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ABSTRACT

Fluorescence microscopy is ubiquitously used in cell biology research to charac-
terize the cellular role of a protein. To help elucidate the relationship between the
amino acid sequence of a protein and its cellular function, we introduce CELL-
Diff, a unified diffusion model facilitating bidirectional transformations between
protein sequences and their corresponding microscopy images. Utilizing reference
cell morphology images and a protein sequence, CELL-Diff efficiently generates
corresponding protein images. Conversely, given a protein image, the model out-
puts protein sequences. CELL-Diff integrates continuous and diffusion models
within a unified framework and is implemented using a transformer-based net-
work. We train CELL-Diff on the Human Protein Atlas (HPA) dataset and fine-
tune it on the OpenCell dataset. Experimental results demonstrate that CELL-Diff
outperforms existing methods in generating high-fidelity protein images, making
it a practical tool for investigating subcellular protein localization and interactions.

1 INTRODUCTION

Protein sequences inherently encode their functions, and predicting these functions solely from se-
quence information has become a critical area of research. With the development of artificial in-
telligence, learning-based methods are increasingly employed to predict a wide range of protein
properties, including structural conformation (Jumper et al., 2021; Baek et al., 2021), interaction
partners (Evans et al., 2021), subcellular localization (Almagro Armenteros et al., 2017; Khwaja
et al., 2024b), and binding affinity (Rube et al., 2022). Concurrently, the rapid development of gen-
erative models has enabled researchers to design functional proteins (Madani et al., 2023; Dauparas
et al., 2022) and drug-like molecules (Isigkeit et al., 2024). These computational methods allow for
large-scale virtual screening, significantly reducing the costs and resources associated with experi-
mental validation. The advent of those technologies presents significant opportunities for biomedical
research, potentially accelerating advancements in therapeutic target identification, drug discovery,
and the investigation of biochemical pathways (Palma et al., 2012).

In this work, we focus on the relationship between protein sequences and their cellular functions
as characterized by microscopy images. Specifically, we focus on fluorescence microscopy which
is ubiquitously used in nearly all cell biology research. Fluorescence microscopy images provide
extremely rich information for proteins of interest in the cellular context, such as their expression
level, subcellular distribution, and molecular interactions as can be measured by spatial colocaliza-
tion. Such information characterizes protein functional activities as well as the physiological and
pathological state of cells. Disease-causing genetic mutations can alter the amino acid sequence
of proteins, resulting in changes in image phenotypes by modifying gene expression patterns, re-
shaping molecular interaction profiles, or globally perturbing cellular states. As a first step towards
building a model that connects the sequence of proteins and their cellular images, recently, Khwaja
et al. (2024b) proposed CELL-E, a text-to-image transformer that predicts fluorescence protein im-
ages from sequence input and cell morphology condition. Furthermore, CELL-E2 (Khwaja et al.,
2024a) was developed to enhance the image generation speed of CELL-E by utilizing the idea from
MaskGIT (Chang et al., 2022). Additionally, CELL-E2 facilitates the bidirectional transformation
between sequences and images. However, their image model only allowed output of highly blurred
images lacking fine details to discern any of the subcellular structures other than the most promi-
nent one (i.e. the nucleus), restricting their applicability only to the study of a very limited set of
sequences features (i.e. the nuclear localization signal).
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Figure 1: Given cell images as conditional input, CELL-Diff facili-
tates bidirectional generation between protein sequences and images.

To expand the application
of sequence-to-cell-image
generative models, we in-
troduce CELL-Diff, a uni-
fied diffusion model that
enables bidirectional trans-
formation between protein
sequences and their corre-
sponding microscopy im-
ages. Specifically, by uti-
lizing cell morphology im-
ages including the nucleus
and cytoplasmic markers
such as endoplasmic reticulum (ER) and microtubule as conditional input, CELL-Diff can gener-
ate detailed protein images from given protein sequences. Conversely, it can also output protein
sequences when provided with microscopy images, as shown in Figure 1. To enable this bidi-
rectional transformation, CELL-Diff employs the continuous diffusion model for generating mi-
croscopy images and the discrete diffusion model for redesigning protein sequences, which can be
further integrated within a unified framework. Inspired by Unidiffuser(Bao et al., 2023), we adopt
separate diffusion time steps for the continuous and discrete diffusion models, enabling conditional
generation. The final objective function comprises the noise prediction loss for the continuous dif-
fusion model and the masked value prediction loss for the discrete diffusion model. Moreover, we
design an attention-based U-Net model (Ronneberger et al., 2015; Peebles & Xie, 2023) to inte-
grate information from both modalities efficiently. We evaluate CELL-Diff on HPA dataset (Digre
& Lindskog, 2021), which provides cellular microscopy images of human proteins based on fixed
immunofluorescence staining. Subsequently, we fine-tune the model on the OpenCell dataset (Cho
et al., 2022), which offers live microscopy images of different human cell lines, each tagged with a
single protein via CRISPR/Cas9 gene editing.

• We present CELL-Diff, a diffusion-based generative model that enables conditional bidi-
rectional generation of protein sequences and their corresponding microscopy images.
By integrating the continuous diffusion and discrete diffusion models, CELL-Diff can be
trained within a unified framework. We propose an attention-based U-Net model for imple-
menting CELL-Diff, which effectively integrates information from images and sequences.

