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Figure 1: The proposed UniCon supports diverse generation behavior in one model for a targeted
type of image and condition. UniCon also offers flexible conditional generation ability with natural
support for free-form input and seamless integration of multiple models.

ABSTRACT

Recent progress in image generation has sparked research into controlling these
models through condition signals, with various methods addressing specific chal-
lenges in conditional generation. Instead of proposing another specialized tech-
nique, we introduce a simple, unified framework to handle diverse conditional
generation tasks involving a specific image-condition correlation. By learning a
joint distribution over a correlated image pair (e.g. image and depth) with a dif-
fusion model, our approach enables versatile capabilities via different inference-
time sampling schemes, including controllable image generation (e.g. depth to
image), estimation (e.g. image to depth), signal guidance, joint generation (im-
age & depth), and coarse control. Previous attempts at unification often introduce
significant complexity through multi-stage training, architectural modification, or
increased parameter counts. In contrast, our simple formulation requires a single,
computationally efficient training stage, maintains the standard model input, and
adds minimal learned parameters (15% of the base model). Moreover, our model
supports additional capabilities like non-spatially aligned and coarse condition-
ing. Extensive results show that our single model can produce comparable results
with specialized methods and better results than prior unified methods. We also
demonstrate that multiple models can be effectively combined for multi-signal
conditional generation.

∗Corresponding author.
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1 INTRODUCTION

Text-to-image diffusion models, such as Dall-E 2 (OpenAI, 2023) and Imagen (Ho et al., 2022a),
have revolutionized the field of image generation, leading to contemporary models (Midjourney,
2023; Baldridge et al., 2024) that can produce images almost indistinguishable from real ones. This
progress in generative modeling, particularly with diffusion models, has spawned new research areas
and reshaped existing fields within computer vision. With advancements in image quality, the gen-
erative community has expanded its focus to controllability, resulting in many different approaches,
each promoting a distinct scheme for guiding the generative process. ControlNet (Zhang et al.,
2023b) highlights the effectiveness of using modalities like depth and edges as conditional input.
Meanwhile, other works, such as Loose Control (Bhat et al., 2024) and Readout Guidance (Luo
et al., 2024), propose alternative conditioning types (e.g. coarse depth maps) and control mecha-
nisms (e.g. guidance through a prediction head). Concurrently, the estimation community has seen
diffusion models advance the state-of-the-art for predicting various modalities from RGB images,
e.g. Marigold (Ke et al., 2024) repurposes a pretrained image generator to generate depth instead.
In addition, other work Stan et al. (2023) has explored joint diffusion, generating paired image and
depth simultaneously.

Although typically addressed as separate tasks within distinct communities, these problems share
a common underlying structure: conditional generation between correlated images. Consider the
relationship between an image and its depth map: controllable generation translates depth to im-
age, estimation maps image to depth, guidance uses depth predictions to guide image generation,
and joint generation produces image-depth pairs. This observation motivates us to unify all these
tasks under a global distribution modeling problem. While a few works (Qi et al., 2024; Zhang
et al., 2023a) have also explored unified models capable of handling these diverse tasks, they often
introduce significant complexity through multi-stage training, increased parameter counts, or archi-
tectural modifications. This additional complexity makes creating and using these models difficult,
hindering their adoption.

In this paper, we propose UniCon, a unified diffusion model that learns an image-condition joint
distribution with a flexible model architecture and simple but effective training strategy to support
diverse inference behaviors. We propose an architecture adaptation to the standard image generator
diffusion model that is more flexible than ControlNet (allowing for non-pixel-aligned conditioning
signals) and more efficient to train, decreasing both the number of learned parameters and required
training samples. Inspired by Diffusion Forcing (Chen et al., 2024a), we use a training scheme that
disentangles the noise sampling of the image and the condition, allowing flexible sampling strategies
at inference time to achieve different conditional generation tasks without explicit mask input.

As shown in Fig. 1, with the same model but different sampling schedules, UniCon can do: 1)
controllable image generation in the form of ControlNet, Readout Guidance, and Loose Control, 2)
estimation, and 3) joint generation. We train our models based on a large text-to-image model for
several different modalities (depth, edges, human poses, identity) and show that the behavior of our
single model is similar to or better than specialized methods using standard image quality and align-
ment metrics. We demonstrate significant improvements over prior unified models in conditional
generation, training efficiency, and generation flexibility. We also show that UniCon can combine
multiple models for multi-signal conditional generation or switch our model to other base model
checkpoints. Our models are trained in about 13 hours on 2-4 Nvidia A800 80G GPUs, adding 15%
parameters to the base model.

The main contributions of this work are:

• Proposing a framework that unifies controllable generation, estimation, and joint genera-
tion, including model adaptation, training strategy, and sampling methods allowing flexible
conditional generation at inference.

• Demonstrating that our architecture and training can work on a large-scale text-to-image
diffusion model with a small number of learned parameters and a relatively small training
data scale.

• Showing that our unified models can perform similar to specialized methods or better than
current unified approaches on different modalities.
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2 RELATED WORK

Controllable Generation. Fine-tuning text-to-image diffusion models to conditional image genera-
tion on signals beyond text has gained significant popularity (Huang et al., 2023; Zhang et al., 2023b;
Ye et al., 2023; Mou et al., 2023; Sohn et al., 2023). ControlNet (Zhang et al., 2023b) trains a con-
trol network attached to pre-trained diffusion models to incorporate condition signals, such as edge
maps, segmentation masks, and pose estimation. Based on ControlNet, LooseControl (Bhat et al.,
2024) generalizes depth conditioning to loose depth maps that specify scene boundaries and object
positions. Readout-Guidance (Luo et al., 2024) proposes a new control scheme by adding prediction
heads to internal features and guiding the generation by the predicted condition signal. DAG (Kim
et al., 2022) guides a diffusion model to generate geometrically plausible images using depth prior.
Conditional editing tasks, such as DiffEdit (Couairon et al., 2023), have enhanced conditional im-
age manipulation by applying diffusion-based models for inpainting and editing tasks. Instead of
one specific control behavior, our proposed framework provides diverse controlling abilities through
different sampling strategies.

