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Abstract

Continual learning (CL) aims to learn from se-
quentially arriving tasks without catastrophic for-
getting (CF). By partitioning the network into two
parts based on the Lottery Ticket Hypothesis—
one for holding the knowledge of the old tasks
while the other for learning the knowledge of
the new task—the recent progress has achieved
forget-free CL. Although addressing the CF is-
sue well, such methods would encounter serious
under-fitting in long-term CL, in which the learn-
ing process will continue for a long time and the
number of new tasks involved will be much higher.
To solve this problem, this paper partitions the
network into three parts—with a new part for ex-
ploring the knowledge sharing between the old
and new tasks. With the shared knowledge, this
part of network can be learnt to simultaneously
consolidate the old tasks and fit to the new task.
To achieve this goal, we propose a task-aware
Orthogonal Sparse Network (OSN), which con-
tains shared knowledge induced network partition
and sharpness-aware orthogonal sparse network
learning. The former partitions the network to se-
lect shared parameters, while the latter guides the
exploration of shared knowledge through shared
parameters. Qualitative and quantitative analyses,
show that the proposed OSN induces minimum
to no interference with past tasks, i.e., approxi-
mately no forgetting, while greatly improves the
model plasticity and capacity, and finally achieves
the state-of-the-art performances.
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1. Introduction
Continual learning (CL) aims to learn knowledge from se-
quential input data/tasks, to mimic human cognition to in-
crementally learn new concepts over his/her lifespan. There-
fore, CL is also known as lifelong learning or incremental
learning. However, this is a very challenging problem due
to the catastrophic forgetting (CF) phenomenon, where the
performance of the network on the old tasks will substan-
tially decrease after training on the new task when facing
a series of continuous data stream. To achieve long-term
CL, the network should not only preserve old knowledge
learned from old tasks to deal with CF, but also needs to
obtain knowledge transfer from the old tasks to the new one,
which is known as the stability-plasticity trade-off dilemma.

Recently, various CL methods have been proposed to deal
with CF, which can be roughly divided into the following cat-
egories: Regularization-based methods (Kirkpatrick et al.,
2017; Zenke et al., 2017; Aljundi et al., 2018), Rehearsal-
based methods (Aljundi et al., 2018; Ostapenko et al., 2019;
Shin et al., 2017; Cheng et al., 2024a) and Architecture-
based methods (Hung et al., 2019; Li et al., 2019; Yoon
et al., 2018; Mallya & Lazebnik, 2018; Wang et al., 2022;
Kang et al., 2022). For these Architecture-based methods,
they are mainly based on parameter expansion or pruning.
Parameter expansion methods (Hung et al., 2019; Li et al.,
2019; Yoon et al., 2018) usually selectively reuse the pa-
rameters in the dense network to deal with forgetting and
increase the size of the network to learn on new tasks, as
shown in Fig. 1(b). Parameter pruning methods (Mallya &
Lazebnik, 2018; Wang et al., 2022; Kang et al., 2022) assign
a sub-network, which is pruned from the pre-allocated dense
network, to each specific old task and only the unpruned
parameters can be used for further training, as shown in
Fig. 1(c). Although these methods have many merits, which
are memory efficient without requiring to store extra old-
task data and could achieve forget free in some situations,
they still have the following limitations: 1) The parameter
expansion methods have to keep increasing the network size
to learn on new task, which may cause serious burden on
training efficiency; 2) The pruned sub-network in the pa-
rameter pruning methods is monopolized by the old tasks
leading to low model capacity for new tasks.
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Figure 1. Comparison of our proposed OSN with other architecture-based methods. After learning from old tasks, a model is obtained as
depicted in (a). In (b), parameter expansion methods increase the size of network (i.e., the number of parameters increases from Nl to
Nl +Ml at l-th layer) to learn on the new tasks and frozen the original old parameters to deal with forgetting. As shown in (c), parameter
pruning methods prune some of parameters to preserve old knowledge and only the unpruned free parameters can be used to learn from
new tasks. In (d), our method OSN partitions the network into three parts, with a new part consisting shared parameters to explore shared
knowledge.

Existing parameter pruning methods, such as (Kang et al.,
2022), divide the network into two parts: the pruned sub-
network and the remaining part. The former is frozen and
can only be used to preserve old knowledge, while the latter
is used solely for learning new knowledge. These limita-
tions severely hinder the practical application for CL, espe-
cially for the long-term CL with more and more arriving
tasks. Comprehensive analysis demonstrate the common
reason behind these limitations is that, these methods usu-
ally neglect the shared knowledge between old and new
tasks. As a result, it will greatly sacrifice the model plas-
ticity and capacity, leading to negative effects in long-term
CL. Therefore, to address this issue, we make an early ef-
fort to introduce the shared knowledge between the old and
new tasks during model parameter pruning and updating
in our method, which provide a new way to address the
well-known stability-plasticity dilemma in CL.

