Rewiring Neurons in Non-Stationary Environments (Supplementary Material)

Zhicheng Sun, Yadong Mu* Peking University, Beijing, China {sunzc,myd}@pku.edu.cn

A Experimental details

We conduct experiments using the open-source reinforcement learning library Salina [2], which is released under the MIT license. In the following, we provide more information about the environment details (Appendix A.1), method configurations (Appendix A.2), evaluation metrics (Appendix A.3), and computational costs (Appendix A.4).

A.1 Environments

Brax [4] is a hardware-accelerated physics engine released under the Apache-2.0 license. To build a continual reinforcement learning benchmark on it, Gaya *et al.* [5] adapted three of its locomotion environments, including HalfCheetah (obs dim: 18, action dim: 6), Ant (obs dim: 27, action dim: 7), and Humanoid (obs dim: 376, action dim: 17), to derive varied environments. The resulting 26 tasks are summarized in Table 1.

For HalfCheetah, four scenarios are curated in [5] that focus on different aspects of continual learning, including a forgetting scenario where learning the next task tends to forget the previous one, a transfer scenario with negative forward transfer (see Appendix A.3 for definition) across tasks, a robustness scenario that alternates between a normal task and a distraction task, and a compositionality scenario where the final task is a combination of the previous variations. Specifically, each of them is composed of a 4-task sequence repeated twice:

- 1. Forgetting: hugefeet \rightarrow moon \rightarrow carrystuff \rightarrow rainfall
- 2. Transfer: carrystuff_hugegravity \rightarrow moon \rightarrow defective_sensor \rightarrow hugefeet_rainfall
- 3. Robustness: normal \rightarrow inverted_action \rightarrow normal \rightarrow inverted_action
- 4. Compositionality: tinyfeet \rightarrow moon \rightarrow carrystuff_hugegravity \rightarrow tinyfeet_moon

Similarly, Ant includes four different scenarios, each consisting of a 4-task sequence repeated twice:

- 1. Forgetting: normal \rightarrow hugefeet \rightarrow rainfall \rightarrow moon
- 2. Transfer: nofeet_1_3 \rightarrow nofeet_2_4 \rightarrow nofeet_1_2 \rightarrow nofeet_3_4
- 3. Robustness: normal \rightarrow inverted_actions \rightarrow normal \rightarrow inverted_actions
- 4. Compositionality: nofeet_2_3_4 \rightarrow nofeet_1_3_4 \rightarrow nofeet_1_2 \rightarrow nofeet_3_4

In addition, there is a humanoid scenario with higher observation and action dimensions. It consists of the following 4-task sequence: normal \rightarrow moon \rightarrow carrystuff \rightarrow tinyfeet.

Continual World [13] is a continual reinforcement learning benchmark based on Meta-World [14], which is composed of 50 manipulation tasks originally curated for meta-reinforcement learning and is released under the MIT license. Underlying both benchmarks is MuJoCo [11], a general purpose physics engine released under the Apache-2.0 license.

^{*}Corresponding author.

³⁷th Conference on Neural Information Processing Systems (NeurIPS 2023).

	Task	Description
HalfCheetah	normal carrystuff carrystuff_hugegravity defective_sensor hugefeet hugefeet_rainfall inverted_actions moon tinyfeet tinyfeet_moon rainfall	 4× mass and radius of the torso 4× mass and radius of the torso, 1.5× gravity half observations are masked 1.5× mass and radius of the feet 1.5× mass and radius of the feet, 0.4× friction inverted action values 0.15× gravity 0.5× mass and radius of the feet 0.5× mass and radius of the feet, 0.15× gravity 0.4× friction
Ant	normal hugefeet nofeet_2_3_4 nofeet_1_3_4 nofeet_1_3 nofeet_2_4 nofeet_1_2 nofeet_3_4 inverted_actions moon rainfall	- 1.5× mass and radius of the feet only the 1st leg is enabled only the 2nd leg is enabled the 1st diagonal legs are disabled the 2nd diagonal legs are disabled forefeet are disabled hindfeet are disabled inverted action values 0.15× gravity 0.4× friction
Humanoid	normal moon carrystuff tinyfeet	- 0.15× gravity 4× mass and radius of the torso and lower waist 0.5× mass and radius of the feet

Table 1: List of the 26 tasks used in Brax scenarios [4, 5] with their descriptions.

There are three types of scenarios of different lengths introduced in the original paper [13], including 8 triplets (CW3), a longer 10-task sequence (CW10), and a 20-task sequence (CW20) from simply repeating CW10 twice. We follow [5] in using CW3 and CW10 scenarios for experiments. In detail, the CW3 scenarios are designed to have a large forward transfer from the first task to the third task, with the second task serving as a distraction. They include the following triplets:

- 1. push-v1 \rightarrow window-close-v1 \rightarrow hammer-v1
- 2. hammer-v1 \rightarrow window-close-v1 \rightarrow faucet-close-v1
- 3. window-close-v1 \rightarrow handle-press-side-v1 \rightarrow peg-unplug-side-v1
- 4. faucet-close-v1 \rightarrow shelf-place-v1 \rightarrow peg-unplug-side-v1
- 5. faucet-close-v1 \rightarrow shelf-place-v1 \rightarrow push-back-v1
- 6. stick-pull-v1 \rightarrow peg-unplug-side-v1 \rightarrow stick-pull-v1
- 7. stick-pull-v1 \rightarrow push-back-v1 \rightarrow push-wall-v1
- 8. push-wall-v1 \rightarrow shelf-place-v1 \rightarrow push-back-v1

Meanwhile, the CW10 scenario comprises the following 10-task sequence: hammer-v1 \rightarrow push-wall-v1 \rightarrow faucet-close-v1 \rightarrow push-back-v1 \rightarrow stick-pull-v1 \rightarrow handle-press-side-v1 \rightarrow push-v1 \rightarrow shelf-place-v1 \rightarrow window-close-v1 \rightarrow peg-unplug-side-v1.