• We train CELL-Diff on the HPA dataset using different conditional cell images and fine-
tune it on the OpenCell dataset. Experimental results show that our model generates more
detailed and sharper protein images compared to previous methods.

2 RELATED WORKS

Multi-modal generative modeling can be formalized as learning the conditional or joint distribution
between modalities. Representative applications include text-to-image generation (Ramesh et al.,
2021; Ding et al., 2021; Nichol et al., 2022), image-to-text generation (image captioning) (Mokady
et al., 2021; Chen et al., 2023), text-to-video generation (Ho et al., 2022), and text-to-speech (Chen
et al., 2021; Popov et al., 2021). Most of these approaches rely on diffusion models or auto-
regressive models for the generation and typically focus on unidirectional transformation. However,
our goal is to achieve bidirectional generation, which requires the learning of joint distributions.
To achieve this, Hu et al. (2023) proposed a discrete diffusion-based model for learning the joint
distribution between images and text, though its scalability remains unexplored. Bao et al. (2023)
introduced Unidiffuser, a unified diffusion model capable of unconditional, conditional, and joint
generation. The key observation of Unidiffuser is that the learning objective of the diffusion score
function can be unified in a general framework with multiple diffusion time steps. Furthermore,
Zhou et al. (2024) developed Transfusion, which integrates auto-regressive and diffusion models
for both single and cross-modality generation. Transfusion combines the auto-regressive loss with
diffusion, training a single transformer model using an extended causal mask. These methods gen-
erally depend on large pre-trained encoders for images and text, such as CLIP (Radford et al., 2021)
and VQGAN (Esser et al., 2021). However, for microscopy images, the variability in equipment
and experimental conditions limits the availability of such robust image encoders, making the direct
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application of these models challenging. Indeed, the two previous protein-sequence-to-microscopy
generators, CELL-E (Khwaja et al., 2024b) and CELL-E2 (Khwaja et al., 2024a), which both used
VQGAN, only produce coarse-grain images that have too much blur to distinguish fine-scale sub-
cellular structures such as cytoskeleton. As for CELL-Diff, we combine continuous and discrete
diffusion to enable bidirectional transformation between protein images and sequences. The model
is trained on the pixel space, offering a straightforward and efficient approach.

3 TECHNICAL BACKGROUND

Before delving into our unified diffusion model, we briefly introduce the background of diffusion
models applicable to continuous and discrete state spaces. Specifically, we employ the continuous
diffusion model for microscopy images and the discrete diffusion model for protein sequences.

3.1 DIFFUSION MODEL FOR CONTINUOUS STATE SPACES

Let I0 be a continuous random variable in Rd, where d denotes the dimension, and let I1:T =
{It}Tt=1 be a sequence of latent variables, with t as the index for diffusion steps. The diffusion
model involves two processes: the forward process and the reverse process. In the forward process,
the diffusion model progressively injects noise into the initial data I0, transforming it into a Gaussian
random variable IT . In the reverse process, the model learns to invert the diffusion process through
a denoising model and generate new data by gradually eliminating the noise.

Forward process. The forward process involves injecting noise into the initial data. Given a vari-
ance schedule {βt}Tt=1, the forward process is defined as:

q(It|It−1) = N (
√

1− βtIt−1, βtId), t = 1, . . . , T. (1)

Let αt = 1 − βt and ᾱt =
∏t

i=1 αi. Then, for any arbitrary step t, it holds that q(It|I0) =
N (
√
ᾱtI0, (1− ᾱt)Id). Consequently, for a sufficiently large T , this process will transform I0 into

an isotropic Gaussian variable.

Reverse process. The goal of the reverse process is to generate new samples from p(I0) starting
from a Gaussian random variable IT ∼ N (0, Id). The reverse process is defined by a Markov Chain
with trainable transitions:

pθ(It−1|It) = N (µθ(It, t), σ
2
t Id), t = 1, . . . , T. (2)

Here, µθ represents parameterized neural networks designed to estimate the means from the current
state, and σ2

t denotes the variance.

Training objective. The training objective function can be derived using variational inference.
Instead of optimizing the intractable log-likelihood function log p(I0), the diffusion model maximize
its ELBO:

Eq(I1:T |I0)

[
log pθ(I0|I1)−DKL(q(IT |I0)∥pθ(IT ))−

T∑
t=2

DKL (q(It−1|It, I0)∥pθ(It−1|It))

]
,

(3)
where q(It−1|It, I0) has an formulation as N (

√
ᾱt−1βt

1−ᾱt
I0 +

√
αt(1−ᾱt−1)

1−ᾱt
It, (1−ᾱt−1)βt

1−ᾱt
Id).

To simplify the computation, Ho et al. (2020) used a training objective based on a variant of the
ELBO in Equation 3 as

LDDPM = Et,I0,ϵ∥ϵθ(
√
ᾱtI0 +

√
1− ᾱtϵ, t)− ϵ∥22, (4)

where ϵ ∼ N (0, Id) and ϵθ is a noise prediction network.