Specifically, we propose a task-aware Orthogonal Sparse
Network (OSN) for exploring the shared knowledge in
CL, through the shared model parameters in the previously
pruned sub-network. The proposed OSN not only prunes a
sparse sub-network for each task to deal with CF, but also
searches for a set of shared parameters that are potentially
important for knowledge transfer between old and new tasks
in the sub-network, as shown in Fig. 1(d). After obtain-
ing the shared parameters from the sub-network for the old
tasks, the trainable model parameters for new task will be
expanded including the task-shared and the unpruned model
parameters. During training on the new task, the task-shared
parameters are updated though an orthogonal projection
to achieve no interference with the past tasks, while the
traditional unconstrained gradient descent optimization are
adopted on the unpruned model parameters. By this way, the
shared knowledge can be learned through these task-shared
parameters in the sub-network, thus both of the model sta-
bility and plasticity can be better achieved. Meanwhile,

the model capacity can be greatly improved to benefit the
practical application of CL, especially for the long-term sce-
nario. Besides, we introduce a sharpness-aware orthogonal
projection to replace existing approximate orthogonal pro-
jection, aiming to enhance knowledge sharing and improve
the overall performance of the proposed OSN method.

To summarize, our contributions in OSN are three-fold:

• By revisiting the relationship between the old and new
tasks, we make an early effort to introduce the con-
cept of shared knowledge to the CL task, providing a
new way to address the well-known stability-plasticity
dilemma.

• For exploring the shared knowledge in CL, we pro-
poses two techniques: 1) the shared knowledge induced
network partition to discover the network parameters
that are suitable for capturing the shared knowledge
for different tasks; 2) the sharpness-aware orthogonal
sparse network learning strategy that learns the shared
knowledge upon the discovered network parameters.

• Qualitative and quantitative analysis on five commonly
used datasets show that our method can induce mini-
mum to no interference with past tasks while greatly
improves the model plasticity capacity to refresh the
state-of-the-art performance in CL. Notable, when deal-
ing with long-term CL case, our method can obtain
more than 3.46%ACC performance improvement over
the current SOTA methods.

2. Related Work
A series of continual learning methods have been proposed
to deal with CF. Regularization-based methods (Kirkpatrick
et al., 2017; Zenke et al., 2017; Aljundi et al., 2018) intro-
duce a penalty term to regularize parameter updating on new
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tasks. Knowledge distillation based methods (Li & Hoiem,
2016; Dhar et al., 2019; Lee et al., 2019) adopt a distilla-
tion loss to constrain the training on new tasks to prevent a
significant distribution difference between the new and old
models. Rehearsal-based methods usually select (Aljundi
et al., 2019; Prabhu et al., 2020) or generate (Hu et al.,
2018; Ostapenko et al., 2019; Shin et al., 2017) some rep-
resentative data from old tasks to store them in a memory
buffer, and both the data from the new task and the memory
buffer are fed to the network during training. Some other
methods integrate continual learning with other learning
paradigms (Cheng et al., 2024b) or leverage specific model
architectures (Cheng et al., 2023). Orthogonal projection
based methods (Chaudhry et al., 2018b; Zeng et al., 2019;
Wang et al., 2021; Kong et al., 2022; Lin et al., 2022a) adjust
the parameter updating direction onto the orthogonal space
of the old tasks to achieve better stability-plasticity trade-off.
However, these methods are not very effective for dealing
with CF due to the technical limitations, and the forgetting
may be much severer in long-term CL.

Parameters allocation methods. Architecture-based meth-
ods could achieve lower CF and can be divided into two
categories: 1) parameter expansion; 2) parameter pruning.
Parameter expansion methods reuse the old model parame-
ters to deal with CF and increase the size of the network to
learn on new task (Hung et al., 2019; Li et al., 2019; Yoon
et al., 2018). Parameter expansion methods suffer from low
training efficiency and huge memory consumption, which
makes it unable to perform well in long-term CL scenarios.
Parameter pruning methods allocate a sparse sub-network
pruned from the dense network for a specific old task, while
only the unpruned parameters are used to learn on the new
task(Serra et al., 2018; Mallya & Lazebnik, 2018; Wortsman
et al., 2020; Kang et al., 2022; Wang et al., 2022). However,
as the pruned sub-network is usually monopolized by the
old task and solely used for preserving old knowledge, its
potential contribution to the knowledge transfer has been
ignored. Intuitively, the parameters which are important for
the new task in the sub-network, should be applied to learn
the shared knowledge between the old and new tasks. As
the new tasks arrive continually, obtaining the shared knowl-
edge become more crucial for achieving better knowledge
transfer and network plasticity. Hence, we aim to select and
apply those important shared parameters in the sub-network
to learn on new task.

To solve the above challenges, we propose a novel parame-
ter pruning method in CL, namely Orthogonal Sparse Net-
work (OSN). In OSN, we not only allocate a pruned sparse
sub-network to each specific old task, but also update the im-
portant shared parameters in the sub-network to obtain the
shared knowledge between old and new tasks, to provide
a new way to address the well-known plasticity-stability
dilemma in CL.

3. Orthogonal Sparse Network in CL
In this section, we propose a novel parameter pruning meth-
ods in CL, namely Orthogonal Sparse Network (OSN),
which contains network partition and sharpness-aware or-
thogonal projection. In OSN, different from other parameter
pruning methods, we partition the network into three parts
with an extra part for exploring the shared knowledge be-
tween the old and new tasks. Then a sharpness-aware orthog-
onal projection is applied for learning the shared knowledge.
Our proposed OSN is shown in Figure 1 and the detailed
algorithm is in Algorithm 1.