A.2 Methods

This section describes the configuration of each method. We start with the architectural design shared by all methods, and then delve into specific hyperparameter settings.

Architecture. The actor and the twin critics all use a 4-layer perception with 256 neurons per layer, including a task-specific head for the actor. Leaky ReLU (with $\alpha = 0.2$) [8] is employed as the activation after each layer. Generally, our architecture is similar to the one used in [13], except that the layer normalization [1] after the first layer is removed, since it is not trivial to incorporate task-dependent normalized statistics into the proposed alignment mechanism.

Method	Hyperparameter	Forgetting	Transfer	Robustness	Compositionality
FT-N	Ir policy Ir critic reward scaling target output std policy update delay target update delay	0.001 0.0003 1. 0.1 2 2	0.0003 0.0003 1. 0.05 2 2	0.001 0.001 1. 0.1 4 2	0.0003 0.0003 10. 0.1 4 4
FT-L2	L_2 coefficient	10^{4}	10^{0}	10^{2}	10^{2}
EWC [6]	Fisher coefficient	10^{-2}	10^{0}	10^{-2}	10^{0}
CSP [5]	threshold repeat alpha	0.1 100	0.1 20	0.1 20	0.1 100
Ours	number of modes $L_{\rm KL}$ coefficient $L_{\rm SP}$ coefficient	$ \begin{array}{c} 3 \\ 10^{-5} \\ 10^2 \end{array} $	$ \begin{array}{c} 3 \\ 10^{-5} \\ 10^{-1} \end{array} $	$ \begin{array}{c} 3 \\ 10^{-5} \\ 10^{0} \end{array} $	$ \begin{array}{c} 3 \\ 10^{-5} \\ 10^{1} \end{array} $
(b) Ant					
Method	Hyperparameter	Forgetting	Transfer	Robustness	Compositionality
FT-N	Ir policy Ir critic reward scaling target output std policy update delay target update delay	0.001 0.001 10. 0.05 2 4	0.001 0.001 1. 0.05 2 2	0.001 0.001 1. 0.1 2 4	0.0003 0.0003 10. 0.1 4 4
FT-L2	L_2 coefficient	10^{4}	10^{0}	10^{0}	10^{2}
EWC [6]	Fisher coefficient	10^{-2}	10^{4}	10^{2}	10^{-2}
CSP [5]	threshold repeat alpha	0.1 100	0.1 100	0.1 100	0.1 20
		3	3	3	3

Table 2: Hyperparameter values for each Brax scenario, selected via grid search following [5].

(a) HalfCheetah

Method	Hyperparameter	Humanoid
FT-N	Ir policy Ir critic reward scaling target output std policy update delay target update delay	0.001 0.0003 0.1 0.1 1 1
FT-L2	L_2 coefficient	10^{-2}
EWC [6]	Fisher coefficient	10^{-2}
CSP [5]	threshold repeat alpha	0.1 100
Ours	number of modes $L_{\rm KL}$ coefficient $L_{\rm SP}$ coefficient	$ \begin{array}{r} 3 \\ 10^{-6} \\ 10^{0} \end{array} $

(c) Humanoid	d
--------------	---

Table 3: Computational efficiency on the HalfCheetah/forgetting scenario. Our method has a lower computational cost, despite the need for two forward passes (to compute the distillation loss L_{KL}).

	MACs (M)	Model size
FT-1	0.14	1.0
PNN [10]	1.08	8.0
CSP [5]	0.63	4.5
Ours	0.48	2.1

Baselines. We follow the hyperparameter settings in [5], which are determined via grid search. Specifically, the common hyperparameters such as learning rate and reward scaling are set according to the performance of FT-N, while the remaining hyperparameter values are selected per method. Table 2 summarizes the hyperparameter setups. It can be seen that the regularization-based FT-L2 accommodates a large regularizer coefficient. In addition, the architecture-based methods PackNet [9] and PNN [10] are tuned to have a comparable model size to other baselines.

Ours. We grid search the newly introduced three hyperparameters for each scenario. Their settings on Brax are listed in Table 2. As can be seen, a relatively small L_{SP} coefficient is used across most of the scenarios, and its effectiveness in mitigating forgetting will be validated in Tables 5 to 7. For Continual World, we tune our hyperparameters on the T6 scenario, where the baseline FT-L2 performs poorly, and use the results as a default for other scenarios.

A.3 Metrics

In addition to the two metrics used in the main paper, including average performance and model size, we also adopt two additional metrics commonly used in continual learning [7]. The results evaluated using these metrics will be presented in Tables 5 to 7 and 9.

Forward transfer measures the knowledge transfer across tasks. Suppose there are a total of T tasks. The test performance on task j after the *i*-th training stage is denoted by $P_{i,j}$, and the performance by training only on task i is denoted by b_i . Then, forward transfer is calculated as:

$$FT = \frac{1}{T} \sum_{t=1}^{T} P_{T,i} - b_i.$$
 (1)

In general, a positive forward transfer indicates the ability to perform "zero-shot" learning by exploiting the previously learned knowledge [7], whereas a negative forward transfer indicates that model plasticity is severely reduced due to the learning algorithm used.