3.2 DIFFUSION MODEL FOR DISCRETE STATE SPACES

Several distinct diffusion models are designed for discrete data (Austin et al., 2021; Hoogeboom
et al., 2021). This section focuses on the order-agnostic Autoregressive Diffusion Models (OA-
ARDM) (Hoogeboom et al., 2022).
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Figure 2: Training losses of CELL-Diff. During each training iteration, the protein image Iport and
sequence S are transformed using the forward processes of the continuous and discrete diffusion
models, with randomly sampled time steps tI and tS, respectively. The network model is tasked
with predicting the noise in the protein image and the masked values from the protein sequence,
corresponding to the noise prediction loss LI and the masked value prediction loss LS.

Let S = (S1, . . . ,SD) be a multivariate random variable, where ∀t ∈ {1, . . . , D}, St ∈ {1, . . . ,K}
with K categories. Denote SD as the set of all permutations of the integers 1, . . . , D, and assume σ
represents a random ordering in SD. Applying Jensen’s inequality, we obtain:

log p(S) = logEσ∼U(SD)p(S|σ) ≥ Eσ∼U(SD) log p(S|σ), (5)

where U(SD) denotes the uniform distribution over SD. Following order σ, log p(S|σ) can be
factorized as

∑D
t=1 log p(Sσ(t)|Sσ(<t)), where Sσ(<t) = (Sσ(1), . . . ,Sσ(t−1)). Combining this

with Equation 5, we have:

log p(S) ≥ Eσ∼U(SD)

D∑
t=1

log p(Sσ(t)|Sσ(<t)) = Eσ∼U(SD)

D∑
t=1

1

D − t+ 1

∑
k∈σ(≥t)

log p(Sk|Sσ(<t)).

(6)
Therefore, denote fθ as the neural network, C as the categorical distribution, the loss function for
OA-ARDM is

LOA-ARDM = Eσ∼U(SD),t∼U(1,...,D)
1

D − t+ 1

∑
k∈σ(≥t)

− log C(Sk|fθ(Sσ(<t))). (7)

This objective function corresponds to the “Masked Language Modeling” training objective pro-
posed in BERT (Kenton & Toutanova, 2019) with a reweighting term. At each training step, we first
sample a time step t from U(1, . . . , D), followed by a random ordering σ from U(SD). We then
input Sσ(<t) into the model, which predicts the remaining values Sσ(≥t). In the generation step, we
first sample a random ordering and then generate the values according to that order. These processes
are facilitated through a masking operation, see Appendix A for the details.

4 METHODOLOGY

In this section, we introduce our unified diffusion model for generating microscopy images and
protein sequences. Let Iprot represents the protein image, Icell represents the cell morphology image,
and S represents the protein sequence. The task of protein image prediction involves sampling from
the conditional distribution p(Iprot|S, Icell), while the task of sequence generation involves sampling
from p(S|Iprot, Icell). To achieve these goals within a unified diffusion model, we choose to estimate
the joint distribution p(Iprot,S|Icell)), which involves model a continues variable Iprot and a discrete
variable S.

4.1 PROPOSED METHOD

Let I0 represent the protein image Iport and temporarily ignore the cell image Icell, we consider
modeling the joint distribution p(I0,S). Following the diffusion models described in in Section 3,
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we introduce a sequence of latent variables I1:T = {It}Tt=1 for I0 and a random ordering σ ∈ SD

for S. The log-likelihood function satisfies:

log p(I0,S) = logEσ∼U(SD)Eq(I1:T |I0)
p(I0:T ,S|σ)
q(I1:T |I0)

≥ Eσ∼U(SD)Eq(I1:T |I0) log
p(I0:T ,S|σ)
q(I1:T |I0)

.

(8)
Assuming the same forward and reverse process in Section 3.1, q(I1:T |I0) can be decomposed as
q(IT |I0)

∏T
t=2 q(It−1|It, I0).

Regrading log p(I0:T ,S|σ), the decomposition depends on the factorization order between I0:T and
S. Given a specific factorization order, for sequence S, each decomposition term can be repre-
sented as log p(Sσ(tS)|Sσ(<tS), I≥tI), where tS ∈ {1, . . . , D} and tI ∈ {0, . . . , T}1. Further-
more, since the forward process shown in Equation 1 indicates that the information from I0 to IT
is progressively decreasing, we assume log p(Sσ(tS)|Sσ(<tS), I≥tI) = log p(Sσ(tS)|Sσ(<tS), ItI).
For image I, using the Markov Chain model, each decomposition term can be represented as
log p(IT |Sσ(<tS)) and log p(ItI−1|ItI ,Sσ(<tS)), where tI ∈ {1, . . . , T} and tS ∈ {1, . . . , D +
1}. Combining this with q(I1:T |I0), the KL term in Equation 3 can be expressed as
DKL

(
q(ItI−1|ItI , I0)∥p(ItI−1|ItI ,Sσ(<tS))

)
, which has a closed-form formulation with Gaussian

parameterization.