Estimation. Extracting signals like depth, surface normals, or segmentation maps from RGB im-
ages has been a longstanding challenge in computer vision. Typically, each task has been addressed
in isolation or limited combinations,e.g. joint depth and segmentation, but distinct from image gen-
eration. Starting works like DDVM (Saxena et al., 2023a), these tasks have started to be addressed
directly with diffusion models including depth prediction (Saxena et al., 2023b;a), optical flow pre-
diction (Saxena et al., 2023a), correspondence matching (Nam et al., 2024), etc.. Recently, there has
been considerable interest in either using generative features inside estimators (Xu et al., 2023; Zhao
et al., 2023) or explicitly fine-tuning image generators as estimators, such as Marigold (Ke et al.,
2024) which adds a clean RGB conditioning and fine-tunes the entire model to diffuse a depth map.
While Marigold shares some similarities with our depth estimation setting for our RGBD model, our
approach differs significantly in both goals and techniques. Unlike Marigold, which focuses solely
on depth and discards image generation capabilities, our method retains the ability to perform image
generation, depth estimation, and other tasks, through lightweight LoRA fine-tuning.

Joint and Unified Generation. While less common than controllability or estimation, several works
have attempted to unify multiple images and modalities within a single model. LDM3D (Stan et al.,
2023) jointly generates image and depth data in an RGBD latent space. Following approaches com-
monly include an inpainting mask in the input to extend joint generation to bidirectional conditional
generation. For example, UniGD (Qi et al., 2024) unifies image synthesis and segmentation through
a diffusion model trained with image, segmentation, and inpainting mask as inputs. JeDi (Zeng et al.,
2024) learns a joint distribution over images that share a common object, facilitating personalized
image generation. Among the most relevant works, JointNet (Zhang et al., 2023a) adopts a symmet-
ric ControlNet-like structure for generating both image and depth, utilizing an inpainting scheme
to support depth-to-image and image-to-depth generation. Our approach presents several improve-
ments over these unified methods. First, our training strategy enables flexible conditional generation
without requiring an explicit mask input. Thus we can avoid concatenating multiple inputs in the
feature dimension or adding inpainting masks, which allows our model to act like adapters that can
be plugged into the base model checkpoints. Furthermore, our structure supports both loosely corre-
lated image pairs (as in JeDi) and densely correlated pairs (as in JointNet), providing more versatile
capabilities across different scenarios.

3 PRELIMINARIES

Diffusion Model. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b)
are generative models that model a data distribution p(x) through an iterative denoising process.
Consider a forward process gradually adding Gaussian noise ϵ to data x0 ∼ p(x) with timesteps
t = 1, . . . , T and noise schedule {αt},

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), q(xt|xt−1) = N (xt;

√
αtxt−1, (1− αt)I), (1)

where ᾱt =
∏t

s=1 αs and xT ∼ N (0, I) reaches pure noise. Diffusion models learn to denoise xt

at any timestep by estimating x̂θ(xt, t) ≈ x0. According to common ϵ-parameterization, we can
train the model to predict the noise ϵθ(xt, t) instead using the following least squares objective,

min
θ

Ex0,ϵ,t∥ϵ− ϵθ(xt, t)∥2, (2)
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Figure 2: UniCon pipeline. Given a pair of image-condition inputs, our UniCon model processes
them concurrently in two parallel branches, with injected joint cross-attention modules where fea-
tures from two branches attend to each other. We use LoRA weights to adapt our model from a
pretrained diffusion model. During training, we separately sample timesteps for each input and
compute loss over both branches.

where xt = AddNoise(x0, t) =
√
ᾱtx0 +

√
1− ᾱtϵ and ϵ ∼ N (0, I) is random noise. With the

trained denoiser, one can adopt any sampler (Ho et al., 2020; Song et al., 2020a; Karras et al., 2022)
to sample new data from noise. Recent latent diffusion models (Rombach et al., 2022; Ramesh et al.,
2022) map image data into the latent space to improve performance and efficiency. We base our
experiments on Stable Diffusion (Rombach et al., 2022), a large-scale text-to-image latent diffusion
model.

4 METHOD

Our method, UniCon, aims to train a unified diffusion model for diverse conditional image genera-
tion tasks, such as conditional generation on clean, coarse, or partial control signals, estimation, and
joint generation. The key idea is to learn a joint distribution over a correlated image pair x,y, which
allows flexible conditional sampling. The image pair can have strict spatial alignment (image-depth,
image-edge) or loose semantic correspondence (frames from one video clip). In Sec. 4.1, we first
introduce our motivation for learning the joint distribution. Then, we elaborate on our model struc-
ture and training pipeline in Sec. 4.2 and the sampling strategies for flexible conditional generation
in Sec. 4.3.

4.1 MOTIVATION

Image diffusion models offer significant flexibility when sampling in the learned image distribu-
tion p(x). In addition to generating new image x ∼ p(x), one can perform image inpainting by
conditioning partial image xm and image editing by conditioning noisy image xt, corresponding to
sampling in conditional distributions p(x|xm) and p(x|xt). Our motivation is to generalize these
abilities from a single image to a correlated image pair (x,y) by learning a joint distribution p(x,y).
We then use the modeled joint distribution to enable flexible conditional generation. If the condi-
tional signal is encoded as image y, we can train a diffusion model to denoise both image x and
condition y. The trained joint diffusion model supports various conditional generation tasks that
can be unified as sampling in the following conditional distribution,

(x,y) ∼ p(x,y|xmx
tx ,y

my

ty ), (3)
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where xmx
tx indicates x partially masked by mask mx under noise level (timestep) tx.

Sampling in the joint conditional distribution can be regarded as a direct generalization of image
inpainting and editing. The conditional generation and estimation are equivalent to inpainting image
x or condition y (p(x|y0), p(y|x0)). We can also inpaint image and condition for partial con-
trol (p(x,y|xmx

0 ,y
my

0 )). Adding noise to y enables the model to accept coarse condition input
(p(x,y|yt)) like SDEdit (Meng et al., 2021) does for image. We can control the condition fidelity
by adjusting the noise level. To sum up, combining spatial masking mx,my and noise masking
tx, ty provides substantial possibilities in free-form conditional generation.

Based on this motivation, our goal is to train a unified diffusion model for targeted image pair (x,y)
and develop sampling strategies to support the conditional sampling described in Eq. 3.

