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APPENDIX

A TRAINING STATISTICS

We provide some examples demonstrating the effectiveness of introducing linear and batch normal-
ization layers in the projector in Fig. 8. This contributes to prevent excessing increase of mean or
variance. An alternative and promising approach to the linear and batch normalization layers is to
penalize the norm of the representations directly in the objective. We leave this to future investigation.

(a) checkpoint @ 50 epochs (b) checkpoint @ 200 epochs

Figure 8: Example of mean and standard deviation statistics for the representation features obtained
by the backbone network trained on SVHN data. Statistics are computed for a batch of size of 100
samples. Results corresponds to checkpoints for the projector (c = 4096) without (top) and with
(bottom) linear and batch normalization layers. Linear and batch normalization layers contribute to
stabilize the training by avoiding mean or variance increase.

B DISCUSSION ON FINITE CAPACITY

It is important to mention that the global minima for the FALCON objective might not be reached when
using a backbone network of finite and small capacity. In this case, the avoidance of representation
and cluster collapses can still be guaranteed when the invariance and the matching prior losses are both
minimized. Indeed, we observe that for representation collapse pij = pj for all i → [n], j → [c] (i.e.
the outputs of the overall network are constant with respect to their inputs) and that the corresponding
mimimum value of the objective is given by the following formula

LFALCON(D) = ωH(p) + CE(q,p)

where the first addend arises from the invariance loss, whereas the second one arises from the
matching prior one. Notably, the two terms cannot be minimized at the same time due to their
competitive nature. For instance, in the case of uniform q, the solution of p = q is a minimum for
the matching prior loss but not for the invariance one (this is actually a saddle point, as corresponding
to the maximum for the entropy term in the above equation).

Cluster collapse occurs whenever ↑j, k ↓= j → [c] such that for all i → [n], pij ↔ pik. The
minimization of the invariance loss forces the whole network to make low entropy predictions,
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whereas the minimization of the matching prior loss forces to distribute these predictions across all
codes according to q. Hence, when both losses are minimized cluster collapse is avoided.

C MINIMA OF THE FALCON LOSS

Proof. We recall here the loss

LFALCON(D) = ↗ω

n

n∑

i=1

c∑

j=1

pij log p
→
ij ↗

c∑

j=1

qj log
1

n

n∑

i=1

pij

and prove all optimality conditions. Before doing that, we observe that the loss is convex w.r.t. P
when P

→ is fixed, as the first addend is a sum of linear terms, whereas the second addend is a sum
of convex terms. Similarly, we observe that convexity holds w.r.t. P→ when P is fixed by exploiting
the same reasoning. However, it is important to mention that the loss is not convex globally. This
can be shown firstly by computing the Hessian of the first addend w.r.t. both P and P

→ and secondly
by observing that the Hessian is not positive semi-definite (we skip the tedious calculation of the
Hessian).

Invariance. We observe that P→ appears only in the first addend of LFALCON and that this addend can
be equivalently rewritten in the following way:

↗ω

n

n∑

i=1

c∑

j=1

pij log p
→
ij = ↗ω

n

n∑

i=1

c∑

j=1

pij log pij ↗
ω

n

n∑

i=1

c∑

j=1

pij log
p
→
ij

pij

=
ω

n

n∑

i=1

H(pi) +
ω

n

n∑

i=1

KL(pi↘p→
i) (6)

where H(.),KL(.) are the entropy and Kullback-Leibler divergence, respectively. Therefore min-
imizing LFALCON w.r.t. P

→ is equivalent to minimizing Eq. 6. The solution is given by pi = p
→
i,

≃i → [n], thus proving the invariance condition.

Extrema. We first leverage the invariance condition, pi = p
→
i, ≃i → [n], and rewrite LFALCON

accordingly:

LFALCON(D) = ↗ω

n

n∑

i=1

c∑

j=1

pij log pij ↗
c∑

j=1

qj log
1

n

n∑

i=1

pij (7)

We observe that the loss in Eq. 7 is convex w.r.t. P. Therefore, we can obtain its optimality
conditions, by deriving the closed-form solutions for the minima of the second addend in Eq. 7,
and then constraining the optimization of the first addend with these solutions and deriving the
corresponding minima.