3.1. Problem Definition

Given a continuous task stream {T1, T2, · · · , TN} and all
N tasks are sequentially input to an L-layer neural network
F(·, θl), where l ∈ {0, 1, · · · , L} and θl are the model
parameters. We denote the dataset of the t-th task as Dt =
{Xt, Yt}, where Xt and Yt are the input feature set and its
corresponding label set, respectively. In continual learning
setting, when training on the t-th task, only the dataset Dt

is available and the network is parameterized as F(Dt, θ
l
t).

During the inference phase, if the task identity t of each
test sample is given, such a continual learning setting is
called task-incremental learning (TIL) (Ven & Tolias, 2019),
otherwise it becomes class-incremental learning (CIL) (Ven
& Tolias, 2019). In this paper, we mainly focus on the TIL.

After training on the t-th task, the model should not only
perform well on all old tasks {T1, T2, · · · , Tt−1}, but also
perform well on the new task {Tt} during the model infer-
ence. This requires the continual learning model to have
two important characteristics, namely stability and plasticity.
The stability indicates the ability of the model to maintain
old knowledge and the plasticity indicates the capacity of
the model to learn from the new task.

3.2. Shared Knowledge Induced Network Partition

To deal with catastrophic forgetting, a series of parameter
pruning methods (Mallya & Lazebnik, 2018; Wang et al.,
2022) have been proposed for CL. One of the most represen-
tative methods is Winning Subnetworks (WSN) (Kang et al.,
2022), which is inspired by the Lottery Ticket Hypothe-
sis (Frankle & Carbin, 2019). WSN prunes the network into
two parts: the pruned sub-network and the unconstrained
sub-network, which are used to preserve old knowledge and
learn new knowledge, respectively. Notably, the pruning
of the sub-network is represented by a binary mask M,
which can be updated task-by-task through Huffman en-
coding (Huffman, 1952). Formally, after training on the
task Tt−1, the pruning of the sub-network can be written as
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follows,

min
Ml

t−1∈{0,1}
L(θlt−1 ⊙Ml

t−1,Dt−1)− L(θlt−1,Dt−1),

(1)
where L is the cross entropy loss function and the symbol
⊙ represents the multiplication operation at the correspond-
ing position. Through Eq. 1, we can obtain the most im-
portant top-c(%) weights from θlt−1 with a given sparsity
ratio c. A value of 1 inMl

t−1 indicates the corresponding
θlt−1 is pruned (i.e., remained parameters), while a value
of 0 indicates the opposite. In WSN, to preserve the old
knowledge, the pruned sub-network is monopolized by the
corresponding old task (Kang et al., 2022), which means
the sub-network is frozen when training on the new task.
Formally, when training on task Tt through the maskMl

t−1,
the updating of θlt can be written as follows (Kang et al.,
2022),

θlt ← θlt−1 − η ·
(
∂L
∂θ
⊙ (1−Ml

t−1)

)
, (2)

where η is the learning rate. Eq. 2 indicates that, when train-
ing on the task Tt, the gradient of the pruned sub-network
parameter is set as zero while other unpruned parameters
are updated unrestrictedly to learn on task Tt.

Through Eq. 1 and Eq. 2, WSN has achieved forget-free CL.
However, when training on the new task, the pruned sub-
network is only used for preserving old knowledge while
its potential contribution to the new knowledge transfer is
ignored. For those parameters in the sub-network, which are
also important for learning knowledge on new task, monop-
olized only by the old tasks will lead to a poor network plas-
ticity. We refer those parameters as shared parameters and
aim to apply them to learn the shared knowledge between
old and new tasks. Especially in long-term CL, since a large
number of tasks continually arrive, such shared knowledge
is not only effective for deal with forgetting but also more
crucial for the new knowledge transfer. Hence, the key issue
becomes how to obtain the important shared parameters and
how to apply them to learn the shared knowledge.

Among existing parameter pruning based methods, the net-
work parameters are pruned only based on their contribution
in preserving old knowledge, as described in Eq. 1. The
pruned sub-network can effectively retain old knowledge,
but the importance of its parameters in acquiring new knowl-
edge is neglected. The shared parameters should not only
be effective for preserving old knowledge but also be impor-
tant for the new knowledge transfer. Hence, we introduce a
task-aware network partition strategy to obtain the shared
parameters for exploring the shared knowledge. Different
from existing parameter pruning methods, our proposed
network partition strategy divides the network into three
parts, which contains an extra new part for shared parame-
ters. Specially, we compute the importance of the pruned

sub-network parameters obtained from Eq. 1 for learning
on new task. Based on the importance, we partition the sub-
network into shared network parameters and the remaining
pruned sub-network parameters. We apply a weight impor-
tance function CWI(·) (Wang et al., 2022) to quantitatively
calculate the importance of each parameter in the pruned
sub-network when training on the new task, i.e.,

CWI(·) = ∥ · ∥1 + ∥
∂L(θlt,Dt)

∂(·)
∥1, (3)

where ∥ · ∥1 is the L1 norm. When training on the new task
Tt, we compute the importance of sub-network parameters,
i.e., CWI(θlt ⊙Ml

t−1), and select the most important top-
k(%) ones. In Eq. 3, CWI(·) mainly relies on the training
gradient to assess the importance of sub-network parameters
for learning on new task. It is reliable because the gradient
can directly and obviously demonstrate the impact of pa-
rameters’ changes on the final training loss. In practice, the
network partition strategy serves as a warm-up training be-
fore the main OSN algorithm. Similarly, we apply an extra
binary mask to represent the network partition, denoted as
ml

t. Thus, the parameters which are selected by the network
re-partition in OSN can be represented by the intersection
ofMl

t−1 and ml
t, i.e., (Ml

t−1 ∩ml
t)⊙ θlt.