Forgetting measures the average performance degradation on each task after training on the entire task sequence. Using the previously defined notation, it is defined as:

$$F = \frac{1}{T} \sum_{t=1}^{T} P_{t,t} - P_{T,t}.$$
(2)

It is worth noting that this metric is not very useful in the context of continual reinforcement learning. As presented in [13, 5], the forgetting of baseline methods is usually very low and often close to 0. This is due to the use of a large regularization weight or multiple network checkpoints. In contrast, our method can achieve a similar level of stability with a much smaller regularization weight and less parameter overhead, thus promoting plasticity and efficiency.

A.4 Computational costs

Our experiments are performed on Intel(R) Xeon(R) CPU cores (E5-2650 v4 @ 2.20GHz), and each run uses a single NVIDIA 2080Ti GPU. While the runtime varies depending on server conditions and task specifics, we estimate an average runtime of 30 hours for Brax scenarios, which is between the baseline methods FT-N and FT-L2 (\approx 25 hours) and the previous leading method CSP (\approx 35 hours). As for GPU memory consumption, our approach yields a slight increase (30%) over FT-L2 due to the extra permutation layers, but is still much more efficient than CSP (> 100%). Further comparison using multiply-add operations (MACs) and model size is shown in Table 3. Overall, our rewiring approach is efficient in terms of both time and memory costs.

	Scenario	Task	Reward	Average reward
	Forgetting Forgatting Forgetting Forgetting Forgetting Forgetting Forgetting Forgetting Forgetting Forgetting Forgetting Forgetting Forgetting Forgetting Forgetting		2209 2982 6309 1001	3125
Halfcheetah	Transfer Carrystuff_hugegravity Transfer defective_sensors hugefeet_rainfall		7233 3599 5909 2942	4921
Half	Robustness	normal inverted_actions normal inverted_actions	4932 5833 4932 5833	5383
	Compositionality tinyfeet moon carrystuff_hugegravity tinyfeet_moon		6311 3932 6319 1355	4479
	Forgetting	normal hugefeet rainfall moon		2398
Ant	Transfer nofeet_1_3 nofeet_2_4 nofeet_1_2 nofeet_3_4		3021 4119 1014 1021	2294
	Robustness normal inverted_actions normal inverted_actions		3542 4199 3542 4199	3871
	Compositionality	nofeet_2_3_4 nofeet_1_3_4 nofeet_1_2 nofeet_3_4	770 641 201 288	475
	Humanoid	normal moon carrystuff tinyfeet	1958 1691 2379 1711	1935

Table 4: Reference rewards for Brax scenarios [5]. They are obtained by the baseline method SAC-N, with hyperparameter values specified in Table 2.

B Full results

B.1 Brax

The full results on three Brax domains are summarized in Tables 5 to 8, after being normalized by the reference rewards in Table 4. They include a 95% confidence interval derived from 10 individual runs, as presented in Table 8. Our method consistently demonstrates competitive performance across many scenarios, even with a small model size. Compared to FT-L2 which mitigates forgetting well, our method achieves better plasticity through a smaller regularization weight. Our rewiring approach also significantly outperforms the pruning-based PackNet by fully exploiting the network parameters.

B.2 Continual World

The detailed results on 8 triplet (CW3) scenarios are summarized in Table 9. Our approach achieves near state-of-the-art performance over all scenarios. Notably, we surpass the previous leading method CSP in 7 out of 8 scenarios, as well as consistently outperforming the regularization-based baselines FT-L2 and EWC and the pruning-based PackNet by large margins.