Let’s start by considering the following constrained convex minimization problem, obtained from the
first addend in Eq. 7, with n,ω being dropped as being constant for the optimization:

min
P

↗
n∑

i=1

c∑

j=1

pij log pij

s.t.
c∑

j=1

pij = 1, ≃i → [n]

ε ↔ pij ↔ 1↗ ε(c↗ 1), ≃i → [n], j → [c],

(8)

and the corresponding Lagrangian with multipliers !,” → Rn↑c
+ ,ω → Rn is:

L1(P;!,”,#,ω) ⇐↗
n∑

i=1

c∑

j=1

pij log pij +
n∑

i=1

ϑi




c∑

j=1

pij ↗ 1



+
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+
n∑

i=1

c∑

j=1

[ϖij(ε↗ pij) + ϱij(pij ↗ 1 + ε(c↗ 1))] (9)

We observe that the Lagrangian is constructed so as to satisfy the following relation

↗
n∑

i=1

c∑

j=1

pij log pij ⇒ L1(P;!,”,#,ω) (10)

Let’s maximize L1 w.r.t. P by setting ⇑pijL1 = 0. This leads to the following closed-form
expression:

p
↓
ij = e

↔1↔ωij+εi+ϑij ≃i → [n], j → [c] (11)

By evaluating L1 at the solutions in Eq. 11, we obtain the Lagrange dual function

L1(P
↓;!,”,#,ω) = n+

n∑

i=1




↗ϑi +
c∑

j=1

[ϖijε↗ ϱij(1↗ ε(c↗ 1))]




 (12)

The Lagrange multipliers in Eq. 12 depend on the values of P↓ through the Karush-Kuhn-Tucker
(KKT) conditions. We distinguish two main cases for P↓, each leading to different evaluation of the
Lagrange dual function:

• Case 1. When all probability values touch their extrema, such as

≃i → [n], ↑!j → [c], ≃k → [c] with k ↓= j s.t. p↓ij = 1↗ ε(c↗ 1) and p
↓
ik = ε

By the KKT conditions (i.e. complementary slackness), we have that ϖij = 0 and ϱik = 0,
whereas ϖik ⇒ 0, ϱij ⇒ 0. By substituting these conditions in Eq. 12, we obtain that

L1(P
↓;!,”,#,ω)|{ωij=ϑik=0} = n+

n∑

i=1




↗ϑi ↗ ϱij(1↗ ε(c↗ 1)) +
∑

k ↗=j

ϖikε






(13)

By taking into account also Eq. 11, we have that ≃i → [n], ↑!j → [c], ≃k → [c]

ϱij = 1↗ ϑi + log(1↗ ε(c↗ 1)) and ϖik = ↗1 + ϑi ↗ log ε (14)

And by substituting Eq. 14 into Eq. 13, we obtain that

L1(P
↓;!,”,#,ω)|{ωij=ϑik=0} and Eq. 14 =↗ n(1↗ ε(c↗ 1)) log(1↗ ε(c↗ 1))↗

↗ nε(c↗ 1) log ε (15)

• Case 2. When all probability values never touch the highest extrema, such as

≃i → [n], j → [c], s.t. p↓ij < 1↗ ε(c↗ 1)

By KKT conditions, we have that ϱij = 0. By substituting these conditions in Eq. 12, we
obtain that

L1(P
↓;!,”,#,ω)|{ϑij=0} = n+

n∑

i=1




↗ϑi +
c∑

j=1

ϖijε




 (16)

which always satisfies the inequality

L1(P
↓;!,”,#,ω)|{ϑij=0} ⇒ L1(P

↓;!,”,#,ω)|{ωij=ϑik=0} (17)

and therefore also

L1(P
↓;!,”,#,ω)|{ϑij=0} ⇒ L1(P

↓;!,”,#,ω)|{ωij=ϑik=0} and Eq. 14 (18)
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Finally, we observe that the objective of the optimization problem of Eq. 8 evaluated at the solutions
of Case 1 is

↗
n∑

i=1

c∑

j=1

pij log pij = L1(P
↓;!,”,#,ω)|{ωij=ϑik=0} and Eq. 14 (19)

And by leveraging also the result in Eq. 18, we can state that the solutions of Case 1 are the global
minima of the objective in Eq. 8. Thus concluding the proof for the extrema condition.

