 54.0 54.0 43.2 48.0 41.6 26.4 53.2 52.4 36.8 13.6
UC-a 16.8 50.4 23.2 19.2 6.4 7.2 22.4 26.4 8 7.2 20.0 23.2 16.0 16.0 11.2 17.6 20.8 9.6 20.8 19.2 17.6 5.6
MNL 60.5 57.6 46.0 65.6 61.8 46.0 61.5 64.0 53.8 49.2 59.5 57.8 52.4 52.4 55.2 60.8 55.7 58.3 - 63.9 62.6 55.4
Cel-h 58.9 71.1 38.3 47.8 68.9 79.0 42.2 42.2 62.8 78.9 27.2 42.8 64.4 64.4 41.7 66.1 63.3 78.9 50.0 59.4 63.9 82.2

Table 4: Worst-group accuracies of different selection policies within each scoring methods (learning-
based: EL2N [19], Uncertainty [21], Forgetting [22], and embedding-based: SelfSup [16], SupProto [23])
at 40% selection rate. The highest worst-group-accuracies within each scoring method for each dataset are
bolded.
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Figure 2: Data bias and classifier accuracies for different selection policies using EL2N scores. Selecting
the Difficult samples typically results in less biased coresets and corresponding more robust (highest worst-group
accuracy) classifiers than Easy samples at higher selection rates. The Difficult samples also lead to more robust
models than Random selection. However, as coreset size gets smaller, we see a significant drop in average
and worst-group accuracies for Difficult samples. In such settings, Stratified and Median policies, which are
consistently more biased than Difficult, counter-intuitively yield higher robustness.
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C.3 Trading off most difficult bias-conflicting samples to improve robustness

This section includes the extended results corresponding to Section ?? of the main paper. Difficult*
selection policy is a simple heuristic where a small percentage (3%) of the highest scoring samples is
removed from Difficult selection. Bias levels, worst-group accuracy, and average accuracy for this
heuristic policy along with the rest of the policies are applied on EL2N scores for all the datasets of
the analysis as shown in Figure 3. We can see that all methods: Difficult*, Stratified, and Median
make the coresets progressively more biased compared to Difficult selection. However, they result in
improved robustness (worst-group accuracy) in cases where Difficult policy has catastrophically low
robustness.
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Figure 3: Trading off most difficult minority samples to achieve higher robustness. Difficult*, Median and
Stratified selection policies often make the selected coreset slightly biased, however, they improve the robustness
of the downstream models, in settings where Difficult selection has a catastrophic drop in performance.
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C.4 Further exploration into catastrophic loss of accuracy for difficult coresets
in small data regime

We inspect train-test accuracy gaps for models trained on small-data regime coresets and observe that
all models achieve 100% training accuracy. The drop in average accuracy for difficult coresets in
the small data regime therefore suggests a high level of overfitting compared to other policies, also
consistent with claims of Sorscher et al [16] as we discussed in Section ??.

It has been hypothesized that the catastrophic drop in accuracy for difficult coresets could be due to
the coreset achieving low coverage on the data space. Zhen et al. [25] utilized the concept of p-partial
r-cover to quantify this phenomenon, where r is some radius around each data of the coreset and p
is the proportion of training data covered. We used their p-partial r-cover as a metric to investigate
whether this pattern persists in datasets with strong spurious correlations. Using the features of
ImageNet pre-trained ResNet-50, we selected a radius r where it would cover 95% of the training data.
Using the r, we obtained the measured p from the selected coresets shown in Table 5. Significant
decrease in p in difficult selected coresets at 5% and 2% across the datasets confirms the drop in
coverage.

Selection Random Difficult Easy
Rate (baseline)

2% 80.3 45.4 82.3
5% 85.7 58.8 86.1

20% 93.3 92.4 90.9

(a) Waterbirds [3]

Selection Random Difficult Easy
Rate (baseline)

2% 61.0 7.9 71.1
5% 74.7 25.0 77.4
20% 89.6 80.0 88.4

(b) Metashift [7]

Table 5: p-partial r-cover achieved by Difficult and Easy selection policies for Waterbirds [3] and
Metashift [7] datasets. At low selection rates, Difficult selection yeilds to significantly less coverage than Easy
of Random selections (bolded).
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