3.3. Orthogonal Sparse Network learning

Next, we utilize these shared parameters (Ml
t−1 ∩ml

t)⊙ θlt
to acquire shared knowledge between the old and new tasks.
Since the learnt knowledge is shared, we must ensure that
the shared parameters can be not only learnt to simultane-
ously consolidate the old tasks but also fit to the new one.
Therefore, we specifically project the updating gradients of
the shared parameters on the new task, onto the orthogonal
space of old tasks’ feature space. This updating strategy can
achieve better balance between model stability and plasticity,
which can be derived from the following lemma.

Lemma 3.1. Given a L-layer neural network F , it has been
trained on a continuous task stream {T1, T2, · · · , Tt−1}.
The features and weights of each layer for each task in F
are X l

t−1 and θlt−1, respectively. When a new task Tt is feed
to F , if the parameter updating ∆θlt is orthogonal to the
old tasks feature construction X̄ l

t−1 = [X l
1, X

l
2, · · · , X l

t−1],
i.e.,

θlt = θlt−1 +∆θlt, X̄ l
t−1 ·∆θlt = 0, (4)

we have

F(Dp, θ
l
p) = F(Dp, θ

l
t), p = 0, 1, · · · , t− 1. (5)

The detailed proof can refer to (Wang et al., 2021).
Lemma 3.1 suggests that, updating the network parameters
in the orthogonal space of the input features from old tasks
at each training step when training on a new task, allows the
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network to preserve its training loss on all previous tasks
and prevent forgetting. Such an orthogonal projection based
training strategy allows the network parameters to fit the new
task while simultaneously maintaining their performances
on the old tasks, which means that it has the potential to ex-
plore shared knowledge. Therefore, we project the training
gradients of the shared parameters (Ml

t−1 ∩ml
t) ⊙ θlt on

the new task onto the orthogonal feature space of the old
tasks to obtain shared knowledge between the new and old
tasks. That is,

θlt ← θlt−1 − η · P l
t−1 ·

(
∂L
∂θ
⊙ (Ml

t−1 ∩ml
t)

)
, (6)

where P l
t−1 is the orthogonal projection constructed by

X̄ l
t−1. Eq. 6 indicates that, the parameter updating of

the pruned shared parameters, which is represented by
Ml

t−1 ∩ml
t, is confined in the orthogonal space spanned by

P l
t−1 to obtain the shared knowledge. Moreover, we also as-

sign different learning strategies to the other parts of the net-
work parameters, i.e., parameters in the pruned sub-network
that are not selected by the network partition strategy, and
parameters in the dense network that are are not pruned. The
former, which can be written as (Ml

t−1−Ml
t−1∩ml

t)⊙θlt,
is used to preserve old knowledge and it remains frozen
when training on new task. The latter, which can be written
as (1−Ml

t−1)⊙ θlt, is used for promoting new knowledge
and it serves as the free parameters for training on the new
task. Formally, they can be written as follows,

θlt ← θlt−1 − η ·
(
∂L
∂θ
⊙ (1−Ml

t−1)

)
. (7)

Eq. 6 and Eq. 7 indicate that our OSN divides the network
parameters into three different parts and assigns different
learning strategies to each part.

To obtain P l
t−1, existing work (Wang et al., 2021; Saha &

Roy, 2021) usually apply Singular Value Decomposition
(SVD) technique on the feature space of old tasks to get
approximate null space or orthogonal basis. These two meth-
ods are equivalent as they utilize the singular vectors corre-
sponding to the singular values of the feature construction
matrix X̄ l

t−1. However, the orthogonal projection obtained
by such matrix iterations or SVD technique is typically an
approximate result, which can not strictly satisfy Lemma 3.1.
It may result in the shared parameters in Eq. 6 being unable
to effectively consolidate old knowledge, leading to negative
effects on knowledge sharing.

Therefore, we propose a sharpness-aware orthogonal pro-
jection instead for better knowledge sharing. The sharpness-
aware orthogonal projection is designed to seek for the flat
minima in the loss function rather than the sharp one. Ar-
riving at a minima from a flat loss surface is helpful for
improving the model stability in CL (Yang et al., 2023).

Figure 2. Illustration of sharpness-aware orthogonal projection.
With the same ∆θlt, the loss change ∆Lflat in the flat loss surface
is much smaller than ∆Lsharp in the sharp loss surface.