4.2 UNICON

Figure 2 illustrates the model structure and training pipeline of the proposed UniCon. Instead of
training a new model from scratch, we leverage existing large-scale diffusion models (Rombach
et al., 2022) as a starting point. Since these models have learned a strong image prior, it is more
efficient to adapt the prior for a single image p(x) to model the joint distribution of a correlated
image pair, p(x,y), than to learn this distribution from scratch.

Given a noisy image pair (xtx ,yty ), we feed them as a batch into the denoising network. They are
simultaneously processed in two parallel branches, denoted as x-branch and y-branch. By default,
x is the image, and y is the condition. When the conditional image differs from a natural image, we
add a LoRA (Hu et al., 2021) to the y-branch, which serves to adapt the image generator to produce,
e.g. depth or edges. Additional joint cross-attention modules are injected parallel to the self-attention
modules to join two branches. During training, we separately sample the timesteps tx, ty for x,y
and optimize the model with the standard diffusion MSE loss from both branches. Next we provide
details on our joint cross-attention modules, LoRA adaptation, and training strategy.

Joint cross attention. The joint cross-attention module is the key component that enables ours
model to learn a joint distribution p(x,y) given the marginal distributions p(x), p(y). It entangles
x-branch and y-branch with cross branch attention.

The UNet (Ronneberger et al., 2015) is among the most common diffusion model implementation
and consists of residual blocks and transformer blocks. As shown in prior work (Tumanyan et al.,
2023), the self-attention modules in the transformer blocks are crucial in determining the image
structure and appearance. Therefore, we inject the joint cross-attention modules in parallel to the
self-attention modules. The module receives the features from both branches as input, with its
outputs being added to the self-attention output of the two branches. Specifically, given the input
features of two branches Fin

x ,F
in
y , the output features Fout

x ,Fout
y are computed as,

Fjoint
x ,Fjoint

y = JointCrossAttn(Fin
x ,F

in
y ),

Fout
x = SelfAttn(Fin

x ) + Fjoint
x , Fout

y = SelfAttn(Fin
y ) + Fjoint

y .
(4)

In the joint cross-attention, two features Fin
x ,F

in
y attend to each other instead of attending to them-

selves as in the self-attention. First, features are projected into queries Qx,Qy , keys Kx,Ky ,
and values Vx,Vy . We use different matrices to project x features and y features. For instance,
Qx = Fin

x WQx ,Qy = Fin
y WQy . Then we perform cross-attention between x and y in bidirection,

Ox = Softmax(
QxK

T
y√

d
) ·Vy, Oy = Softmax(

QyK
T
x√

d
) ·Vx, (5)

where d is the feature dimension and the feed-forward projection after the attention operation is omit-
ted. Essentially, x aggregates y values Vy according to the query-key similarity matrix QxK

T
y , and

vice versa. As a common practice (Zhang et al., 2023b; Guo et al., 2024), we add a zero-initialized
linear projection ProjOut at the end to ensure the training starts without disrupting the pretrained
feature distribution. Fjoint

x ,Fjoint
y = ProjOut([Ox,Oy]). Ox,Oy are concatenated in channel dimen-

sion if image x and condition y are spatially-aligned to enhance feature fusion. Otherwise, they are
fed forward separately.
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Compared to alternatives including feature residual (Zhang et al., 2023b), input concatenation (Stan
et al., 2023), and backbone sharing (Liu et al., 2023), joint cross attention is compatible with im-
age pairs without strict spatial correlation. We initialize all joint cross-attention weights from the
pretrained self-attention modules and train LoRA adapters for x,y projection matrices.

LoRA adaption for condition branch and joint cross attention. Training all the parameters in
our model for our conditional signal at least doubles the parameter number in pretrained image
layers. Therefore, we instead adopt the Low-Rank Adaptation technique (Hu et al., 2021) (LoRA)
to fine-tune the pretrained weights by adding low-rank trainable weight matrices. In addition to
reducing trainable parameter numbers, using LoRA adapters allows us to apply our model to other
checkpoints sharing the same structure as the training base model by plugging joint cross-attention
and trained LoRA weights.

We freeze all pretrained layers in the x-branch to retain the natural image prior p(x). When the
condition y is encoded as a pseudo-image falling out of natural image distribution, we add a LoRA
adapter to the y-branch to adapt for the condition image distribution p(y), denoted as y-LoRA.
y-LoRA applies to all projection matrices in the self-attention and cross-attention modules.

For joint cross-attention, we initialize all weights from the pretrained self-attention modules. Then
we add two sets of LoRA adapters to the pretrained projection matrices. xy-LoRA includes
LQx

,LKx
,LVx

and yx-LoRA includes LQy
,LKy

,LVy
. For instance, the adapted x,y query pro-

jection matrices are WQx
= WQ + LQx

,WQy
= WQ + LQy

where WQ is the frozen query
projection matrix from pretrained self-attention module.

Training with disentangled noise levels. One training objective adopted by previous methods (Stan
et al., 2023; Liu et al., 2023) is minθ E(x0,y0),ϵ,t∥ϵ − ϵθ(xt,yt, t)∥2 where x,y shares the same
noise level. The model learns how to denoise the noisy (xt,yt) jointly and can generate new sam-
ples (x,y) ∼ p(x,y). However, models trained in this way do not explicitly support conditional
sampling. Some work (Zhang et al., 2023a) solves the problem by augmenting the input with an con-
dition mask and masked latents and finetuning the model with an inpainting target, yet this requires
heavy training involving all model parameters.

Recently, Diffusion Forcing (Chen et al., 2024a) proposed a new training paradigm where the model
is trained to denoise inputs with independent noise levels. Inspired by the idea, we separately sample
the diffusion timesteps for x and y when training, leading to the following training objective,

min
θ

E(x0,y0),ϵ,t∥ϵ− ϵθ(xtx ,yty , tx, ty)∥2, (6)

where ϵ = (ϵx, ϵy) and xtx = AddNoise(x0, tx),xty = AddNoise(y0, ty). Models trained with the
timestep-disentangled objective can directly perform conditional generation by denoising xtx while
keeping ty = 0. The noise added to the input can be regarded as an implicit noise mask. Unlike
explicit input masks, noise masking can interpolate between no mask (t = 0) and full mask t = T ,
enabling image generation with coarse conditions.