In practice, the choice of factorization order between I0:T and S depends on the downstream pur-
pose. In our case, we aim to generate samples from two conditional distributions p(I|S) and p(S|I),
which requires simultaneously factorizing p(I0:T ,S|σ) from I0:T to S and from S to I0:T . To
achieve this goal, we adopt the approach from UniDiffuser (Bao et al., 2023), considering all possi-
ble factorization combinations. Therefore, we maximize the following objective function:

Eσ∼U(SD)Eq(I1:T |I0)

D∑
tS=1

T∑
tI=0

log p(Sσ(tS)|Sσ(<tS), ItI)−
D+1∑
tS=1

DKL

(
q(IT |I0)∥p(IT |Sσ(<tS))

)
+

D+1∑
tS=1

log p(I0|I1,Sσ(<tS))−
D+1∑
tS=1

T∑
tI=1

DKL

(
q(ItI−1|ItI , I0)∥p(ItI−1|ItI ,Sσ(<tS))

)
,

(9)
where the first term corresponds to the objective function of OA-ARDM in Equation 6, while the
remaining terms correspond to the objective function of DDPM in Equation 3.

Utilizing the same parametrization technique as shown in Equation 4 and Equation 7, and consid-
ering modeling the joint distribution p(Iport,S|Icell), let fθ denotes the neural network. The training
objective function for protein sequence S is:

LS = Eσ∼U(SD),Iport,tI,tS,ϵ

∑
k∈σ(≥tS)

− log C(Sk|fθ(Sσ(<tS),
√
ᾱtII

port +
√
1− ᾱtIϵ, tI, I

cell))

D − tS + 1
.

(10)
The training objective function for protein image Iport is:

LI = Eσ∼U(SD),Iport,tI,tS,ϵ∥fθ(Sσ(<tS),
√
ᾱtII

port +
√

1− ᾱtIϵ, tI, I
cell)− ϵ∥22. (11)

In summary, combining Equation 10 and Equation 11 and introduce a balancing coefficient λ, the
total loss of the proposed CELL-Diff model is:

LCELL-Diff = LS + λLI. (12)

The training strategy is shown in Figure 2.

4.2 MODEL DETAILS

Inference. After training, we can generate samples from two conditional distributions:
p(Iport|S, Icell) and p(S|Iport, Icell). Specifically, to generate the protein image Iport, we utilize the
conventional reverse diffusion process as shown in Equation 2, conditioning on the unmasked protein

1Given that the gap between IT and the standard Gaussian noise is negligible, we assume
log p(Sσ(tS)|Sσ(<tS)) = log p(Sσ(tS)|Sσ(<tS), IT ).
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Figure 3: Network architecture of CELL-Diff. Microscopy images are embedded into a latent se-
quence through residual and attention blocks. The protein sequences are embedded using a pre-
trained ESM2 model (Lin et al., 2022). These embeddings are concatenated and processed by a
transformer model. The U-Net architecture (Ronneberger et al., 2015) is employed to output the
noise in the protein image, while a linear projection is utilized to predict the masked values in the
protein sequence. Cross-attention mechanisms are implemented to enhance information integration
from images and sequences.

sequence S and the cell image Icell. The network model employed for generation is fθ(S, ·, tI, Icell),
where tI = 1, . . . , T . For the generation of the protein sequence S, we utilize the reverse process
of discrete diffusion OA-ARDM (Hoogeboom et al., 2022). We first sample a random ordering
σ, and then generate sequence from p(Sσ(tS)|Sσ(<tS), I

port, Icell), where tS = 1, . . . , D. The net-
work model in this scenario is fθ(·, Iport, 0, Icell). The sampling algorithm for OA-ARDM is shown
in Algorithm 2.

Network architecture. As shown in Equation 11 and Equation 10, the network model fθ takes four
inputs: the protein sequence S, the protein image Iport, the cell image Icell, and the diffusion time step
tI. To process the protein and cell images, we first concatenate them and then apply the commonly
used U-Net architecture (Ronneberger et al., 2015). The concatenated images are fed into a series of
downsampling blocks, transforming into image embeddings. The protein sequences are embedded
using a pre-trained ESM2 model Lin et al. (2022). Then, the image and protein embeddings are
concatenated and processed using an encoder-only transformer model. After passing through the
transformer module, the concatenated feature tensors are split into image and sequence feature ten-
sors. The image feature tensors are then upsampled and combined with the downsampling features
to output the noise from the protein image. The sequence feature tensor is processed using a linear
projector to predict the masked values. The upsampling and downsampling blocks in the U-Net
consist of residual and attention blocks. To enhance the integration of sequence information within
the image processing component, we utilize cross-attention mechanisms with the attention blocks.
Furthermore, we employ the adaptive layer norm zero (adaLN-Zero) conditioning method (Peebles
& Xie, 2023) for incorporating the diffusion time step tI. The network architecture is illustrated
in Figure 3.

5 EXPERIMENTS

5.1 DATASETS

Human Protein Atlas. The Human Protein Atlas (HPA) dataset (Digre & Lindskog, 2021) includes
immunofluorescence images across various human cell lines with the proteins of interest stained by
antibodies. It provides cellular images for 12,833 proteins, as well as corresponding cell morphology
images consisting of staining for the nucleus, ER, and microtubules. For each protein, the dataset

6
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Figure 4: Visual results of protein image generation on HPA dataset.

includes multiple microscopy images from different cell lines. The corresponding protein sequences
can be accessed from the UniProt dataset (UniProt Consortium, 2018). In total, we have collected
88,483 data points, each containing a protein sequence, a protein image, a nucleus image, an ER
image, and a microtubule image.