	Method	Performance ↑	Model size ↓	Transfer ↑	Forgetting \downarrow
	FT-1	0.52 ± 0.08	$\textbf{1.0} \pm \textbf{0.0}$	0.19 ± 0.23	0.67 ± 0.19
	FT-L2	0.67 ± 0.32	2.0 ± 0.0	$\textbf{-0.34}\pm0.30$	$\textbf{-0.01} \pm \textbf{0.00}$
50	PackNet [9]	0.94 ± 0.18	2.0 ± 0.0	$\textbf{-0.07} \pm 0.17$	$\textbf{-0.00}\pm0.00$
ing	EWC [6]	0.64 ± 0.26	3.0 ± 0.0	$\textbf{-0.27} \pm 0.31$	0.09 ± 0.13
gett	PNN [10]	0.96 ± 0.15	8.0 ± 0.0	$\textbf{-0.04} \pm 0.13$	0.00 ± 0.00
Forgetting	SAC-N	1.00 ± 0.10	8.0 ± 0.0	-0.00 ± 0.09	-0.00 ± 0.00
щ	FT-N	1.25 ± 0.24	8.0 ± 0.0	0.25 ± 0.23	0.00 ± 0.00
	CSP [5]	$\textbf{1.41} \pm \textbf{0.07}$	4.5 ± 2.0	$\textbf{0.41} \pm \textbf{0.06}$	0.00 ± 0.00
	Ours	1.31 ± 0.21	2.1 ± 0.0	$\textbf{-0.08} \pm 0.21$	0.00 ± 0.00
	FT-1	0.86 ± 0.70	$\textbf{1.0} \pm \textbf{0.0}$	0.52 ± 0.62	0.66 ± 0.42
	FT-L2	-0.03 ± 0.07	2.0 ± 0.0	-1.00 ± 0.03	$\textbf{-0.03} \pm \textbf{0.04}$
	PackNet [9]	0.99 ± 0.25	2.0 ± 0.0	$\textbf{-0.01} \pm 0.24$	0.00 ± 0.00
fer	EWC [6]	-0.13 ± 0.23	3.0 ± 0.0	-1.13 ± 0.21	0.00 ± 0.02
Transfer	PNN [10]	1.05 ± 0.14	8.0 ± 0.0	0.04 ± 0.13	-0.00 ± 0.00
Tr	SAC-N	1.00 ± 0.15	8.0 ± 0.0	-0.00 ± 0.14	-0.00 ± 0.00
	FT-N	1.39 ± 0.34	8.0 ± 0.0	0.39 ± 0.33	0.00 ± 0.01
	CSP [5]	$\textbf{1.95} \pm \textbf{0.83}$	4.9 ± 1.1	$\textbf{0.93} \pm \textbf{0.79}$	-0.01 ± 0.03
	Ours	1.42 ± 0.19	2.1 ± 0.0	0.34 ± 0.19	0.01 ± 0.03
	FT-1	0.36 ± 0.25	$\textbf{1.0} \pm \textbf{0.0}$	$\textbf{-0.11} \pm 0.20$	0.53 ± 0.25
	FT-L2	0.22 ± 0.16	2.0 ± 0.0	-0.79 ± 0.15	-0.00 ± 0.00
SS	PackNet [9]	0.65 ± 0.11	2.0 ± 0.0	-0.35 ± 0.10	0.00 ± 0.00
ne	EWC [6]	0.68 ± 0.28	3.0 ± 0.0	-0.31 ± 0.23	0.01 ± 0.09
Robustness	PNN [10]	$\textbf{1.14} \pm \textbf{0.10}$	8.0 ± 0.0	$\textbf{0.14} \pm \textbf{0.10}$	0.00 ± 0.00
^{cob}	SAC-N	1.00 ± 0.29	8.0 ± 0.0	0.00 ± 0.28	0.00 ± 0.00
Ř	FT-N	0.98 ± 0.12	8.0 ± 0.0	-0.02 ± 0.11	-0.00 ± 0.00
	CSP [5]	1.01 ± 0.13	7.4 ± 0.5	0.01 ± 0.12	$\textbf{-0.00} \pm \textbf{0.01}$
	Ours	1.07 ± 0.12	2.1 ± 0.0	-0.03 ± 0.12	0.02 ± 0.01
	FT-1	0.75 ± 0.12	$\textbf{1.0} \pm \textbf{0.0}$	$\textbf{-0.04}\pm0.09$	0.22 ± 0.11
ħ	FT-L2	0.66 ± 0.03	2.0 ± 0.0	-0.35 ± 0.03	0.01 ± 0.03
ali	PackNet [9]	0.79 ± 0.03	2.0 ± 0.0	-0.21 ± 0.03	-0.00 ± 0.00
Compositionality	EWC [6]	0.53 ± 0.17	3.0 ± 0.0	-0.34 ± 0.09	0.13 ± 0.12
sit	PNN [10]	0.97 ± 0.16	8.0 ± 0.0	-0.03 ± 0.16	0.00 ± 0.00
bc	SAC-N	1.00 ± 0.05	8.0 ± 0.0	-0.00 ± 0.05	-0.00 ± 0.00
on	FT-N	1.01 ± 0.09	8.0 ± 0.0	0.01 ± 0.09	0.00 ± 0.00
0	CSP [5]	0.69 ± 0.09	3.4 ± 1.5	-0.31 ± 0.09	0.00 ± 0.00
	Ours	0.88 ± 0.09	2.1 ± 0.0	-0.18 ± 0.09	$\textbf{-0.00} \pm \textbf{0.00}$
	FT-1	0.62 ± 0.29	$\textbf{1.0} \pm \textbf{0.0}$	0.14 ± 0.29	0.52 ± 0.24
	FT-L2	0.38 ± 0.15	2.0 ± 0.0	-0.62 ± 0.13	$\textbf{-0.01} \pm \textbf{0.02}$
e	PackNet [9]	0.85 ± 0.14	2.0 ± 0.0	-0.15 ± 0.09	0.00 ± 0.00
Aggregate	EWC [6]	0.43 ± 0.24	3.0 ± 0.0	-0.51 ± 0.21	0.06 ± 0.09
gre	PNN [10]	1.03 ± 0.14	8.4 ± 0.0	0.03 ± 0.13	0.00 ± 0.00
Age 1	SAC-N	1.00 ± 0.15	8.0 ± 0.0	0.00 ± 0.14	0.00 ± 0.00
7	FT-N	1.16 ± 0.20	8.0 ± 0.0	0.16 ± 0.19	0.00 ± 0.00
	CSP [5]	$\textbf{1.27} \pm \textbf{0.27}$	5.4 ± 1.3	0.27 ± 0.26	0.00 ± 0.01
	Ours	1.17 ± 0.15	2.1 ± 0.0	0.01 ± 0.15	0.01 ± 0.01