4.3 INFERENCE

Our timestep-disentangled training allows UniCon models to process paired inputs with different
noise levels in each denoising step. Suppose we have a denosing sequence {(xi,yi)}0i=S . xi,yi are
sampled under independent noise schedules (tSx , ..., t

0
x) and (tSy , ..., t

0
y) where ti ≤ ti+1.

Sampling with independent noise schedules. The independent x,y noise schedule enables diverse
sampling behaviors. First, we can jointly generate x,y by denoising them together with identical
noise schedules, tiy = tix ∀i. For conditional generation, we can sample x from noise with a clean
condition input y, i.e. yi = y, tiy = 0 ∀i. We can similarly sample y conditioned on x by giving
the x-branch clean input and tix = 0 ∀i. Furthermore, our models allow sampling x with a coarse
control signal conditioning on a noisy condition image yS = AddNoise(y, tSy ). We can control the
condition fidelity by adjusting the noise level t0y from 0 (no noise) to T (pure noise). Since the control
signal is corrupted by noise, the condition image itself does not need to be precise. Therefore, we
can use artificially created or edited condition images to loosely control image generation.

Sampling with guidance. Since our model has an output for both branches, we can apply guidance
to each of them for image inpainting or partial condition. Latent replacement is a typical approach
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Figure 3: Qualitative comparison of diverse Image-Depth generation tasks. We compare our
single UniCon-Depth model with other specialized methods and a previous unified method Joint-
Net (Zhang et al., 2023a) on diverse generation tasks.
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Figure 4: Conditional generation samples. We show our sample conditional generation results.
For each model, the left column is the input condition and the right column is the output image.

for inpainting where the noisy latents zt are partially replaced by exact samples from the forward
process (Eq. 1) in each step, zt = (1 − m) · AddNoise(z, t) + m · zt where z,m are the given
condition sample and mask. The method is an approximation to exact conditional sampling. Fol-
lowing Ho et al. (2022b), we can add a guidance term to correct the sampling process and improve
the condition adherence,

zgt = zt − wr
ᾱt

2
∇zm̃

t
||zm − ẑm0 (zt; θ)||2, (7)

where zgt is guided noisy latents, ẑ0(zt; θ) = [zt −
√
1− ᾱtϵθ(zt, t)]/

√
ᾱt is the predicted original

sample and wr is a weighting factor. zm indicates part of z where mask m = 0 and m̃ is the inverted
mask. The guidance term leads the noisy latents toward reconstructing the masked condition area
zm. For UniCon, above variables include both inputs, zt = (xtx ,yty ), z = (x,y),m = (mx,my).

Sampling with multiple conditional signals. To sample with multiple conditional images, we
combine multiple UniCon models and extend the joint cross attention to include all image-condition
pairs. In specific, the image feature is paired with each condition feature in the joint cross-attention
modules and processed by weights from corresponding models. Then the image branch aggregates
all output features with weight factors to balance the strength of each condition.

5 RESULTS

We base our experiments on Stable Diffusion (Rombach et al., 2022) (SD), a large-scale text-to-
image diffusion model. We train 4 UniCon models, Depth, SoftEdge, Human-Pose (Pose), Human-
Identity (ID) on SDv1-5. The first three pair an image with a spatially aligned condition image.
Following Luo et al. (2024), we train Depth, SoftEdge models on 16k images from PascalVOC (Ev-
eringham et al., 2012) and Pose model on a subset with 9k human images. Depth, soft edge, and
pose images are estimated by Depth-Anything-v2 (Yang et al., 2024b), HED (Xie & Tu, 2015) and
OpenPose (Cao et al., 2019). We train the ID model on 30k human face images from CelebA (Liu
et al., 2015) and use images with the same identity as training image pairs. In addition, we train
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Figure 5: User study of conditional generation performance. We compare our UniCon against
Readout-Guidance (Luo et al., 2024), ControlNet (Zhang et al., 2023b) for spatially-aligned condi-
tions (depth, softedge, pose) and against IP-Adapter-Face (Ye et al., 2023) for ID condition.

Table 1: Quantitative comparison of conditional generation for spatially-aligned conditions.
We compare Readout-Guidance (Luo et al., 2024), ControlNet (Zhang et al., 2023b), and UniCon
(Ours) on spatially-aligned conditions depth, softedge, and pose. For a fair comparison, all methods
are trained on PascalVOC with the same annotator.

Method Depth SoftEdge Pose
FID-6K ↓ AbsRel (%) ↓ FID-6K ↓ EMSE (1e-2) ↓ FID-6K ↓ PCK @ 0.1 ↑

Readout-Guidance 18.72 23.19 18.43 4.84 21.07 24.96
ControlNet 13.68 9.85 13.46 2.30 18.61 57.54
UniCon 13.21 9.26 12.80 2.28 17.51 61.97

an auxiliary Appearance model to cooperate with other models, as shown in Fig 8. It is trained on
random frame pairs from 6k videos in Panda70M (Chen et al., 2024b), aiming at generating images
with similar visual appearance.

5.1 MAIN RESULTS

Qualitative results. In Fig. 3, we show sample results generated by our Depth model on different
tasks and compare them with a specific method for each task. Note our results are generated by the
same Depth model with different sampling strategy. First, our model can accept a clean depth or im-
age to perform Depth-to-Image or Image-to-Depth generation. ControlNet (Zhang et al., 2023b) and
Marigold (Ke et al., 2024) respectively work for the two tasks with different structures. Compared
to ControlNet, UniCon supports generation with a rough or partial condition. LooseControl (Bhat
et al., 2024) finetunes a ControlNet for a generalized depth condition. Our model works for such
created rough depth images without foreknowledge by conditioning noisy depth images. Similar to
Readout-Guidance (Luo et al., 2024), we can apply the guidance on the depth output for conditional
generation. In addition to a complete depth image, it is also possible to guide with part of a depth
image, such as using the border of the depth map to specify the overall scene structure. Finally, our
model can jointly generate an image with its depth, which is the goal of LDM3D (Stan et al., 2023).

Fig 4 shows sample results from all UniCon models. Apart from common spatial aligned control
signals, our ID model works for loosely correlated human images. With the ID model, we can
generate images of the same person in the condition image and utilize the input prompt to specify
appearance and style.