OpenCell. The OpenCell (Cho et al., 2022) dataset provides a library of 1,311 CRISPR-edited
HEK293T human cell lines, each with a target protein fluorescently tagged using the split-
mNeonGreen2 system. For each target protein, OpenCell provides 4–5 confocal images along with
a reference nucleus image. The cells were imaged live, offering a more accurate representation of
protein distribution than the immunofluorescence images from HPA. Notably, 1,102 proteins are
common between the HPA and OpenCell datasets. In total, we collected 6,301 data points, each
containing a protein sequence, a protein image, and a nucleus image.

Given the size limitations of the HPA and OpenCell datasets, particularly in the diversity of protein
sequences, we randomly selected 100 proteins from the shared subset between the two datasets as
the test set, leaving the remainder for training. The test set for HPA and OpenCell contains 766 and
470 data points, respectively.

5.2 IMPLEMENTATION DETAILS

We first train CELL-Diff models on the HPA dataset and then fine-tune on the OpenCell dataset.
Both pre-training and fine-tuning are conducted for 100,000 iterations using the Adam opti-
mizer Kingma & Ba (2014). The learning rate is initialized using a linear warm-up strategy, in-
creasing from 0 to 3 × 10−4 over the first 1,000 iterations, followed by a linear decay to zero. The
batch size is set to 192. For images from the HPA dataset, we apply the random crop of size 1024,

7
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Table 1: Comparison of protein image generation performance on HPA and OpenCell datasets.
”Nucl” denotes the nucleus image, ”ER” denotes the endoplasmic reticulum image, and ”MT” de-
notes the microtubule image. ”FID-T” indicates the FID computed using the thresholded protein
image, and ”FID-O” indicates the FID computed using the original protein image.

Dataset Method Cell image MSF-resolvability (nm) ↓ IoU ↑ FID-T ↓ FID-O ↓

HPA

CELL-E2 Nucl 1872 0.461 77.0 167.0

CELL-Diff

Nucl 646 0.448 35.9 31.9
Nucl, ER 642 0.619 32.4 25.2
Nucl, MT 642 0.601 33.0 27.1

Nucl, ER, MT 641 0.623 34.1 24.1

OpenCell CELL-E2 Nucl 1239 0.515 70.4 248.1
CELL-Diff Nucl 628 0.524 40.4 20.0

followed by resizing to 256. For the OpenCell dataset, images are randomly cropped to a size of
256. Data augmentation is performed using random flips and rotations. The sequence embedding
dimension is 640, and the transformer module consists of 24 layers with 8-head attention. The U-
Net architecture includes three groups of downsampling and upsampling modules, each containing
two residual and attention blocks, with channel sizes increasing from 64 to 512. To convert images
into sequences, we use the patchify operation from DiT (Peebles & Xie, 2023) with a patch size of
8. CELL-Diff is trained with 1,000 diffusion steps using the shifted cosine noise schedules (Hooge-
boom et al., 2023), and use DDIM (Song et al., 2020) with 100 steps to accurate the sampling speed.
The weighting coefficient λ in Equation 12 is set to 100, and the maximum protein sequence length
is 2,048. All models are trained using two Nvidia H100 GPUs.

5.3 PROTEIN IMAGE GENERATION

We evaluate the protein image generation performance of CELL-Diff. Given that the protein image
prediction problem is relatively new, we compare CELL-Diff with the most closely related method,
CELL-E2 (Khwaja et al., 2024a). To provide a quantitative comparison, we introduce the Maximum
Spatial Frequency (MSF) resolvability for microscopy images to measure its capability to discern
fine structural details. Given a microscopy image I, we define the Fourier Ring Power Spectral
Density (FRPSD) as FRPSD(r) =

∑
ri∈r |Î1(ri)|2, where Î denotes the Fourier transform of I and

ri denotes the pixel element at radius r. The MSF-resolvability is then defined as:

MSF-resolvability =
1

f
, f =

i

Image Size× Pixel Size
, where

{
FRPSD(r) > 10−3, r < i

FRPSD(r) < 10−3, r = i
.

(13)

We also employ the Intersection over Union (IoU) metric, which measures the similarity between
two masks and is commonly used in image segmentation tasks. To calculate IoU, we apply median
value thresholding to the original protein images to generate binary masks, while for CELL-E2, we
use the predicted thresholding images. Additionally, we compute the Fréchet Inception Distance
(FID) Heusel et al. (2017) score to evaluate the similarity between the real and predicted images.
FID is a learning-based metric that evaluates the quality of images generated by generative models.
It measures the similarity between the generated and real images regarding their feature distribu-
tions. Lower FID scores indicate that the generated images are more similar to the real images. To
compute FID, we concatenate the protein and nucleus images as input. In practice, we compute
FID-T and FID-O, representing the FID score based on thresholding and original protein images,
respectively. The results are shown in Table 1. The results show that CELL-Diff generated images
exhibit better MSF-resolvability than CELL-E2. In particular, the MSF-resolvability for the orig-
inal HPA and OpenCell data are 640 nm and 426 nm, respectively. The results from CELL-Diff
are approaching the resolvability of the original training data, allowing us to discern finer details in
protein distribution such as various cytoplasmic organelles. Regarding the prediction accuracy met-
ric IoU, CELL-Diff and CELL-E2 achieve comparable performance when using only the nucleus
image as the conditional cell image, which can be greatly improved by incorporating additional cell
morphology images, such as those of the ER and microtubules. Regarding the learning-based metric
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Table 2: Ablation analysis of cross attention module on HPA dataset. The nucleus image is used as
the cell morphology image.