Assuming that −η · P l
t−1 ·

(
∂L
∂θ ⊙ (Ml

t−1
∩ml

t)
)

in Eq. 6

is ∆θlt and we have θlt = θlt−1+∆θlt, where ∆θlt represents
the change from the old knowledge θlt−1 to the new knowl-
edge θlt. As shown in Figure 2, with the same ∆θlt, the loss
change ∆Lflat from task Tt−1 (depicted in the blue curve)
to task Tt (depicted in the red curve) on a flat loss func-
tion surface is much smaller than ∆Lsharp on a sharp one.
This indicates that, when updating on the new task Tt on a
flat loss function surface, the obtained θlt have a minimal
impact on the loss for the old task Tt−1 and can maintain
performance. Therefore, applying the sharpness-aware or-
thogonal projection can better preserve old knowledge while
not impeding the new knowledge, thereby improving the
knowledge sharing. Hence, we propose to improve the loss
function of OSN by seeking flat minima as follows,

L ← L+ max
∥δ∥2≤ρ

(L(θ + δ, ·)− L(θ, ·)) , (8)

where ρ is a given threshold and δ is a small perturba-
tion. Besides, to improve the overall performance of the
sharpness-aware orthogonal projection, we introduce a data
perturbation to extend the training data distribution. We se-
lect any two sample pairs {xi,t, yi,t} and {xj,t, yj,t} from a
mini batch ofDt at each training step to generate a perturbed
one, i.e.,

x̃t = γxi,t + (1− γ)xj,t, ỹt = γyi,t + (1− γ)yj,t, (9)

where γ ∈ [0, 1] is a given weight hyper-parameter. Both
the original and perturbed data are used to minimize the loss
function in Eq. 8.

After seeking for the flat loss surface, the sharpness-aware
orthogonal projection can be written as follows,

P l
t−1 = U l

2,t−1(U
l
2,t−1)

⊤, (10)

where U l
2,t−1 is the singular vector to the minimum singu-

lar value that can be obtained through SVD technique as
follows,

X̄ l
t−1 = U l

t−1Σ
l
t−1(U

l
t−1)

⊤, (11)

where Σl
t−1 is the singular value matrix and U l

t−1 is the
corresponding singular vector. U l

2,t−1 can be achieved ac-
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cording to the following criteria with a given threshold ϵlth,

∥U l
2,t−1Σ

l
2,t−1(U

l
2,t−1)

⊤∥F ≤ (1− ϵlth)∥X̄ l
t−1∥F , (12)

where ∥ · ∥F is the Frobenius norm.

Algorithm 1 OSN in Continual Learning

Input: Tasks series {T1, T2, · · · , TN}, Dataset Dt for Tt.
Output: A neural network parameterized as F(·, θlN ), a

binary maskMl
N .

1: Initializing network parameters θl0, orthogonal projec-
tion P l

0, cross entropy loss function L, learning rate η,
pruning sparsity c, network partition percentage k;

2: for Tt ∈ {T1, T2, · · · , TN} do
3: for l ∈ {1, 2, · · · , L} do
4: if t = 1 then
5: Train θl1 on task T1;

ObtainMl
1 to prune top-c(%) weights by Eq. 1;

Construct X̄ l
t and obtain P l

t by Eq. 10;
6: else
7: Obtain top-k(%) shared weights by Eq. 3, repre-

sented by ml
t;

Apply Eq. 9 and Eq. 8 to get new L;
Train θlt on task Tt by Eq. 6 and Eq. 7;
UpdateMl

1 to prune top-c(%) weights by Eq. 1;
Construct X̄ l

t and obtain P l
t by Eq. 10;

8: end if
9: end for

10: end for

4. Experiments
4.1. Datasets and Evaluation Metrics

We employ a series of experiments on five commonly used
datesets, including PMNIST (Deng, 2012), Split CIFAR-
100 (Krizhevsky, 2009), CIFAR-100 Superclass (Yoon et al.,
2018), 5-Datasets (Saha & Roy, 2021) and Split TinyIm-
ageNet (Krizhevsky et al., 2017). To further test the per-
fermance of OSN in long-term continual learning, we in-
troduce another two datasets with a larger number(≥ 40)
of tasks, i.e., Split TinyImageNet and Split CIFAR-100-50.
The detailed information and setups of these datasets are
introduced in Appendix B.1.

To compare with other CL methods, we use two common
continual learning evaluation metrics, average accuracy
(ACC) and backward transfer (BWT). ACC is the average
test accuracy of all tasks after training, and BWT measures
the forgetting degree on the old tasks after learning from the
new one. Formally, ACC and BWT are defined as follows,

ACC = 1
N

N∑
t=1

AN,t, BWT = 1
N−1

N−1∑
t=1

AN,t −At,t,

(13)

where AN,t is the test accuracy on the t-th task after training
sequentially on all N tasks. Both ACC and BWT are the
larger the better. A high ACC is more important than a high
BWT under the same conditions, because ACC represents
the overall performance of the network stability and plastic-
ity, while BWT only reflects the forgetting degree, i.e., the
stability.

4.2. Implementation Details

For fair comparisons, we strictly follow the experimental
settings in (Kang et al., 2022), including using the same
backbone network on the corresponding dataset and so on.
We conduct all experiments on PMNIST using a 2-layer
MLP structure to extract features and an extra output unit as
a classifier. We use a modified version of AlexNet followed
by (Saha & Roy, 2021) for Split CIFAR-100 and a modi-
fied LeNet (Yoon et al., 2018) for CIFAR-100 Superclass.
Similarly, a reduced ResNet-18 (Kang et al., 2022) is used
on 5-Datasets. For Split TinyImageNet, we use the back-
bone followed by (Kang et al., 2022), which is composed by
4-layer convolution structure and 3 fully connected layers.