Table 5: Detailed results on 4 HalfCheetah scenarios. Baseline results are taken from [5]. New results are collected using 10 different seeds and presented with mean and standard deviation.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.05 \pm 0.23 \\ 0.00 \pm 0.04 \\ 0.00 \pm 0.00 \\ 0.17 \pm 0.22 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline \textbf{0.00 \pm 0.00} \\ \hline \textbf{0.64 \pm 0.15} \\ 0.12 \pm 0.09 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ -0.00 \pm 0.00 \\ \hline \textbf{0.00 \pm 0.00} \\ -0.00 \pm 0.00 \\ \hline \textbf{0.00 \pm 0.00} \\ \hline \textbf{0.00 \pm 0.0}$
$ \underbrace{ \begin{smallmatrix} 1.15 \\ \text{PackNet} & [9] & 1.13 \pm 0.20 & 2.0 \pm 0.0 & 0.13 \pm 0.19 \\ \text{EWC} & [6] & 1.12 \pm 0.21 & 3.0 \pm 0.0 & 0.30 \pm 0.15 \\ \text{PNN} & [10] & 0.97 \pm 0.20 & 8.0 \pm 0.0 & -0.03 \pm 0.19 \\ \text{SAC-N} & 1.00 \pm 0.17 & 8.0 \pm 0.0 & -0.00 \pm 0.16 \\ \text{FT-N} & 1.36 \pm 0.26 & 8.0 \pm 0.0 & \textbf{0.36} \pm \textbf{0.25} \\ \text{CSP} & [5] & 1.03 \pm 0.14 & 3.7 \pm 1.2 & 0.03 \pm 0.13 \\ \hline & \hline & \hline & \\ \hline & \hline & \\ \hline & FT-1 & 0.08 \pm 0.14 & \textbf{1.0} \pm \textbf{0.0} & -0.28 \pm 0.20 \\ \text{FT-L2} & 0.44 \pm 0.12 & 2.0 \pm 0.0 & -0.44 \pm 0.07 \\ \hline \hline & \\ \hline & \hline & \\ \hline \end{split} $	$\begin{array}{l} 0.00 \pm 0.00 \\ 0.17 \pm 0.22 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline \textbf{-0.00} \pm \textbf{0.00} \\ \hline \textbf{-0.00} \pm \textbf{0.00} \\ \hline \textbf{0.64} \pm 0.15 \\ 0.12 \pm 0.09 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline \textbf{0.00} \pm 0.00 \end{array}$
$ \begin{array}{c c} \underbrace{ \text{EWC} \left[6 \right] } \\ \text{EWC} \left[6 \right] \\ \text{PNN} \left[10 \right] \\ \text{SAC-N} \\ \text{FT-N} \\ \text{I} & 36 \pm 0.26 \\ \text{CSP} \left[5 \right] \\ \hline \\ \hline \\ \text{Ours} \\ \hline \\ $	$\begin{array}{c} 0.17 \pm 0.22 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline 0.00 \pm 0.00 \\ \hline 0.00 \pm 0.00 \\ \hline 0.64 \pm 0.15 \\ 0.12 \pm 0.09 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline 0.00 \pm 0.00 \\ \hline \end{array}$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ -0.00 \pm 0.00 \\ \hline 0.00 \pm 0.00 \\ \hline 0.00 \pm 0.00 \\ \hline 0.64 \pm 0.15 \\ 0.12 \pm 0.09 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00 \pm 0.00 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline \textbf{0.64} \pm 0.15 \\ 0.12 \pm 0.09 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline \textbf{0.00} \pm 0.00 \end{array}$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{l} -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline 0.00 \pm 0.00 \\ \hline 0.64 \pm 0.15 \\ 0.12 \pm 0.09 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \hline \end{array}$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.00 \pm 0.00 \\ \hline 0.00 \pm 0.00 \\ \hline 0.64 \pm 0.15 \\ 0.12 \pm 0.09 \\ \hline 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$
Ours 1.46 ± 0.15 2.1 ± 0.0 0.20 ± 0.15 FT-1 0.08 ± 0.14 1.0 ± 0.0 -0.28 ± 0.20 FT-L2 0.44 ± 0.12 2.0 ± 0.0 -0.44 ± 0.07	$\begin{array}{c} \textbf{-0.00} \pm \textbf{0.00} \\ \hline 0.64 \pm 0.15 \\ 0.12 \pm 0.09 \\ \textbf{-0.00} \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$
FT-1 0.08 ± 0.14 1.0 ± 0.0 -0.28 ± 0.20 FT-L2 0.44 ± 0.12 2.0 ± 0.0 -0.44 ± 0.07	$\begin{array}{c} 0.64 \pm 0.15 \\ 0.12 \pm 0.09 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$
FT-L2 0.44 ± 0.12 2.0 ± 0.0 -0.44 ± 0.07	$\begin{array}{c} 0.12 \pm 0.09 \\ -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$
	$\begin{array}{c} -0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$
	$\begin{array}{c} 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$
	0.00 ± 0.00
5 EWC [6] 0.22 ± 0.05 3.0 ± 0.0 -0.78 ± 0.04	
L_{22} EWC [6] 0.22 ± 0.05 3.0 ± 0.0 -0.78 ± 0.04 SUPPONEPNN [10] 1.02 ± 0.05 8.0 ± 0.0 0.02 ± 0.05 SAC-N 1.00 ± 0.08 8.0 ± 0.0 0.00 ± 0.07	-0.00 ± 0.00
\therefore SAC-N 1.00 ± 0.08 8.0 ± 0.0 0.00 ± 0.07	
FT-N 0.83 ± 0.12 8.0 ± 0.0 -0.17 ± 0.12	-0.00 ± 0.00
CSP [5] 0.93 ± 0.10 4.3 ± 0.6 -0.07 ± 0.09	$\textbf{-0.00} \pm \textbf{0.00}$
Ours 0.76 ± 0.07 2.1 ± 0.0 -0.32 ± 0.07	0.00 ± 0.01
FT-1 0.34 ± 0.06 1.0 \pm 0.0 -0.16 ± 0.04	0.50 ± 0.09
FT-L2 0.61 ± 0.08 2.0 ± 0.0 -0.42 ± 0.05	$\textbf{-0.03} \pm \textbf{0.06}$
Part Not [0] 0.74 ± 0.05 2.0 ± 0.0 0.26 ± 0.04	0.00 ± 0.00
26 EWC [6] 0.54 ± 0.08 3.0 ± 0.0 -0.47 ± 0.07	-0.01 ± 0.02
	-0.00 ± 0.00
\vec{e} SAC-N 1.00 \pm 0.09 8.0 \pm 0.0 -0.00 \pm 0.09	-0.00 ± 0.00
	-0.00 ± 0.00
CSP [5] 0.60 ± 0.11 4.0 ± 0.8 -0.40 ± 0.10	0.00 ± 0.00
Ours 0.73 ± 0.11 2.1 ± 0.0 -0.33 ± 0.11	-0.02 ± 0.03
FT-1 0.35 ± 0.49 1.0 \pm 0.0 0.32 ± 0.89	0.97 ± 0.73
> FT-L2 1.33 ± 0.35 2.0 ± 0.0 0.08 ± 0.37	-0.25 ± 0.18
$\frac{11}{100}$ PackNet [9] 1.54 ± 0.50 2.0 ± 0.0 0.54 ± 0.47	-0.00 ± 0.00
h_{1} H_{1} L_{2} 1.33 ± 0.35 2.0 ± 0.0 0.08 ± 0.37 H_{1} L_{2} 1.54 ± 0.50 2.0 ± 0.0 0.054 ± 0.47 H_{1} H_{2}	0.62 ± 0.27
$\stackrel{\text{\tiny EI}}{=}$ PNN [10] 0.95 ± 0.81 8.0 ± 0.0 -0.05 ± 0.77	-0.00 ± 0.00
\underline{G} , SAC-N 1.00 ± 1.17 8.0 ± 0.0 0.00 ± 1.11	0.00 ± 0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.00 ± 0.00
\bullet CSP [5] 1.88 \pm 0.33 3.6 \pm 0.4 0.88 \pm 0.32	-0.00 ± 0.01
Ours 1.95 ± 0.11 2.1 ± 0.0 0.51 ± 0.11	-0.00 ± 0.01
FT-1 0.52 ± 0.26 1.0 \pm 0.0 0.06 ± 0.33	0.54 ± 0.30
	$\textbf{-0.04} \pm \textbf{0.09}$
PackNet [9] 1.08 ± 0.21 2.0 ± 0.0 0.08 ± 0.20	0.00 ± 0.00
$ \begin{array}{c} \begin{array}{c} \mbox{tr} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.20 ± 0.13
2^{10} PNN [10] 0.98 ± 0.31 8.0 ± 0.0 -0.02 ± 0.30	0.00 ± 0.00
SAC-N 1.00 ± 0.38 8.0 ± 0.0 0.00 ± 0.36	0.00 ± 0.00
FI-N 0.97 ± 0.20 8.0 ± 0.0 -0.03 ± 0.20	-0.00 ± 0.00
CSP [5] 1.11 ± 0.17 3.9 ± 0.8 0.11 ± 0.16	0.00 ± 0.00
Ours 1.22 ± 0.11 2.1 ± 0.0 0.02 ± 0.11	-0.01 ± 0.01