Method MSF-resolvability (nm) ↓ IoU ↑ FID-T ↓ FID-O ↓
w/o cross attention 648 0.431 33.4 40.1
w cross attention 646 0.448 35.9 31.9

Test 
sequences

Predicted 
images

Protein: BLVRA AVKRPAATKKA
GQAKKKKLD

IoO

PAAKRVKLD KLKIKRPVK

1.12 4.25 3.0 4.33

DKERWEDVKEEM
TSALATMRVDYE

0.615 0.818

ESFDIDDLCSK
LKNKAKCS

IDMLIDLGLDLSD

0.778

Figure 5: Protein localization signal screening. Test sequences are tagged to the C-terminus of the
protein BLVRA. The ratio ”IoO” represents the median protein intensity inside the nucleus relative
to that outside the nucleus.

FID, CELL-Diff significantly outperforms CELL-E2, further demonstrating the superiority of the
proposed method. Visual results are illustrated in Figure 4. From the figure, we find that CELL-
Diff accurately predicts protein images from unseen protein sequences. Compared with CELL-E2,
CELL-Diff generates more resolvable images, enabling the extraction of more detailed information
from the generated images. More results are provided in Appendix B.

6 DISCUSSIONS

6.1 ABLATION ON CROSS ATTENTION MODULE

We employ the cross-attention mechanism to more effectively integrate information from sequences
to images. To evaluate its efficiency, we conduct an ablation analysis of this module on the HPA
dataset, see Table 2. The results show that incorporating this module improves most of the quantita-
tive metrics, demonstrating the effectiveness of the cross-attention mechanism.

6.2 POTENTIAL APPLICATIONS

In this section, we present three potential applications of the proposed CELL-Diff method for biolog-
ical discovery. Given that validation relies on biological knowledge and the dataset size is limited,
we retrain all models using all the protein sequences from both the HPA and OpenCell datasets.

Virtual screening of protein localization signal. CELL-Diff can be applied for the virtual screen-
ing of protein localization signals, such as Nuclear Localization Signals (NLS) and Nuclear Export
Signals (NES). The NLS is a short amino acid sequence that directs the import of proteins into the
nucleus, while the NES facilitates their export from the nucleus. In this approach, the test peptide se-
quence is tagged to the C-terminus of the protein BLVRA, which is uniformly distributed both inside
and outside the nucleus, see the first column of Figure 5. CELL-Diff is then employed to predict
the images of the modified protein. The resulting predicted images are analyzed to identify potential
localization signals. As illustrated in Figure 5, we compute the median fluorescence intensity inside
the nucleus relative to that outside the nucleus, referred to as the IoO ratio. For the original BLVRA
protein, the IoO ratio is 1.12. If the IoO ratio of the modified protein exceeds 1.12, the test sequence
is likely to function as an NLS, conversely, if the ratio is lower, the sequence is more likely to act as
an NES. In Figure 5, we tested known three NLSs and three NESs from the literature. CELL-Diff

9
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Protein: KIF18A

Nucleus

Microtubules

ER

      Cell 
morphology
     images

Protein: EML4Protein: TUBB4A Protein: TUBA1A

Red:      TUBA1A
Green:  KIF18A
Blue:     EML4

Overlaid image

Figure 6: Virtual staining using HPA data. From identical cell morphology images, CELL-Diff
generates staining results for various proteins.

successfully recognized these signals, proving its capability as a computational tool for screening
potential protein localization signals.

Virtual staining. Typical fluorescence microscopes can only fit no more than four color channels in
the visible spectrum. Because of this physical limitation, both HPA and OpenCell acquire the images
of only one protein of interest per sample, with the other color channels occupied by morphological
reference images. Consequently, it is challenging to identify the intracellular spatial relationships
among multiple proteins of interest because their images are from different cells. With CELL-Diff,
we solve this problem by generating images of these proteins conditioned on the same morphology
reference images. These virtual staining images allow the subcellular distributions of an arbitrary
number of proteins to be directly compared and potential molecular interactions identified from
colocalization, while entirely circumventing the color channel limitation of fluorescence microscopy
experiments. We demonstrate that from cell morphology images not in the training data set, CELL-
Diff can accurately simulate the imaging results for target protein sequences, see Appendix C. We
further demonstrate the use of CELL-Diff to identify molecular interaction by virtually staining two
microtubule components (TUBA1A and TUBB4A) and two other proteins, KIF18A and EML4,
from the same morphology image. The overlaid image clearly shows the association of KIF18A and
EML4 with microtubules in the cell, consistent with their known biological function of microtubule
binding, see Figure 6.