Followed by (Kang et al., 2022), we use Adam as an initial
model optimizer with momentum 0.9. For PMNIST, the
batch size, initial learning rate and epoch are 10, 1e-3 and
15, respectively. Each task is trained for 50 epochs on
CIFAR-100, 80 epochs on 5-Datasets and 40 epochs on
Split TinyImageNet. All the experiments are implemented
on four NVIDIA 2080Ti GPUs with PyTorch.

4.3. Experimental Results

In Table 1, we compare our proposed OSN with other state-
of-the-art CL methods, including EWC (Kirkpatrick et al.,
2017), PackNet (Mallya & Lazebnik, 2018), SupSup (Worts-
man et al., 2020), La-MaML (Joseph & Gu, 2021), FS-
DGPM (Deng et al., 2021), GPM (Saha & Roy, 2021),
TRGP (Lin et al., 2022b), WSN (Kang et al., 2022), Con-
nector (Lin et al., 2022a), DualGPM (Liang & Li, 2023),
API (Liang & Li, 2023) and DFGP (Yang et al., 2023).

For PMNIST, our OSN achieves 97.19% in ACC, which is
0.68% superior to the second best method WSN and 2.55%
higher than DFGP. For Split CIFAR-100, the ACC of OSN
is 7.78% higher than API and 1.68% higher than the second
best method Connector. Our OSN achieves 63.81% in ACC
on CIFAR-100 Superclass, which is 3.61% superior to API
and 2.11% higher than the second best method SupSup
in ACC. For 5-Datasets, OSN outperforms any other CL
methods in Table 1. For Split TinyImageNet, OSN achieves
76.23% in ACC, which is 3.46% higher than the second best
method WSN.

For those parameter pruning methods, such as PackNet,
SupSup and WSN, they can achieve no forgetting, i.e., the

6
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Table 1. Comparisons of different continual learning methods on several real datasets. ‘-’ indicates the method is not employed on the
corresponding dataset. All the experiments results are obtained under three independent runs with the same experimental setups.

Method PMNIST Split CIFAR-100 CIFAR-100 Superclass 5-Datasets Split TinyImageNet

ACC(%)[↑] BWT(%)[↑] ACC(%)[↑] BWT(%)[↑] ACC(%)[↑] BWT(%)[↑] ACC(%)[↑] BWT(%)[↑] ACC(%)[↑] BWT(%)[↑]
EWC (Kirkpatrick et al., 2017) 92.01 -0.03 68.80 -2.02 - - 88.64 -0.04 - -
PackNet (Mallya & Lazebnik, 2018) 96.37 0.00 72.39 0.00 58.78 0.00 92.81 0.00 55.46 0.00
SupSup (Wortsman et al., 2020) 96.31 0.00 75.47 0.00 61.70 0.00 93.28 0.00 59.60 0.00
La-MaML (Joseph & Gu, 2021) - - 71.37 -5.39 54.44 -6.65 - - 66.90 -9.13
FS-DGPM (Deng et al., 2021) - - 74.33 -2.71 58.81 -2.97 - - 70.41 -2.11
GPM (Saha & Roy, 2021) 94.96 -0.02 72.48 -0.90 57.33 -0.37 90.87 -0.01 67.39 1.45
TRGP (Lin et al., 2022b) 96.34 -0.80 74.46 -0.90 58.25 -2.32 92.16 -0.12 68.32 1.71
WSN (Kang et al., 2022) 96.51 0.00 75.86 0.00 61.34 0.00 92.30 0.00 71.96 0.00
Connector (Lin et al., 2022a) - - 78.10 -0.30 56.20 -0.40 85.50 -2.90 - -
DualGPM (Liang & Li, 2023) - - 71.33 -0.12 57.60 -1.00 88.70 -1.90 - -
API (Liang & Li, 2023) - - 72.00 0.37 60.20 -0.20 91.10 -0.50 - -
DFGP (Yang et al., 2023) 94.64 -0.01 74.59 0.00 - - 92.09 -0.01 - -

OSN (Ours) 97.19 ± 0.01 0.00 ± 0.01 79.78 ± 0.06 -0.01 ± 0.01 63.81 ± 0.06 -0.12 ±0.02 93.32 ± 0.09 0.01 ± 0.02 75.42 ± 0.38 -0.52 ± 0.04

Table 2. Comparisons of different pruning based continual learning
methods on Split CIFAR-100 and Split TinyImageNet.

Method Split CIFAR-100 Split TinyImageNet

ACC(%)[↑] CAP(%)[↓] ACC(%)[↑] CAP(%)[↓]
PackNet (Mallya & Lazebnik, 2018) 72.39 96.38 55.46 188.67
SupSup (Wortsman et al., 2020) 75.47 129.00 59.60 214.52
WSN (Kang et al., 2022) 75.86 41.88 72.11 37.50

OSN(Ours) 79.78 25.09 75.42 30.50

BWT equals 0.00%. But their overall performance is lim-
ited by the insufficient model plasticity. Our proposed OSN
achieves great improvements on the model plasticity, by
updating the shared parameters in the sub-network and ob-
taining the shared knowledge between old and new tasks.
As shown in Table 1, the overall performance of our OSN is
much better than other parameter pruning methods. More-
over, in long-term CL dataset, our OSN can achieve more
excellent performance compared to other parameter pruning
methods. For example, on Split TinyImageNet which exists
40 tasks, our OSN can achieve 75.42% in ACC which is
3.46% higher than the second best method WSN. This indi-
cates the superiority of OSN under long-term CL scenarios.