Table 6: Detailed results on 4 Ant scenarios. Baseline results are taken from [5]. New results are collected using 10 different seeds and presented with mean and standard deviation.

Method	Performance \uparrow	Model size \downarrow	Transfer \uparrow	Forgetting \downarrow
FT-1	0.71 ± 0.07	1.0 ± 0.0	0.10 ± 0.23	0.38 ± 0.27
FT-L2	0.68 ± 0.28	2.0 ± 0.0	0.01 ± 0.31	0.33 ± 0.28
PackNet [9]	0.96 ± 0.21	2.0 ± 0.0	-0.04 ± 0.20	$\textbf{-0.00}\pm0.00$
EWC [6]	0.94 ± 0.01	3.0 ± 0.0	-0.05 ± 0.02	0.01 ± 0.02
PNN [10]	0.98 ± 0.26	4.0 ± 0.0	$\textbf{-0.02}\pm0.30$	0.00 ± 0.00
SAC-N	1.00 ± 0.29	4.0 ± 0.0	0.00 ± 0.21	$\textbf{-0.00}\pm0.00$
FT-N	0.65 ± 0.46	4.0 ± 0.0	$\textbf{-0.35}\pm0.35$	$\textbf{-0.00}\pm0.00$
CSP [5]	1.76 ± 0.19	3.4 ± 0.3	$\textbf{0.75} \pm \textbf{0.16}$	$\textbf{-0.00}\pm0.00$
Ours	$\textbf{1.78} \pm \textbf{0.22}$	2.0 ± 0.0	0.14 ± 0.22	$\textbf{-0.00} \pm \textbf{0.00}$

Table 7: Detailed results on the Humanoid scenario. Baseline results are taken from [5]. New results are collected using 10 different seeds and presented with mean and standard deviation.

Table 8: Additional results of our method on Brax domains, including the mean and standard deviation obtained from 10 runs, accompanied by a 95% bootstrap confidence interval (around the mean).