Matched prior. We consider the minimization of the second addend in Eq. 7 subject to the extrema
condition

min
P

↗
c∑

j=1

qj log
1

n

n∑

i=1

pij

s.t.
c∑

j=1

pij = 1, ≃i → [n]

pij → {ε, 1↗ ε(c↗ 1)}, ≃i → [n], j → [c], (20)

Let’s define p̃j ⇐ 1
n

∑n
i=1 pij for all j → [c] and observe that

∑c
j=1 p̃j = 1 and ε ↔ p̃j ↔ 1↗ε(c↗1).

Therefore, we can rewrite the problem in Eq. 20 equivalently

min
P

↗
c∑

j=1

qj log p̃j

s.t.
c∑

j=1

p̃j = 1,

ε ↔ p̃j ↔ 1↗ ε(c↗ 1), ≃j → [c], (21)

Now, we observe that the optimization objective satisfies the following equality

↗
c∑

j=1

qj log p̃j = H(q) +KL(q↘p̃) (22)

The minimum for Eq. 22 is obtained at q = p̃ and this solution satisfies the constraints in Eq. 21
because ε ↔ qj ↔ 1↗ε(c↗1) for all j → [c] (indeed we can always choose ε to satisfy the inequality),
thus being the global optimum. In other words, we have that 1

n

∑n
i=1 pij = qj for all j → [c].

Finally, recall that Imax(j) ⇐ {i → [n] : pij = 1↗ ε(c↗ 1)}, ≃j → [c], which identifies all elements
having the highest possible value of probability in P . We observe that

n∑

i=1

pij =
∑

i↘Imax(j)

pij +
∑

i/↘Imax(j)

pij

=
∑

i↘Imax(j)

(1↗ ε(c↗ 1)) +
∑

i/↘Imax(j)

ε (by Extrema condition)

= |Imax(j)|(1↗ cε) + nε

By the condition 1
n

∑n
i=1 pij = qj and the above relation we have that

|Imax(j)|(1↗ cε) + nε = nqj , ≃j → [c]

or equivalently that

|Imax(j)| =
(
qj ↗ ε

1↗ cε

)
n (23)
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Now, for the case of uniform prior, Eq. 23 becomes

qj =
1

c
=⇓ |Imax(j)| =

n

c
, ≃j → [c] (24)

This concludes the proof for the matching prior condition.

Finally the global minimum value of the FALCON objective can be obtained by dividing Eq. 15
by n and adding the entropy term (as for the result obtained by the matched prior condition). This
concludes the proof of the Lemma.

D EMBEDDING THEOREM

Proof. Recall the extrema condition from Lemma 1, that is
≃i → [n], ↑!j → [c], ≃k → [c] with k ↓= j s.t. pij = 1↗ ε(c↗ 1) and pij = ε

Moreover, due to orthogonality of W we can express the Span condition, i.e. hi =
∑c

j→=1 ςij→wj→

for all i → [n] with ςij → R, This fact leads us to the following equation

pij =
e
wT

j hi/ϖ

∑c
j→→=1 e

wT
j→→hi/ϖ

=︸
Span

e
ϱijf/ϖ

∑c
j→=1 e

ϱij→f/ϖ
≃i → [n], j → [c] (25)

Combining the extrema condition with Eq. 25 gives us a system of equations for each i → [n]




eωijf/ε

∑c
j→=1

e
ωij→f/ε = 1↗ ε(c↗ 1)

eωikf/ε

∑c
j→=1

e
ωij→f/ε = ε ≃k ↓= j

By taking the logarithm on both sides of the two equations and resolving the above system, the
solution is equal to