Localization signal generation. Utilizing image-to-sequence generation, CELL-Diff can be applied
to generate novel protein localization signals, such as NLS and NES. Given a cell morphology
image and a corresponding protein image, CELL-Diff generates the protein sequences that should be
located at the position indicated by the protein image. We started from the Green Fluorescent Protein
(GFP) which has no sequence homology with any human proteins and does not contain localization
signals by itself (Köhler et al., 1997; Seibel et al., 2007; Kitamura et al., 2015). Conditioned on
an image of either a nucleus-localized protein or a nucleus-excluded protein, we used CELL-Diff
to append a short peptide either on the N- or C-terminus of GFP. In this way, we generated 200
potential NLS and NES sequences, see Appendix D.

7 CONCLUSION

This paper proposes CELL-Diff, a unified diffusion model that facilitates the transformation between
protein sequences and microscopy images. Given cell morphology images as conditional inputs,
CELL-Diff generates protein images from protein sequences. Conversely, it can generate protein
sequences based on microscopy images. The objective function of CELL-Diff is constructed by in-
tegrating continuous and discrete diffusion models. Experimental results on the HPA and OpenCell
datasets demonstrate that CELL-Diff produces accurate protein images with higher resolvability
than previous methods. Potential applications, including virtual screening of protein localization
signals, virtual staining, and protein localization signal generation, make CELL-Diff a valuable tool
for investigating subcellular protein localization and interactions.
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Ehrler, Benedikt Hufnagel, Jasmin Büchner, Julian A Marschner, Jörg Pabel, et al. Automated
design of multi-target ligands by generative deep learning. Nature Communications, 15(1):7946,
2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
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A IMPLEMENTATION OF DISCRETE DIFFUSION MODEL

The training and sampling process of the discrete diffusion model OA-ARDM (Hoogeboom et al.,
2022) can be facilitated through a masking operation. Denote C as the categorical distribution, the
training and sampling algorithms are shown in Algorithm 1 and Algorithm 2, respectively. For each
training iteration, we first sample a time step t from U(1, . . . , D), and a random ordering σ from
U(SD). Subsequently, we generate a mask m based on the index i such that σ(i) < t. We then
apply the network fθ, which takes m⊙ S as input, and predicts the masked values (1−m)⊙ S.

Algorithm 1 Training OA-ARDM
Require: Network fθ, datapoint S.
Ensure: LOA-ARDM.

1: Sample t ∼ U(1, . . . , D), σ ∼ U(SD).
2: Compute m← (σ < t).
3: Compute l← −(1−m)⊙ log C(S|fθ(m⊙ S)).
4: LOA-ARDM ← 1

D−t+1 sum(l).

Algorithm 2 Sampling from OA-ARDM
Require: Network fθ.
Ensure: Sample S.

1: Initialize S = 0, sample σ ∼ U(SD).
2: for t = 0, 1, 2, . . . , D do
3: m← (σ < t) and n← (σ = t).
4: S′ ∼ C(S|fθ(m⊙ S)).
5: S← (1− n)⊙ S+ n⊙ S.
6: end for

B PROTEIN IMAGE GENERATION

We present more protein image generation results. The results on the HPA and OpenCell datasets
are shown in Figure 7 and Figure 8, respectively. From these results, we observe that CELL-Diff
is capable of generating realistic protein images with high accuracy, enabling the discernment of
fine details. Compared to CELL-E2, CELL-Diff produces images with higher resolvability, which
provides better clarity of detailed localization structures.

C VIRTUAL STAINING RESULTS

Here, we present additional virtual staining results. Figure 9 shows virtual staining using data from
the HPA dataset, and Figure 10 shows results using data from the OpenCell dataset. These results
demonstrate that CELL-Diff generates accurate staining images compared to real ones, offering an
efficient approach for simultaneous visualization of multiple biological features within the same
sample.

D LOCALIZATION SIGNAL GENERATION

We use CELL-Diff to generate protein localization signals. Specifically, we select the images in Fig-
ure 11 as the conditional input for generating NLS and NES signals. Using the CELL-Diff model,
we generate short amino acid sequences positioned at the N-terminus (before the GFP sequence)
and the C-terminus (after the GFP sequence). A total of 100 potential sequences are generated for
each signal type, consisting of 50 N-terminus and 50 C-terminus sequences. Generated NLS and
NES sequences are summarized in Table 3 and Table 4, respectively.
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Figure 7: Visual results of protein image generation on HPA dataset.
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Figure 8: Visual results of protein image generation on OpenCell dataset.
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Figure 9: Virtual staining using HPA dataset.
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Figure 10: Virtual staining using OpenCell dataset.
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Table 3: Generated NLS sequences.
Index N-terminus C-terminus

1 AKSEK PSPFVM
2 KKVES LVTLAERP
3 KNPTDS LVKLAERD
4 ENFTAS LPALAERR
5 ENPTAR GVKLAERD
6 ANLTAS PVKLAERK
7 ENRTAR FIGVFPGGFIF
8 ENRTDS PIAFDRMKFIL
9 KNRTAL AVPVEEGDEKFQE

