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Appendices

TETA: Temporal-Enhanced Text-to-Audio Generation

A DATA DETAILS

Table 7: Statistics for the Datasets used in the paper.

Dataset Hours Type Source

Audiocaps 109hrs caption Kim et al. (2019)
WavCaps 2056hrs caption Mei et al. (2023)
WavText5K 25hrs caption Deshmukh et al. (2022)
MACS 48hrs caption Martín-Morató & Mesaros (2021)
Clothv2 152hrs caption Drossos et al. (2020)
Audiostock 44hrs caption https://audiostock.net
epidemic sound 220hrs caption https://www.epidemicsound.com
Adobe Audition Sound Effects 26hrs caption https://www.adobe.com/

products/audition/offers/
AdobeAuditionDLCSFX.html

FSD50K 108hrs label https://annotator.freesound.org/fsd
ODEON_Sound_Effects 20hrs label https://www.paramountmotion.com/

odeon-sound-effects
UrbanSound8K 9hrs label Salamon et al. (2014)
ESC-50 3hrs label Piczak (2015)
filteraudioset 945hrs multi label Gemmeke et al. (2017)
TUT 13hrs label Mesaros et al. (2016)

As shown in Table 7, we collect a large-scale audio-text dataset consisting of 0.92 million of audio
samples with a total duration of approximately 3.7k hours. The dataset has a wide variety of sounds
including music and musical instruments, sound effects, human voices, nature and living sounds, etc.
For Clotho dataset, we only use its evaluation set for zero-shot testing and do not use for training. As
speech and music are the dominant classes in AudioSet, we filter 95% of the samples that contain
speech and music to build a more balanced dataset.

We conduct preprocessing on both text and audio data as follows:

1) We convert the sampling rate of audio to 16kHz. Prior works Yang et al. (2023); Huang et al.
(2023a); Liu et al. (2023) pad or truncate the audio to a fixed length (10s), while we group audio
files with similar durations together to form batches to avoid excessive padding which could
potentially impair model performance and slow down the training speed. This approach also
allows for improved variable-length generation performance. We truncate any audio file that
exceeds 20 seconds, in order to speed up the training process.

2) We adopt the LLM-based data augmentation method in section 3.4 to construct approximately
61k additional audio-text pairs as auxiliary data.

3) For audios without natural language annotation, we apply the pseudo prompt enhancement method
from Make-An-Audio Huang et al. (2023a) to construct captions aligned with the audio.

4) We assign a lower weight to the data that is not annotated with temporal information but is
abundant in quantity and diversity, such as AudioSet and WavCaps data. Specifically, we traverse
the AudioCaps training set and the LLM augmented data with a probability of 50%, while
randomly selecting data from all other sources with a probability of 50%. For the latter dataset,
we use "<text & all>" as their structured caption.

14

https://audiostock.net
https://www.epidemicsound.com
https://www.adobe.com/products/audition/offers/AdobeAuditionDLCSFX.html
https://www.adobe.com/products/audition/offers/AdobeAuditionDLCSFX.html
https://www.adobe.com/products/audition/offers/AdobeAuditionDLCSFX.html
https://annotator.freesound.org/fsd
https://www.paramountmotion.com/odeon-sound-effects
https://www.paramountmotion.com/odeon-sound-effects


Under review as a conference paper at ICLR 2024

B EXPERIMENTAL DETAILS

Variational autoencoder. We employed a similar VAE architecture to that of Make-An-Audio,
replacing all the 2D-convolution layers with 1D-convolution layers and the spatial transformer
with a temporal transformer. As detailed in Section 4.5, the output latent of VAE is z = E(x) ∈
RCa/f1×T/f2 , where we choose the downsample rate of f1 = 4 and f2 = 2. We additionally involve
R1 regularization Mescheder et al. (2018) to better stabilize the adversarial training process. We train
our VAE on 8 NVIDIA A100 GPUs with a batch size of 32 and 800k training steps on AudioSet
dataset. We use the Adamw optimizer Loshchilov & Hutter (2018) with a learning rate of 1.44×10−4.
For specific differences in hyperparameters between our VAE and that of Make-An-Audio, please see
Table 8.

Table 8: Difference between Make-An-Audio VAE and our VAE

Make-An-Audio VAE TETA VAE

Assume input tensor shape (for 10s audio) (1,80,624) (80,624)
Embed_dim 4 20

Convolution layer Conv2D Conv1D
Channels 128 224

Channel multiplier 1,2,2,4 1,2,4
Downsample layer position after block 1,2 after block 1

Attention layer spatial attention temporal attention
Attention layer position after block 3,4 after block 3

Output tensor shape (4,10,78) (20,312)

Latent diffusion. We train our Latent Diffusion Model with on 8 NVIDIA A100 GPU with a batch
size of 32 and 1.8M training steps. We use the Adam optimizer with a learning rate of 9.6× 10−5.
For the specific hyperparameter for our latent diffusion model, please refer to Table 9.

Table 9: TETA Diffusion model backbone configurations

TETA LDM

Input shape (20,T)
Condition_embedding dim 1024

Feed-forward Transformer hidden_size 576
Feed-forward Transformer’s Conv1d kernel size 7

Feed-forward Transformer’s Conv1d padding 3
Number of Transformer heads 8

Number of Feed-forward Transformer block 8
Diffusion steps 1000

Model parameters of each component. The params of each component in TETA are displayed in
Table 10.