ςik = ςij ↗
φ

f
log

(
1↗ ε(c↗ 1)

ε

)

= ςij ↗
1⇔
n

≃k ↓= j (26)

where the last equality holds due to the choice φ = f/(
⇔
n log((1↗ ε(c↗ 1))/ε)). Using Eq. 26 in

the Span condition gives us the following result

≃i → [n], ↑!j → [c] s.t. hi = ςijwj +

(
ςij ↗

1⇔
n

)∑

k ↗=j

wk (27)

Note that the ςij could potentially take any value in ςij → R. This is not allowed as embeddings
are normalized by design choice (cf. Eq. 1). Indeed, the norm of the embeddings can be rewritten to
exploit Eq. 27

↘hi↘22 = h
T
i hi

=︸
Eq. 27

cfς
2
ij ↗

2(c↗ 1)f⇔
n

ςij +
f

n
(c↗ 1) (28)

and by equating Eq. 28 to the fact that embeddings are normalized ↘hi↘22 = f
n for all i → [n] we

obtain the following quadratic equation

ς
2
ij ↗

2(c↗ 1)f⇔
n

ςij +
f

n
(c↗ 1)↗ f

n
= 0

whose solutions are given by

ςij =


1≃
n
1↗ 2

c


1≃
n

This concludes the proof.
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E DIAGONAL COVARIANCE

Proof. Recall from Theorem 1 that

≃i → [n], ↑!j → [c] s.t. hi = ςijwj +

(
ςij ↗

1⇔
n

)∑

k ↗=j

wk

By assumption ςij =
1≃
n

and therefore

≃i → [n], ↑!j → [c] s.t. hi =
1⇔
n
wj (29)

meaning that the rows of H are equal up to a constant to the codes in the dictionary and that they
span the same space of the columns of W , namely the whole embedding space. We can therefore
express H as linear combination of W .

Without loss of generality, we can always define H so as to ensure that nearby rows are associated to
the same codes in the dictionary. Therefore, by combining this with Eq. 29 we have that

H = A
T
W

T

with

A =





1≃
n
1
T
n/c 0 · · · 0

0
1≃
n
1
T
n/c · · · 0

...
...

. . .
...

0 0 · · · 1≃
n
1
T
n/c




→ Rc↑n

where 1n/c is a vector containing n/c ones (whose size follows due to the assumption on uniformity
of q). Importantly, matrix A satisfies the following property

AA
T =

1

c
I (30)

Therefore, we have that

H
T
H = WAA

T
W

T

=︸
Eq. 30

1

c
WW

T

= I

where the last equality simply follows by the orthogonality condition W
T
W = fI and the fact that

W is a square matrix (c = f ). Indeed, we have that

W
T
W = fI

WW
T
W = fIW

(WW
T )W = (fI)W

WW
T = fI

thus concluding the proof.

F GENERALIZATION TO SUPERVISED LINEAR DOWNSTREAM TASK

We first observe that by the results of Theorem 1 and the uniformity of q, H has full rank. Moreover,
considering that H is a function of Z through the first layer of the projector in Eq. 1, Z must be also
full rank. As a consequence,

Z
T
Z has full rank. (Full Rank Property) (31)
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Now, we recall an existing result for generalization to supervised downstream tasks from Shwartz-Ziv
et al. (2023) (Section 6.1) and demonstrate that the Full Rank Property reduces the generalization
error.

Indeed, consider a classification problem with r classes. Given an unlabeled dataset D, used for
training FALCON, with the corresponding unknown ground truth labels YD → Rn↑r and a supervised
dataset S = {(xi,yi)}mi=1, with yi being the rows of the label matrix YS → Rm↑r, define Z → Rn↑f

and Z̄ → Rm↑f the representations obtained by feeding datasets D and S , respectively, through the
backbone network g. Moreover, define

PD ⇐ I ↗Z(ZT
Z)†ZT

PS ⇐ I ↗ Z̄(Z̄T
Z̄)†Z̄T

where symbol ·† denotes the pseudo-inverse. Now, suppose we train a linear classifier with parameters
U → Rf↑r on the latent representations obtained from dataset S through the following supervised
loss