	Scenario	Performance	95% confidence interval
h	Forgetting	1.31 ± 0.21	[1.11, 1.40]
eta	Transfer	1.42 ± 0.19	[1.29, 1.52]
che	Robustness	1.07 ± 0.12	[0.98, 1.13]
Halfcheetah	Compositionality	0.88 ± 0.09	[0.81, 1.92]
Ξ.	Aggregate	1.17 ± 0.15	[1.04, 1.24]
	Forgetting	1.46 ± 0.15	[1.36, 1.55]
	Transfer	0.76 ± 0.07	[0.71, 0.79]
Ant	Robustness	0.73 ± 0.11	[0.68, 0.81]
4	Compositionality	1.95 ± 0.11	[1.87, 2.00]
	Aggregate	1.22 ± 0.11	[1.15, 1.29]
	Humanoid	1.78 ± 0.22	[1.65, 1.92]

Table 9: Detailed success rates (\uparrow) on 8 triplet (CW3) scenarios from Continual World. * indicates results taken from [5]. The rest of the results are collected from 3 different seeds and presented with mean and standard deviation. Aggregated results are shown in the main paper.

Method	T1	T2	Т3	T4
FT-1*	0.24 ± 0.13	0.25 ± 0.07	0.39 ± 0.16	0.34 ± 0.05
FT-L2	0.21 ± 0.15	0.21 ± 0.06	0.33 ± 0.19	0.31 ± 0.06
PackNet [9]	0.62 ± 0.21	0.58 ± 0.17	0.80 ± 0.11	0.41 ± 0.07
EWC [6]*	0.45 ± 0.12	0.27 ± 0.09	0.38 ± 0.09	0.31 ± 0.12
PNN [10]*	$\textbf{0.84} \pm \textbf{0.08}$	0.72 ± 0.17	$\textbf{0.90} \pm \textbf{0.05}$	0.43 ± 0.08
SAC-N*	0.69 ± 0.17	0.71 ± 0.13	0.79 ± 0.19	0.47 ± 0.14
FT-N*	0.77 ± 0.08	$\textbf{0.86} \pm \textbf{0.10}$	0.78 ± 0.15	0.49 ± 0.14
CSP [5]*	0.76 ± 0.20	0.79 ± 0.03	0.82 ± 0.08	$\textbf{0.58} \pm \textbf{0.09}$
Ours	0.79 ± 0.12	0.80 ± 0.09	0.83 ± 0.11	0.56 ± 0.08
Method	T5	T6	T7	T8
Method FT-1*	$\begin{array}{c} T5\\ 0.30\pm0.01\end{array}$	$\begin{array}{c} T6\\ 0.32\pm0.25\end{array}$	$\begin{array}{c} T7\\ 0.17\pm0.07\end{array}$	$\begin{array}{c} T8\\ 0.34\pm0.05\end{array}$
		-		
FT-1*	0.30 ± 0.01	0.32 ± 0.25	0.17 ± 0.07	0.34 ± 0.05
FT-1* FT-L2	0.30 ± 0.01 0.21 ± 0.16	$\begin{array}{c} 0.32 \pm 0.25 \\ 0.11 \pm 0.04 \end{array}$	0.17 ± 0.07 0.14 ± 0.06	0.34 ± 0.05 0.20 ± 0.14
FT-1* FT-L2 PackNet [9]	$\begin{array}{c} 0.30 \pm 0.01 \\ 0.21 \pm 0.16 \\ 0.34 \pm 0.10 \end{array}$	$\begin{array}{c} 0.32 \pm 0.25 \\ 0.11 \pm 0.04 \\ 0.34 \pm 0.02 \end{array}$	$\begin{array}{c} 0.17 \pm 0.07 \\ 0.14 \pm 0.06 \\ 0.36 \pm 0.15 \end{array}$	$\begin{array}{c} 0.34 \pm 0.05 \\ 0.20 \pm 0.14 \\ 0.47 \pm 0.11 \end{array}$
FT-1* FT-L2 PackNet [9] EWC [6]*	$\begin{array}{c} 0.30 \pm 0.01 \\ 0.21 \pm 0.16 \\ 0.34 \pm 0.10 \\ 0.32 \pm 0.07 \end{array}$	$\begin{array}{c} 0.32 \pm 0.25 \\ 0.11 \pm 0.04 \\ 0.34 \pm 0.02 \\ 0.33 \pm 0.18 \end{array}$	$\begin{array}{c} 0.17 \pm 0.07 \\ 0.14 \pm 0.06 \\ 0.36 \pm 0.15 \\ 0.20 \pm 0.10 \end{array}$	$\begin{array}{c} 0.34 \pm 0.05 \\ 0.20 \pm 0.14 \\ 0.47 \pm 0.11 \\ 0.32 \pm 0.08 \end{array}$
FT-1* FT-L2 PackNet [9] EWC [6]* PNN [10]*	$\begin{array}{c} 0.30 \pm 0.01 \\ 0.21 \pm 0.16 \\ 0.34 \pm 0.10 \\ 0.32 \pm 0.07 \\ 0.33 \pm 0.23 \end{array}$	$\begin{array}{c} 0.32 \pm 0.25 \\ 0.11 \pm 0.04 \\ 0.34 \pm 0.02 \\ 0.33 \pm 0.18 \\ 0.46 \pm 0.21 \end{array}$	$\begin{array}{c} 0.17 \pm 0.07 \\ 0.14 \pm 0.06 \\ 0.36 \pm 0.15 \\ 0.20 \pm 0.10 \\ 0.44 \pm 0.12 \end{array}$	$\begin{array}{c} 0.34 \pm 0.05 \\ 0.20 \pm 0.14 \\ 0.47 \pm 0.11 \\ 0.32 \pm 0.08 \\ 0.36 \pm 0.20 \end{array}$
FT-1* FT-L2 PackNet [9] EWC [6]* PNN [10]* SAC-N*	$\begin{array}{c} 0.30 \pm 0.01 \\ 0.21 \pm 0.16 \\ 0.34 \pm 0.10 \\ 0.32 \pm 0.07 \\ 0.33 \pm 0.23 \\ 0.60 \pm 0.13 \end{array}$	$\begin{array}{c} 0.32 \pm 0.25 \\ 0.11 \pm 0.04 \\ 0.34 \pm 0.02 \\ 0.33 \pm 0.18 \\ 0.46 \pm 0.21 \\ 0.55 \pm 0.11 \end{array}$	$\begin{array}{c} 0.17 \pm 0.07 \\ 0.14 \pm 0.06 \\ 0.36 \pm 0.15 \\ 0.20 \pm 0.10 \\ 0.44 \pm 0.12 \\ 0.54 \pm 0.15 \end{array}$	$\begin{array}{c} 0.34 \pm 0.05 \\ 0.20 \pm 0.14 \\ 0.47 \pm 0.11 \\ 0.32 \pm 0.08 \\ 0.36 \pm 0.20 \\ 0.45 \pm 0.12 \end{array}$