Table 2: Quantitative depth estimation
comparison. We compare MiDaS (Ran-
ftl et al., 2020), DPT (Ranftl et al., 2021),
Marigold (Ke et al., 2024), and our Depth-
Metric model on zero-shot depth estima-
tion benchmarks. We show results with-
out test-time ensembling.

Method NYUv2 ScanNet
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

MiDaS 11.1 88.5 12.1 84.6
DPT 9.8 90.3 8.2 93.4
Marigold 6.0 95.9 6.9 94.5

JointNet 13.7 81.9 14.7 79.5
UniCon 7.9 93.9 9.2 91.9

Quantitative comparison. We compare UniCon with
other methods on conditional generation and depth es-
timation. For the conditional generation, we generate
6K 512 × 512 images conditioned on depth, soft edge,
or pose of random images from OpenImages (Krasin
et al., 2017). We use Frechet Inception Distance
(FID) (Heusel et al., 2017) to measure the distribution
distance between generated images and real images cor-
responding to the same input conditions. We also eval-
uate the condition fidelity by Absolute Mean Relative
Error (AbsRel) (Ke et al., 2024) for depth; Edge Mean
Squared Error (EMSE) for soft edge; and Percentage of
Correct Keypoints (PCK) (Yang & Ramanan, 2012) for
pose. All metrics are computed between the modalities
estimated from real images and generated images. For
depth estimation, we evaluate on NYUv2 (Silberman et al., 2012) and ScanNet (Dai et al., 2017)
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Figure 6: Flexible conditional generation via different sampling schedules. We annotate each
image with its sampling schedule. Schedule bars represent the noise level from T to 0. Arrows
indicate the noise sampling schedule. We apply the guidance in generation (orange arrow) for partial
condition samples and use red borderlines to split areas to keep and areas to generate.
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Figure 7: Ablation of training steps and data scale. We compare the depth conditional generation
performance of UniCon and ControlNet on different training settings. We use the same training
steps for data scale ablation and vice versa. UniCon-ND indicates trained without depth loss.

with AbsRel and δ1 (Ranftl et al., 2021) as metric, following the protocol of affine invariant depth
evaluation (Ranftl et al., 2020).

We conduct a user study to compare UniCon models against their corresponding methods to evaluate
the conditional generation performance. As shown in Fig. 5, UniCon demonstrates comparable
performance to specialized methods in human preference (Fig. 5).

In addition, we compare UniCon for spatially-aligned conditions (depth, softedge, pose) against
ControlNet (Zhang et al., 2023b), Readout-Guidance (Luo et al., 2024) in terms of FID and condi-
tion fidelity metrics. As shown in Tab. 1, our UniCon achieves similar or better performance than
Readout-Guidance (Luo et al., 2024) and ControlNet (Zhang et al., 2023b) on FID and condition
fidelity over all modalities.

We finetune our Depth model for 5K steps with Depth-Anything-V2-Metric (Yang et al., 2024b) as
the annotator for metric depth evaluation. As shown in Tab. 2, our Depth-Metric model performs
similarly or better than MiDaS (Ranftl et al., 2020) and DPT (Ranftl et al., 2021). There is a margin
between our model and Marigold (Ke et al., 2024), which fine-tunes the whole diffusion model and
solely focuses on depth estimation. In comparison, our model trains fewer parameters and targets
on unified conditional generation.

Flexible conditional generation. We show diverse conditional generation samples in Fig. 6. Start-
ing from a noisy condition image, our models can interpret the exact condition image to other mean-
ings (dog to lion in Column 1) or take rough condition as control (cat sketch in Column 2). Using
guidance for partial conditioning enables us to condition on both input signals (Column 3) or re-
paint an image with a coarse condition signal (Column 4). We generate the ”ICLR” edge image by
replacing raw edges with text.

In addition, we can combine multiple UniCon models to enhance the control ability (Fig. 8). One in-
teresting application is to combine loose conditions (ID, Appearance) with dense conditions (Depth,
Pose). In the bottom row, we use the same image for both ID and Appearance conditions to enhance
both ID alignment and overall image appearance consistency. Similar to ControlNet, our models
can apply to other customized checkpoints fine-tuned from our base model (Fig. 9).

Comparison with JointNet. We compare our method to the most relevant baseline, JointNet (Zhang
et al., 2023a), which also supports multiple conditional generation tasks for image and depth. As
demonstrated in Fig. 3, our method shows better results in image-to-depth, partial condition, and
depth guidance, with extra abilities of rough depth condition. Quantitatively, UniCon achieves su-
perior depth estimation results compared to JointNet (Tab. 2).
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Figure 8: Multi-signal conditional gener-
ation samples. We can combine multiple
models for different condition signals.

SDv1-5 Realistic-v4 Anything-v5Input

Figure 9: Apply to other checkpoints. Our mod-
els can apply to other checkpoints fine-tuned from
the base model (SDv1.5).

5.2 ABLATION STUDY

Training steps and data scale. We ablate on training steps and data scale for depth conditional
generation (Fig. 7). As the training step grows, our model improves steadily, showing a higher
performance upper bound than ControlNet which starts to overfit on the dataset. We observe a
sudden drop in condition fidelity when downscaling our training dataset. We attribute it to our joint
cross-attention requiring a certain data scale to capture the image-condition correlation. On the other
hand, UniCon achieves better condition fidelity with enough data.

Table 3: Ablation of training set-
ting and model alternatives. We
evaluate the conditional generation
performance of our Depth model un-
der different settings.

FID-6K ↓ AbsRel(%) ↓

UniCon-Depth 13.21 9.26
- Depth loss 13.18 9.23
- Depth loss, noise 13.66 8.57
- Encoder 13.64 10.16
+ Data (200K) 13.10 8.66

Training setting and model alternatives. In Tab. 3, we test
our Depth model with training setting and structure alterna-
tives. First, we drop out the depth loss in training, leading to
a model that has similar depth-to-image generation perfor-
mance but cannot denoise depth image. We also investigate
the depth loss influence under different data scales (Fig. 7
Right), showing that joint modeling depth has a positive ef-
fect on conditional generation. Further dropping the noise
added to the depth image in training results in a ControlNet-
like depth-control model. It improves the condition fidelity
but harms generation quality. We also remove joint cross-
attention modules in the UNet encoder to test the robustness
against structure changes. Despite the slight performance drop, our method works with half of the
attention modules. Finally, our model consistently improves when we scale up the training data to
200K images from OpenImages (Krasin et al., 2017).