4.4. Ablation Study and Analysis

Network capacity improving in CL and long-term CL.
We compare the network capacity of our OSN with other
parameter pruning methods. Followed by (Kang et al.,
2022), we introduce a metric CAP to quantify the net-
work capacity in each parameter pruning method. Formally,
CAP = (1− S) + (1−α)N

32 , where α is average mask com-
pression rate and N is the number of the tasks. S is the per-
centage of non-fixed parameters. Therefore, CAP represents
the sum of the percentage of non-fixed parameters and the
compression efficiency of binary encoding. The smaller the
CAP is, the better the network capacity will be. We employ
some experiments on Split CIFAR-100 and Split TinyIm-
ageNet to demonstrate the improvement of our proposed
OSN in CAP. As shown in Table 2, for Split CIFAR-100, our
OSN achieve 25.09% in CAP, which is better than 96.38%
of PackNet, 129.00% of SupSup and 99.13% of WSN. For
Split TinyImageNet, the CAP of OSN is superior to all other
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Figure 3. The diagonal ACC(%) of OSN and WSN with the same
sparsity ratio c on CL datasets or long-term CL settings. (a) : Split
CIFAR-100; (b): CIFAR-100 Superclass; (c): Split TinyImageNet;
(d): Split CIFAR-100-50.

methods’ in Table 2, e.g., 11.15% higher than the second
best method WSN. The results in Table 2 strongly demon-
strate that our OSN can greatly improve the model capacity
compared to other existing parameter pruning methods.

Model plasticity improving in CL and long-term CL.We
then employ some experiments to assess the contribution
of the shared knowledge learned through the orthogonal
projection to the model plasticity. Usually, the model plas-
ticity can be measured by IM (Chaudhry et al., 2018a) or
FWT (Lopez-Paz & Ranzato, 2017). Both of the two mea-
surements calculate the difference between At,t and A∗

t ,
where A∗

t is the testing accuracy of the jointly trained model
on task Tt. Given that in the same backbone, A∗

t can be
considered as a constant, we use the testing accuracy on
each new task to measure the model plasticity, i.e., the diag-
onal ACC At,t. In Figure 3, c represents the ratio of pruned
parameters in the sub-network. The larger c is, the more
parameters in the sub-network are remained. As shown in
Figure 3 (a) and (b), with the same sparsity ratio c, our OSN
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Table 3. Ablation studies of each component in OSN on Split CIFAR-100 and CIFAR-100 Superclass. ‘OP’ indicates orthogonal projection
and ‘Sharpness-aware OP’ indicates sharpness-aware orthogonal projection

Module Split CIFAR-100 CIFAR-100 Superclass

Pruning Network Partitioning OP Sharpnesss-aware OP ACC(%)[↑] BWT(%)[↑] CAP(%)[↓] ACC(%)[↑] BWT(%)[↑] CAP(%)[↓]
✓ 75.86 0.00 99.13 61.34 0.00 80.93
✓ ✓ 77.12 -0.28 6.88 62.13 -0.54 13.75

✓ ✓ ✓ 78.23 -0.02 25.09 63.21 -0.21 38.75
✓ ✓ ✓ 79.78 -0.01 25.09 63.81 -0.12 38.75
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Figure 4. Comparisons of ACC(%) and BWT(%) with different
parameters percentage selected by the network partition strategy
on dataset (a): Split CIFAR-100 and (b): Split TinyImageNet.

outperforms WSN in diagonal ACC on both Split CIFAR-
100 and CIFAR-100 Superclass, which proves the crucial
role of shared knowledge in enhancing model plasticity. Be-
sides, we further conduct some experiments on long-term
CL settings to illustrate the superiority of our proposed OSN
in long-term CL. As shown in Figure 3 (c) and (d), with the
same sparsity ratio c, OSN outperforms WSN on both Split
TinyImageNet and Split-CIFAR-100-50, and the strengths
of OSN become more evident as the number of tasks in-
creases, which indicates shared knowledge in OSN plays a
very important role in long-term CL.

OSN vs. WSN with different sparsity ratio. In Figure 5,
we compare the ACC of OSN and WSN with different
sparsity ratio c on both Split CIFAR-100 and Split Tiny-
ImageNet. As c increases, the performance of WSN drops
significantly, while OSN continues to perform well. This
phenomenon is even more severe on long-term datasets Split
TinyImageNet. Since OSN acquires shared knowledge, the
impact of network sparsity on its performance stability is
minimal even in long-term CL.

Parameters sensitivity in the network partition. We
change the k in Algorithm 1 to change the number of se-
lected shared parameters. As shown in Figure 4, when k
is large, i.e., a large number of shared parameters are se-
lected, the network may suffer from a little forgetting, i.e.,
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Figure 5. Comparisons between OSN and WSN with different spar-
sity ratio c on dataset (a): Split CIFAR-100 and (b): Split TinyIm-
ageNet.