Figure 1: Effectiveness of multi-mode strategy in the first stage, compared to pink noise [3]. The curves depict the median, with shaded areas showing 95% bootstrap confidence interval for the mean.

Figure 2: Effectiveness of alignment loss L_{SP} in the second stage. The detailed setups follow Fig. 1.

Table 10: Compairson of multi-mode strategy with another ensemble method, BatchEnsemble [12].

Method	Performance	95% confidence interval	Model size
BatchEnsemble [12]	$\begin{array}{c} 0.94 \pm 0.23 \\ \textbf{1.31} \pm \textbf{0.21} \end{array}$	[0.81, 1.08]	1.1
Ours		[1.11 , 1.40]	2.1

Table 11: Comparison to CSP [5] at similar model sizes. CSP-S reduces the network width to 175, while Ours-L expands it to 384. See Fig. 4b in the main paper for a more intuitive visualization.

Method	Performance	95% confidence interval	Model size
CSP-S Ours	$\begin{array}{c} 1.27 \pm 0.15 \\ 1.31 \pm 0.21 \end{array}$	[1.14, 1.32] [1.11, 1.40]	2.3 2.1
CSP [5] Ours-L	$\begin{array}{c} \textbf{1.41} \pm \textbf{0.07} \\ 1.38 \pm 0.10 \end{array}$	[1.31, 1.42]	4.5 4.6

B.3 Ablation studies

This section provides additional justification for our proposed rewiring designs. First, to demonstrate the exploration efficacy of our multi-mode strategy, we compare it against an existing method called pink noise [3]. As shown in Fig. 1, while the single-mode baseline with pink noise exhibits rapid initial learning, its performance plateaus over time. In contrast, our full method with multi-mode strategy effectively avoids this suboptimal situation and achieves the highest final performance.

To validate the effectiveness of the proposed alignment mechanism, we plot the performance curves in Fig. 2 (truncated to the second learning stage), where the full model with alignment mechanism exhibits the fastest adaptation and highest final performance compared to other variants. This also leads to better results than alternative ensemble methods such as BatchEnsemble [12] in Table 10.

Lastly, to examine the scalability of our approach, we compare it to CSP at similar model sizes. Table 11 show that our method achieves slightly higher mean performance than CSP-S at small sizes, while delivering a noticeable improvement and closing the gap with CSP when scaling up.

References

- [1] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.
- [2] Ludovic Denoyer, Alfredo De la Fuente, Song Duong, Jean-Baptiste Gaya, Pierre-Alexandre Kamienny, and Daniel H Thompson. SaLinA: Sequential learning of agents. arXiv preprint arXiv:2110.07910, 2021.
- [3] Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you need: Colored noise exploration in deep reinforcement learning. In *International Conference on Learning Representations*, 2023.
- [4] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. Brax–a differentiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281, 2021.
- [5] Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic Denoyer, and Roberta Raileanu. Building a subspace of policies for scalable continual learning. In *International Conference on Learning Representations*, 2023.
- [6] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences*, 114(13):3521–3526, 2017.
- [7] David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances in Neural Information Processing Systems, page 6470–6479, 2017.
- [8] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network acoustic models. In *International Conference on Machine Learning Workshops*, 2013.
- [9] Arun Mallya and Svetlana Lazebnik. PackNet: Adding multiple tasks to a single network by iterative pruning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7765–7773, 2018.
- [10] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.
- [11] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 5026–5033, 2012.
- [12] Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: an alternative approach to efficient ensemble and lifelong learning. In *International Conference on Learning Representations*, 2020.
- [13] Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual world: A robotic benchmark for continual reinforcement learning. In Advances in Neural Information Processing Systems, pages 28496–28510, 2021.
- [14] Tianhe Yu, Deirdre Quillen, Ryan C Julian, Avnish Narayan, Hayden Shively, Adithya Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In *Conference on Robot Learning*, pages 1094–1100, 2019.