6 DISCUSSION

We propose a simple framework for unifying diffusion-based conditional generation. We consider
all conditional generation tasks involving a specific image-condition correlation as sampling in a
global distribution and train a diffusion model to learn it. Our flexible model architecture adapts a
pretrained diffusion model to handle multi-input processing, alongside effective training and sam-
pling strategies designed to support diverse generation tasks. The inherent flexibility of our approach
opens up the possibility for a wide range of applications, potentially encouraging further exploration
into novel image-condition mappings. Additionally, our work demonstrates that large-scale diffu-
sion models can be successfully adapted to accommodate non-aligned noise levels in input signals,
suggesting a path toward enhancing existing multi-signal diffusion models. As for limitations, some
models dealing with loosely correlated image pairs, e.g. our ID model, exhibit instability. We at-
tribute this issue to the need for more training data and refined techniques to achieve satisfactory
performance in such cases.
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A IMPLEMENTATION DETAILS

Our model process input x,y in two parallel branches, as shown in Fig. 2. In practice, we do not
prepare two network branches to process two inputs. Instead, all inputs are concatenated in batch
dimension and fed into the denoising UNet, as a batch of image inputs. They are simultaneously
processed, with the condition LoRA selectively applying to the y inputs. For joint cross-attention,
we split x and y features and perform the cross-attention operation.

For the models we present in the paper, we use LoRA rank 64 for all adapters, including the condi-
tion LoRA and the joint cross-attention LoRA. We only add the condition LoRA when the condition
image falls out of natural image distribution, i.e. our Depth, SoftEdge, and Pose models. We addi-
tionally incorporate a trigger word to the text prompts for these conditions, such as ”depth map”.

B TRAINING

We train 5 UniCon models, Depth, SoftEdge, Human-Pose (Pose), Human-Identity (ID), and Ap-
pearance on Stable Diffusion v1.5 (Rombach et al., 2022). Stable Diffusion uses a variational au-
toencoder (VAE) to define a latent space for image generation. We adopt the VAE of the base model
to encode and decode all type of images to and from the latent space, including annotated images
like depth, edge and pose. For all models, we use AdamW (Loshchilov, 2017) optimizer with learn-
ing rate 1e-4. The training images are resized to 512 resolution with random flipping and random
cropping as data augmentation. The text prompts are generated by BLIP (Li et al., 2023; 2022)
for datasets without captions. We drop out the text prompt input with a rate of 0.1 to maintain the
classifier-free guidance (Ho & Salimans, 2022) ability.

Depth, SoftEdge, Pose. For spatially aligned conditions, we follow Readout-Guidance (Luo et al.,
2024) to train on PascalVOC (Everingham et al., 2012). Depth and SoftEdge model is trained on 16K
images and Pose model is trained on 9K images of humans. To obtain the condition input, we first
annotate training images with existing estimation methods. Depth, soft edge, and pose images are
estimated by Depth-Anything-v2 (Yang et al., 2024b), HED (Xie & Tu, 2015) and OpenPose (Cao
et al., 2019). We encode all estimated modalities as images, following the annotators in Control-
Net (Zhang et al., 2023b). For SoftEdge, we follow ControlNet (Zhang et al., 2023b) to quantize the
edge maps into several levels to remove possible hidden patterns. We train Depth, SoftEdge models
for 20K steps with batch size 32 and Pose model for 10K steps. Training 20K steps costs about 13
hours on two NVIDIA A800 80G GPUs. To adapt our Depth model for metric depth estimation, we
further fine-tune the model for 5K steps on images annotated with Depth-Anything-v2-Metric. The
produced Depth-Metric model is used for the depth estimation evaluation in Tab. 2.

ID, Appearance. We test our method on two cases of loosely correlated image pairs, the identity-
preserving model and the appearance-preserving model. The Identity model is trained on human
images with the same identity. We collect 30K human images from CelebA (Liu et al., 2015),
including about 5K identities with more than 1 image. We randomly pair images with the same ID
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to generate 200K training image pairs (50 for each identity). We train the Appearance model on
Panda-70M (Chen et al., 2024b). Due to issues in downloading YouTube videos in Panda-70M, we
only use a minimal subset with 6K videos for training. When training, we load video clips with
a length of 16 and a resampled frame rate of 7 and randomly select two frames from loaded clips
as input image pairs. The ID and Appearance models are trained for 20k steps with batch size 64
distributed on 4 NVIDIA A800 80G GPUs.

C INFERENCE

Table 4: Example sampling schedules for different conditional generation targets given a UniCon
model of x,y.

Target Example Sampling Schedule (50 steps)

p(x,y) (x50,y50), (x49,y49), ..., (x1,y1), (x0,y0)
p(y|x0) (x0,y50), (x0,y49), ..., (x0,y1), (x0,y0)
p(x|y0) (x50,y0), (x49,y0), ..., (x1,y0), (x0,y0)
p(x|y25) (x50,y25), (x49,y25), (x48,y24), ..., (x1,y1), (x0,y0)

p(x|ym
0 ) (x50,y50), (x

g(ym
0 )

49 ,y
g(ym

0 )
49 ), ..., (x

g(ym
0 )

1 ,y
g(ym

0 )
1 ), (x

g(ym
0 )

0 ,y
g(ym

0 )
0 )

Sampling schedules. In Tab 4, we list example sampling schedules to show how our sampling
strategies (discussed in Sec. 4.3) support the conditional sampling described in Eq. 3. For the partial
conditioning case p(x|ym

0 ), g(ym
0 ) means replacing latents and applying guidance according to give

masked condition ym
0 (Sec. 4.3, Sampling with guidance). Note that the listed sampling schedule is

one possible schedule to achieve the target. We can alter or combine them to perform customized
conditional generation. For guidance, we adopt an optimizer (e.g. AdamW) to compute the gradient
and determine the weighting factor wr in Eq. 7 instead of manually setting a fixed weight factor, as
suggested by Readout-Guidance (Luo et al., 2024).