BWT is small. This is because, compared to the frozen
model to preserve old knowledge(i.e., k = 0), the shared
knowledge learned through the approximate orthogonal pro-
jection can cause little forgetting. When k become small,
the forgetting also decreases. In fact, by varying the num-
ber of selected shared parameters, our OSN can achieve a
stability-plasticity trade-off, and appropriate number of pa-
rameters selected by the network re-partitioning is positive
to improve the overall performance.

Ablation studies of each component. Table 3 shows the
ablation studies results on Split CIFAR-100 and CIFAR-100
Superclass. As shown in Table 3, every component has a sig-
nificant contribution to improving the overall performance
of OSN. In OSN, pruning while ignoring the shared knowl-
edge can only achieve 75.86% and 61.34% of the ACC on
Split CIFAR-100 and CIFAR-100 Superclass. Applying the
network re-partitioning and obtaining the shared knowledge
through the orthogonal projection (OP) help to improve the
performance of OSN, i.e, 78.23% and 63.21%. Moreover,
a sharpness-aware OP also contributes to improving the
overall performances of OSN.

5. Conclusion
In this paper, we propose a task-aware orthogonal sparse
network (OSN) to search for the shared knowledge between
old and new tasks in CL and further in long-term CL. Dif-
ferent from other parameter pruning methods, we divide
the network parameters into three parts, with a new part
called shared parameters for exploring the shared knowl-
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edge between old and new tasks. The shared parameters
are selected by the network partition strategy and updated
through a sharpness-aware orthogonal projection to obtain
shared knowledge. Qualitative and quantitative analysis
show that our OSN can achieve superior performances to
existing state-of-the-art methods in both CL and long-term
CL settings. In the future, we will try to extend our work to
the class incremental learning settings.
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A. Binary Mask Encoding in OSN
In our OSN, a binary mask is applied to represent the pruning of the sub-network from the dense network, i.e.,Ml

t−1 in
Eq. 2. With the increasing number of pruned parameters in the sub-network, the binary encoding should be efficiently
updated with an effective compression algorithm. Followed by (Kang et al., 2022), we use Huffman Encoding (Huffman,
1952) to update the binary mask. The encoding efficiency is often considered as an important factor that affecting the
model capacity. Specially, Huffman encoding can achieve an approximately 78% lossless compression, which can help
significantly improve model capacity.

B. Experimental Details
In this section, we provide more experimental details in our proposed OSN algorithm. For fair comparisons, We strictly
follow the experimental settings employed in (Kang et al., 2022).

B.1. Datasets

The experiments in our OSN contains several datasets: PMNSIT (Permuted MNIST). PMNIST is constructed by different
random permutations to the original MNIST (Deng, 2012). PMNIST contains ten different tasks. Split CIFAR-100:
We Split CIFAR-100 (Krizhevsky, 2009) into 10 different tasks and each task contains 10 disjoint different classes in
CIFAR-100. CIFAR-100 Superclass is constructed by splitting CIFAR-100 into 20 different classes. Each task contains 5
different classes which are semantically related. 5-Datasets (Saha & Roy, 2021) contains 5 different tasks and each task is
constructed by a separate dataset, including CIFAR-10 (Krizhevsky, 2009), MNIST (Deng, 2012), SVHN (Netzer et al.,
2011), FashionMNIST (Xiao et al., 2017) and notMNIST (Bulatov, 2011).

To evaluate the performance of our OSN in long-term CL, we further introduce some datasets with larger number of tasks for
long-term CL experimental setups. Split TinyImageNet (Krizhevsky et al., 2017) is constructed by splitting TinyImageNet
into 40 different tasks and each task contains 5 different tasks. Split CIFAR-100-50 is a dataset constructed for long-term
CL, which contains 50 different tasks and each task contains 2 different disjoint classes.

B.2. Training Details

For all experiments on PMNIST, we use a 2-layer MLP and each hidden layer contains 100 neurons. We set the epoch as 15
and the initial learning rate as 0.001. We use Adam as the initial optimizer. The batch size is set as 10. For all experiments
on Split CIFAR-100 and Split CIFAR-100-50, we use a modified version of AlexNet followed by (Saha & Roy, 2021). We
set the epoch as 50 and the initial learning rate as 0.001. We use Adam as the initial optimizer. The batch size is set as 64.
On CIFAR-100 Superclass, we use a modified LeNet as the backbone followed by (Saha & Roy, 2021). The epoch and the
initial learning rate are set as 120 and 0.001, respectively. We use Adam as the initial optimizer and the batch size is set as
64. For the experiments on 5-Datasets, we use a reduced ResNet-18 (Saha & Roy, 2021) as the backbone network. We set
the epoch as 80 and the initial learning rate as 0.001. We use Adam as the initial optimizer and set the batch size as 64. We
use a backbone followed by (Saha & Roy, 2021) on Split TinyImageNet. We set the epoch as 40 and the initial learning rate
as 0.001. We use Adam as the initial optimizer and set the batch size as 64. All the experiments are implemented on four
NVIDIA 2080Ti GPUs with PyTorch.
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