↼x,y(U) ⇐ ↘g(x)U ↗ y↘22 + ↘U↘F
Then, we can state the following theorem

Th. 1 (restated from Shwartz-Ziv et al. (2023)). ≃ϱ > 0 with probability at least 1↗ ϱ, we have that

Ex,y{↼x,y(U)} ↔ 1

n

n∑

i=1

↘g(xi)↗ g(x→
i)↘2 +

2

m
ED,ω


sup
g

n∑

i=1

↽i↘g(xi)↗ g(x→
i)↘2


+

+
2⇔
n
↘PDYD↘F +

1⇔
m
↘PSYS↘F + const(n,m) (32)

where ε is a vector of i.i.d. Rademacher random variables.

Therefore, the expected supervised loss in Eq. 32 can be reduced by minimizing its upper bound.
Note that the first addend in Eq. 32 is minimized by the FALCON loss, whereas the second addend
is also statistically minimized when n is large. The third addend refers to the contribution term for
the classification on the unlabeled data. While ground truth YD is unknown, this addend can be
minimized by exploiting the following relation

↘PDYD↘F ↔ ↘PD↘F ↘YD↘F
Indeed, note that in order to minimize the left-hand side of the inequality, it suffices to minimize the
term ↘PD↘F , which occurs when Z

T
Z has maximum rank. This is our case due to the Full Rank

Property. Finally, by the same argument used for the third term in Eq. 32, we can minimize the fourth
one by having Z̄

T
Z̄ with maximum rank. This condition holds because ZT

Z and Z̄
T
Z̄ concentrate

to each other by concentration inequalitites (cf. Shwartz-Ziv et al. (2023) for more details).

To summarize, minimizing the FALCON loss ensures that we reduce the invariance of representations
to data augmentations and increase the rank of the representation covariance. This leads to a decrease
of the generalization error as from the result of Theorem 1.

G BLOCK-DIAGONAL ADJACENCY

Proof. The proof follows step by step the one for the diagonal covariance except for the fact that

HH
T = A

T
W

T
WA =︸

WTW = fI

fA
T
A = fBA

where

BA ⇐ A
T
A =





1n
c ↑n

c
0 · · · 0

0
1
n1

n
c ↑n

c
· · · 0

...
...

. . .
...

0 0 · · · 1
n1

n
c ↑n

c




→ Rn↑n

and 1n
c ↑n

c
is a matrix of ones. This concludes the proof.
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Table 3: Resnet architecture. Conv2D(A,B,C) applies a 2d convolution to input with B channels and
produces an output with C channels using stride (1, 1), padding (1, 1) and kernel size (A, A).

Name Layer Res. Layer

Block 1

Conv2D(3,3,F) AvgPool2D(2)LeakyRELU(0.2)
Conv2D(3,F,F) Conv2D(1,3,F) no paddingAvgPool2D(2)

Sum

Block 2

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)
AvgPool2D(2)

Block 3

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)

Block 4

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)

AvgPool2D(all)

Table 4: Hyperparameters (in terms of optimizer and data augmentation) used in SVHN, CIFAR-10
and CIFAR-100 experiments.

Class Name param. SVHN CIFAR-10 CIFAR-100

Data augment.

Color jitter prob. 0.1 0.1 0.1
Gray scale prob. 0.1 0.1 0.1
Random crop Yes Yes Yes
Additive Gauss. noise (std) 0.03 0.03 0.03
Random horizontal flip No Yes Yes

Optimizer

Batch size 64 64 64
Epochs 20 200 200
Adam ω1 0.9 0.9 0.9
Adam ω2 0.999 0.999 0.999
Learning rate 1e↗ 4 1e↗ 4 1e↗ 4

H EXPERIMENTAL DETAILS ON SVHN, CIFAR10 AND CIFAR100

Training. We used a ResNet-8 (details are provided in Table 3. We consider the hyperparameters in
Table 4 for training. Beta is chosen to ensure both losses are minimized, cf. Table 5.