Combining multiple models. As discussed in Sec. 4.3, we can combine multiple UniCon models
to achieve multi-signal control. We expand the details here. Suppose we have input image x and
two input conditions y, z. We denote the model parameters for y and z as θy, θz . Then the joint
feature outputs Fjoint

x ,Fjoint
y ,Fjoint

z in Eq. 4 are computed as:

Fxy,Fyx = JointCrossAttn(Fin
x ,F

in
y ; θy),Fxz,Fzx = JointCrossAttn(Fin

x ,F
in
z ; θz),

Fjoint
x = wxyFxy + wxzFxz,F

joint
y = wyxFyx,F

joint
z = wzxFzx,

(8)

where all w are weighting factors to balance the strength of each condition. To explain, we perform
joint cross-attention between any image-condition pairs (x,y) and (x, z) with corresponding model
weights. Then the image branch will aggregate all output features as the final output.

Condition Guidance. Our ID and Appearance models that target a loose correlation sometimes
perform badly in the conditional generation, generating low-quality images or images not aligned
with the condition. We attribute the problem to the fact that loose condition has a weaker influence on
image generation as it allows more freedom and diversity in generated images than dense conditions.
Similar problems have also been observed in text-to-image generation, with an effective solution
called classifier-free guidance (Ho & Salimans, 2021). Therefore, we optionally utilize a similar
guidance scheme to emphasize a certain condition signal for better condition alignment.

In specific, we alter the model output as ϵg = ϵsep + k(ϵjoint − ϵsep) where ϵjoint, ϵsep are the
model output with or without joint cross-attention and k is the guidance scale. Intuitively, the output
towards the direction defined by ϵjoint − ϵsep, which means the condition signal from joint cross-
attention is enhanced. Furthermore, we can enable more fine-grained guidance over a specific signal
when there are multiple condition signals by replacing ϵjoint, ϵsep with ϵ(wcon), ϵ(wunc). Here
wcon,wunc indicate the two sets of weighting factors used in Eq. 8. Therefore ϵ(wcon), ϵ(wunc)
are the model output with different condition weighing factors. Take Eq 8 as an example, if we want
to emphasize y but not z, we can set wxy, wyx to 1 in wcon and to 0 in wunc while keeping other
weights the same.
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Table 5: Relative depth estimation performance on DA-2K evaluation benchmark. We com-
pare UniCon-Depth model against Marigold (Ke et al., 2024), Geowizard* (Fu et al., 2025), Depth
Anything V1 (Yang et al., 2024a) (DA V1), ZoeDepth (Bhat et al., 2023), Depth Anything V2 (Yang
et al., 2024b) (DA V2). *: results from Depth Anything V2.

Method Marigold* Geowizard* DAT V1* ZoeDepth UniCon-Depth (Ours) DAT V2 (ViT-L)*

Accuracy (%) 86.8 88.1 88.5 89.1 90.5 97.1

Table 6: Comparison between synchronous and asynchronous sampling scheduling. Syn-
chronous: denoising image and depth together while replacing depth input with noisy GT depth
at each step. Asynchronous (default): denoising image with clean depth input. We test on UniCon-
Depth for depth-to-image generation.

Method FID CLIP Score AbsRel δ1

Sync 14.78 32.45 17.43 77.00
Async 13.21 32.11 9.26 91.02

D EVALUATION

D.1 EVALUATION METRICS

For conditional generation (Tab. 1), we compute Frechet Inception Distance (FID) (Heusel et al.,
2017) between 6K generated images and corresponding real images. We measure condition fidelity
using an estimation-matching strategy. In specific, we estimate the condition modalities of the gen-
erated images and real images. Then, we compute alignment metrics over the attributes estimated
on the generated images and on the real images, to measure the alignment between reference and
generated images on the condition modality.

Depth alignment. We compute the Absolute Mean Relative Error (Ke et al., 2024) (AbsRel) on
depth values estimated by Depth-Anything-V2. We adopt the same affine-invariant evaluation pro-
tocol as our depth estimation evaluation.

Edge alignment. For edge alignment, we simply compute the mean squared error on non-zero areas
(i.e. edge areas) in the estimated edge maps, thus denoting it as Edge Mean Squared Error (EMSE).
Because the edge map is nearly a binary value map, EMSE can directly reflect the alignment of
edges.

Pose alignment. For pose alignment, we compute the standard pose estimation metric Percentage
of Correct Keypoints (Yang & Ramanan, 2012) (PCK) with an adaptation to fit our scenario. PCK
measures the alignment between paired ground truth and predicted keypoints. However, the real and
generated images in our evaluation may include multiple humans, and we do not have a matching
between them. Therefore, we perform a greedy matching between real image keypoints and gen-
erated image keypoints. In specific, we compute pair-wise PCK across all sets of keypoints in two
images. Then we match the keypoints set greedily in PCK descending order and obtain a matching
between two groups of keypoints. Finally, we compute PCK over the matched keypoints.

For depth estimation evaluation, we follow the same affine-invariant evaluation setting as
Marigold (Ke et al., 2024), i.e. aligning the prediction with ground truth with the least squares fitting.
Suppose a is the predicted depth and d is the GT depth. We compute AbsRel as 1

M σM
i=1|ai−di|/di

where M is the total number of pixels. Another metric δ1 is defined as the proportion of pixels
satisfying max(ai/di,di/ai) < 1.25.

D.2 SAMPLING SETTING

For conditional generation comparison in Tab. 1, we use the DDIM (Song et al., 2020a) scheduler
with eta=1.0. We sample for 50 steps and use a classifier-free guidance scale of 7.5. We use identical
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Figure 10: Inpainting and editing samples. We show diverse inpainting and editing results using
UniCon-Depth and UniCon-Edge.

Table 7: Inference Speed Comparison for conditional generation. We compare UniCon against
ControlNet (Zhang et al., 2023b) on denoising iterations per second.

Method ControlNet UniCon (Remove Joint Modules) UniCon

iteration/s 10.82 7.65 5.02

sampling settings for all comparison methods. For depth estimation in Tab. 2, we use the Euler
Ancestral scheduler (Karras et al., 2022) to sample 20 steps. Additionally, we find adding a minor
noise (10% of max noise timestep) to the input image helps improve the estimation quality.