Table 10: The params of each component in TETA

Component Params

VAE 213M
Diffusion Model Backbone 160M

Text Encoder 452M
Vocoder 112M

Total 937M
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C EVALUATION

C.1 SUBJECTIVE EVALUATION

To assess the generation quality, we conduct MOS (Mean Opinion Score) tests regarding audio quality,
text-audio faithfulness and text-audio temporal alignment, respectively scoring MOS-Q, MOS-F, and
MOS-T.

For audio quality, the raters were explicitly instructed to “focus on examining the audio quality and
naturalness.” The testers were presented with audio samples and their caption and asked to rate their
subjective score on a 20-100 Likert scale.

For text-audio faithfulness, human raters were shown the audio and its caption and asked to respond
to the question, "Does the natural language description align with the audio faithfully?" They had to
choose one of the options - "completely," "mostly," or "somewhat" on a 20-100 Likert scale.

For text-audio temporal alignment, human raters were shown the audio and its caption and asked to
respond to the question, "Whether the text description contains sounds time or order information. If
not then select no, if yes then score based on how the audio’s sound order aligns with its caption."
They had to choose one of the options - "completely," "mostly," or "somewhat" on a 20-100 Likert
scale. We will filter out the audio that has been selected "no" and compute MOS-T based on the
remaining audio.

A small subset of the generated audio samples used in the test can be found at https://teta2023.
github.io/.

C.2 OBJECTIVE EVALUATION

Fréchet Audio Distance (FAD) Kilgour et al. (2018) is adapted from the Fréchet Inception Distance
(FID) to the audio domain, it is a reference-free perceptual metric that measures the distance between
the generated and ground truth audio distributions. FAD is used to evaluate the quality of generated
audio.

The inception Score (IS) is an effective metric that evaluates both the quality and diversity of generated
audio.

KL divergence is measured at a paired sample level between the generated audio and the ground truth
audio, it is computed using the label distribution and is averaged as the final result.

Fréchet Distance (FD) evaluates the similarity between the generated and ground truth audio distribu-
tions. FD, KL and IS are built upon an audio classifier, PANNs Kong et al. (2020), which takes the
mel-spectrogram as model input. Differently, FAD uses VGGish Hershey et al. (2017) as an audio
classifier that takes raw audio waveform as model input.

CLAP score: adapted from the CLIP score Hessel et al. (2021); Radford et al. (2021) to the audio
domain and is a reference-free evaluation metric to measure audio-text alignment for this work that
closely correlates with human perception.

D CHATGPT PROMPTS

The prompt templates utilized for temporal enhancement to construct structure caption from the
original natural language caption and for caption data augmentation are displayed in Figure 3.

Table 11 presents some instances of the original caption and ChatGPT’s outcome. For text data
augmentation, we construct structured caption inputs, and Table 12 exhibits examples of such inputs
and ChatGPT’s corresponding outputs.

E LIMITATIONS, FUTURE WORKS AND BROADER IMPACT

Limitations. TETA incorporates an additional LLM for parsing the original caption, which affects
both the generation performance and running speed. Additionally, the generative diffusion model
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Figure 3: The prompt templates we used for temporal enhancement and data augmentation. We use
the symbol ’&’ to split the sound event and the time order. We use the symbol ’@’ to split <event &
order> pairs.

Table 11: Examples of using ChatGPT for temporal enhancement from AudioCaps trainset

Natural language input ChatGPT’s output
A woman talks nearby as water pours <woman talking& all>@<water pouring& all>
Two men exchange words, then a car
engine revs followed by a siren and
fade in music

<two men talking& all>@<car engine revving&
start>@<siren& mid>@<music fading in& end>

A crowd is cheering and shouting,
thumping occurs, an adult female
speaks, and an adult male speaks

<crowd cheering and shouting& all>@<thumping&
start>@<adult female speaking& mid>@<adult male
speaking& end>

employed by TETA requires multiple iterative refinements for synthesis, which can be time-consuming
to produce high-quality results. Furthermore, the speech in the generated audio can be intelligible.

Table 12: Examples of using ChatGPT for data augmentation

Structured input ChatGPT’s output
<bark howl dog& start>@<typing
Typewriter& mid>@<breathing&
end>

A dog barks and howls while someone types on a type-
writer, then the sound of breathing takes over

<crowing& all>@<car&
all>@<female singing& end>

A rooster crows as a car passes by, and the scene ends
with the sound of a female singing

<sneezing& all>@<bicycle bell ring&
start>@<typewriter & end>

The sound of sneezing is heard throughout, with a bicycle
bell ringing at the start and the sound of a typewriter at
the end
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Future works. We leave the T2A system which supports speech synthesis for future work. As we
have seen great potential in our LLM-based data augmentation, with elaborate prompts and merge
rules, it can be used to merge speech, singing, sound events, and music to create a more universal
audio scenario. Enabling the training of a model that can generate universal audios with meaningful
speech and music with ideal melody. In addition, we aim to implement T2A systems that could take
structured inputs as optional auxiliary inputs instead of required inputs.

Broader impacts. At the same time, we acknowledge that TETA may lead to unintended conse-
quences such as increased unemployment for individuals in related fields such as sound engineering
and radio hosting. Furthermore, there are potential concerns regarding the ethics of non-consensual
voice cloning or the creation of fake media.
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