Evaluation. For linear probe evaluation, we followed standard practice by removing the projector
head and train a linear classifier on the backbone representation. We train the classifier with Adam
optimizer for 100 epochs and learning rate equal to 1e↗ 2.

I ADDITIONAL RESULTS ON DICTIONARY SIZE

We provide additional visualization results for the covariance and adjacency matrices on SVHN and
CIFAR-10, cf. Figs. 9, 10. Moreover, we add the analysis of generalization on downstream tasks on
SVHN and CIFAR-100 varying the size of the dictionary in Figs 11, 12.
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Table 5: Values of ω hyperparameter. This is chosen from the range
{0.01, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10} to ensure that both losses are minimized.

Dictionary Size 10 128 256 512 1024 2048 4096 8192 16384
SVHN 0.5 0.5 0.5 0.25 0.1 0.1 0.1 0.1 0.1
CIFAR-10 0.5 0.5 0.5 0.25 0.1 0.1 0.1 0.1 0.1
CIFAR-100 0.5 0.5 0.5 0.25 0.1 0.1 0.1 0.1 0.1

(a) c = 10 (b) c = 128 (c) c = 16384 (d) c = 10 (e) c = 128 (f) c = 16384

Figure 9: Realization of embedding covariance (left) and adjacency matrices (right) for the whole
SVHN test dataset. Increasing c reduces the value of the off-diagonal elements of the covariance,
thus contributing to increase the decorrelation of features (cf. Corollary 2). Moreover, increasing c

has the effect to reduce the block sizes of the adjacency matrix (cf. Corollary 3).

(a) c = 10 (b) c = 256 (c) c = 16384 (d) c = 10 (e) c = 256 (f) c = 16384

Figure 10: Realization of embedding covariance (left) and adjacency matrices (right) for the whole
CIFAR-100 test dataset. Increasing c reduces the value of the off-diagonal elements of the covariance,
thus contributing to increase the decorrelation of features (cf. Corollary 2). Moreover, increasing c

has the effect to reduce the block sizes of the adjacency matrix (cf. Corollary 3).

Figure 11: Analysis of downstream generalization for different values of dictionary size on SVHN
dataset.

J ADDITIONAL ANALYSIS ON COLLAPSES

We provide additional results for the collapses on SVHN and CIFAR100. Specifically, in Fig. 13
we show the analysis of dimensional collapses, whereas in Fig. 14 we show the one for intracluster
collapse.

K EXPERIMENTAL DETAILS ON IMAGENET-100

Training. We used a ViT-small backbone network and train it for 100 epochs with learning rate equal
to 5e↗ 4 and batch-size per GPU equal to 64 on a node with 8 NVIDIA A100 GPUs. Beta is selected
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Figure 12: Analysis of downstream generalization for different values of dictionary size on CIFAR-
100 dataset.

(a) SVHN (b) CIFAR-100

Figure 13: Dimensional collapse analysis on test data for different size of dictionary. Results are
averaged over 5 training runs obtained from random initialization seeds.

from a smaller subset of values {0.1, 0.25, 0.5} (given the more expensive nature of the experiments)
to ensure both losses are minimized and chosen being equal to 0.25.

Evaluation. For linear probe evaluation, we use the DINO codebase and train the classifier with
Adam optimizer (Caron et al., 2021).

L PRACTICAL IMPLEMENTATION OF THE LOSS

We observed training instability when using the larger backbone on ImageNet-100. The issue is due
to some dictionary codes being unused during the initial training phase (cluster collapse), making the
KL matching prior term infinity. Indeed, we have that

LFALCON(D) = ωCE(p,p→) + CE(q,p)

↖ ωCE(p,p→) +KL(q,p)

In practice, the reverse KL term is sufficient to avoid the issue:

LFALCON(D) = ωCE(p,p→) +KL(p, q)
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(a) SVHN (b) CIFAR-100

Figure 14: Intracluster collapse analysis on test data for different size of dictionary. Results are
averaged over 5 training runs obtained from random initialization seeds.
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