For the qualitative comparison in Fig. 3, we use the default sampling setting for specialized methods.
JointNet (Zhang et al., 2023a) does not support guidance in their official implementation. Therefore,
we adopt the same guidance scheme on their model to generate the depth guidance sample. We tune
our sampling setting to generate each sample, such as the noise level added to the input depth for
the rough depth condition task.

E ADDITIONAL RESULTS

User Study. We conduct a user study on conditional generation performance for depth, softedge,
pose, and identity conditions. For each model, users are asked to select their preferred image that
aligns with the given image and text condition. We show the result in Fig. 5, where UniCon produces
comparable results against other specialized methods.

For the Appearance model, evaluating it independently is challenging because (1) Applying it in
isolation often produces outputs that closely resemble the input image. We must adjust the condition
weight or text prompt for specific use cases. Its effectiveness is most apparent when combined with
other models. Please check Fig. 1,4,8,11 for its use cases. (2) A suitable baseline for comparison is
currently unavailable.

Synchronous and asynchronous sampling schedules. Our disentangled timestep sampling scheme
during training enables flexible asynchronous sampling schedules at inference time, which is how
UniCon handles diverse generation tasks. In Tab. 6, we compare the depth-to-image generation
performance under synchronous and asynchronous sampling schedules. The results demonstrate
that asynchronous noise level scheduling offers clear advantages in depth conditional generation.

For the synchronous setting, we denoise image and depth together while replacing depth input with
noisy GT depth at each step. For the asynchronous setting, we denoise the image with clean depth
input, which is only possible due to our training strategy.

Quantitative depth estimation. Though our UniCon model still lags behind state-of-the-art (SOTA)
diffusion-based depth estimators (e.g., Marigold (Ke et al., 2024)) on NYUv2 and ScanNet, existing
benchmarks often lack scene diversity, as noted in Depth Anything V2 (Yang et al., 2024b). To ad-
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Table 8: Latency Comparison for Depth Estimation. We compare UniCon against Marigold (Ke
et al., 2024), ZoeDepth (Bhat et al., 2023), and Depth Anything V2 (Yang et al., 2024b) on denoising
iterations per second, where Marigold and UniCon are diffusion-based. The latency is tested on one
A800 GPU.

Method Marigold Marigold(LCM) ZoeDepth Depth Anything V2 UniCon

latency (A800) 2.3s 372ms 289ms 91ms 4.0s

dress this limitation, we further evaluate UniCon-Depth on the relative depth estimation benchmark
DA-2K, introduced in Depth Anything V2, which comprises diverse high-resolution test images.

On DA-2K (Tab. 5), Our UniCon-Depth model is superior to other models except for Depth Any-
thing V2 (which is used as our annotator), demonstrating that our model better generalizes to diverse
scenes.

Computation efficiency analysis. We provide an analysis of our inference cost. Tab. 7 compares
UniCon with ControlNet for controllable image generation. UniCon incurs additional inference
overhead due to the separate computation of LoRA layers (condition LoRA and joint cross-attention
LoRA) instead of fusing them into the pretrained weights. Therefore, separate LoRA layer computa-
tion incurs heavy overhead. This overhead can potentially be mitigated by saving multiple attention
weights (with and without LoRA) directly in the model.

Tab. 8 compares UniCon with other depth estimation methods. Diffusion-based methods (e.g., Uni-
Con and Marigold) generally exhibit higher latency than traditional approaches. However, UniCon
can leverage techniques like Latent Consistency Models (LCM), as demonstrated by Marigold, to
significantly improve inference speed.

In summary, while UniCon currently has higher inference costs, its computational efficiency can be
enhanced through optimizations like LoRA weight fusion and LCM integration. We plan to explore
these directions in future work.

Inpainting and editing using UniCon. UniCon supports diverse editing and inpainting behavior
on both image input and condition input, as shown in Fig. 10. In addition to inpainting or editing
one input conditioning on another, we can simultaneously edit and inpaint both inputs.

Empirically, we observe that our model is robust for editing tasks. However, its inpainting perfor-
mance is less stable, which is a limitation of the base model (Stable Diffusion). A straightforward
solution is to apply our method to an inpainting-specific diffusion model, such as SD-Inpainting.

Interpolating between noise schedules. In Fig. 11, we show that we can interpolate the initial noise
levels for input x,y to gradually change our sampling behavior in y-to-x, rough y-to-x, joint x,y
generation, rough x-to-y, and x-to-y.

Qualitative results on depth estimation. We provide more qualitative results on depth estimation
for our UniCon-Depth model (Fig. 12). Our method performs better than Marigold (Ke et al., 2024)
on most test cases, especially for images with ambiguous structure (Fig. 12 Line 2,5) or non-realistic
style (Fig. 12 Line 1,7,8). By learning the bidirectional correlation between image and depth, our
model better preserves the natural image knowledge of the base model, while fine-tuning the whole
model in a conditional sampling manner (as Marigold) might destroy the pretrained image prior.

Qualitative results on conditional image generation. We provide more qualitative results of our
Depth, Edge, and Pose model (Fig. 13). ControlNet (Zhang et al., 2023b) sometimes generates
over-saturated images (SoftEdge 2,4 in Fig. 13) or images not aligned with the condition (Pose 4 in
Fig. 13), while it rarely happens to our method. We attribute it to that joint modeling stimulates our
model to fully capture the bidirectional correlation between image and condition, while conditional
modeling might learn to rely on minor clues in the condition image.
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Figure 11: Interpolating noise schedules. We can move from x-to-y generation to y-to-x gen-
eration by interpolating the level of initial noise added to x,y inputs. After adding the noise, we
denoise x,y together to clean outputs.
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Input Image Depth Anything V2 Marigold UniCon (Ours)

Figure 12: Qualitative results on depth estimation. We compare UniCon-Depth against Depth
Anything V2 (Yang et al., 2024b), Marigold (Ke et al., 2024). Test images are from Depth Anything
V2 (Yang et al., 2024b).
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Figure 13: Qualitative results on conditional image generation. We compare our conditional
image generation results against ControlNet (Zhang et al., 2023b), Uni-ControlNet (Zhao et al.,
2024). Uni-ControlNet accepts different inputs for depth and softedge, generated by its default
preprocessors (MiDaS, HED).
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