10 ENGGAS AKGQLEGDLKFEE
11 SDNSSAGF KKKVLKGDLKFEK
12 SDIERIAEK LRPVAEGGEKFEE
13 KKKERIEQF RTFLRPPKVKMEQRE
14 KSCERQYLF RTFLRPPKVKMEERE
15 GDIDCSEKF RTFLRPGKVKMEQRE
16 SDRERITTH IEKIKRPRSLNAETKY
17 IIFDPGRQKRLKK IEKIKRPRSSNAETEY
18 ASFYETRYERLTN IEKIKRPRSSNAETVR
19 LAFIAGRGERKKK IEKIKRPRSSNAETWY
20 CIFDIRQKTRLIN IEKIKRPRSSNAETLY
21 SSLLKVDQEVKLKVDS IEKIKRPRSGNAETLY
22 SDLLKVDQEVKKKVDS IEKIKRPRSSNAETDY
23 SSLLKVDQEVKLKVDR IEKIKRPRSLNAETLY
24 SSLLKVDQEVELKVDS YAKEELEEEDESDDDNM
25 SSFEICRLVFLVFGMLCPA NVKYCRENPLEEPESPIAKTK
26 SKNDVIRLQRKRPGVSRDPEM NVRARIVNGLEVEENPSNKLE
27 PLIEVLREAVGRSGVRRDYYE KSRACVTNTPEGEASILNSLL
28 SKVNRVTTVRERKGVRYVSNE KVYACRPWKFEERESNLNKAE
29 IDVSVLDLNFGKTGVRYDYHI DKYACRDLNFRKEECRYNKTI
30 PLNNVQRLHVEERGHRLDYAN GKSACRYNKGDNLDIDNLVLE
31 GDLDVSYTFRERMDVRYDYEE GAYYCKSSKGGGKKCAGKKEKK
32 PLNERNEGQRGRPGVRIVYYY GKKYQVSSKGGGDKSALKVEKK
33 PDVNRIELGVLRDDVHLVYHE GKKLQVSNKHDGKKCALKKELK
34 PQNEYIEEHRKRYDLYLVYGEK GKYYRVSSNPEGKKCINKPLLK
35 PQNEYQEEVRGRTDLRLVYGER GVYYCVSNKPGGKKCAALKEKK
36 PQNELIEEVRKRYWYRLDLGVR GAKYQVTSSPEGKKCANHPLPK
37 PQNEYQEEVRGRYDLYLVKGEK GKKYQKSSSGGGDKCILLKEKK
38 PLNEYIELVFKRADYRRDLHEK EAYYQVSSKSEGKKCILLKEKV
39 GLLEYIEEVRGRADLYLVLHER GAKYQVSSKGENKKSINEKEKK
40 VLNEYEEEVRGTYDYRRVLHPK GAYYCVSSNPTGQKCINAVEKK
41 PQNELIEQVFGRYDYRLDYGEK QEEAPESELPPELKPKQEEEELQ
42 PLNEYIELHRKRYDYRFVYWLK EVKEDEPELKREEIEKATKELDS
43 GQNDYCELVRGSADFRRVLGVR YKEAEEYKLKYYLAPKHTEEIDS
44 PPATDSQKSIISPVINHYKFIYS RPQQKAQPAQPADEVAEKADEPMEH
45 PERPDESETNPSLVLRASSDELT RPQRKAQPAQPADGPAEKADEPMEH
46 RRNQYDNDVTVWSPQGRIHQIEYAM RPQRCAVPAQPADEPAEKADEPMEH
47 RRNQYENDVTVWSPQGRIHQIELAM RPQRKAQPAQPADEVAEKADEPMEH
48 RENQYDNDVVVWSPQGRIHQIEYAM RPQRKAQPAQPADEPAEKADEPMEH
49 ERNQYDNDVTVESPQGRIHQIRYAM RPQQKAQPAQPTDEVAEKADEPMEH
50 FRNQYDNDVTVWSPQGRIHQIEYAM RPQRKAQPAQPADERAEKADEPMEH
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Table 4: Generated NES sequences.
Index N-terminus C-terminus

1 VELDPFGAPA DKDEDEGFN
2 EELDPFGAPA ISDKQSMLVH
3 AELDPFGAPA ISLKQAPLVH
4 SSASDAMAKHE ISVKQAGLVH
5 ASASGAMAKHE IHFKQAPEVH
6 SIFTPTRQIRLT ISLCFSPLVH
7 VSWIISYLVVLIFG ISVKQAYGVH
8 VSWIISRLVLLIFS ISLQQAPEVH
9 VSWIISRLVVLIFG ISQKQAPEVH

10 GEFNEKITLCGTVCL LKDVLEGDEKFE
11 GNINEKKTTIGEVCV LKDVEEGDLKFE
12 GSINEKKTTCGTVCL TRPKKKTSGGTDSA
13 SPFNRKSTTCGTVCL TRPKKKTSGGGDSA
14 DSWEDLVDQVLGATKNE IFSKCLYRGHKLEHY
15 DDREDFVVLKLVANQAE IFTCCLYGSSKLEHY
16 DDGEDGDYQAKDAFSAE IFTCCLYRSAKLEHC
17 DDIEDLDYQALVAFQAE IFTCCLYRSLKLEHI
18 DDWEDIRVQRKLAGQLE IFTCALARSGKLEHY
19 DDREHTVYQASLAPMLE IFTACLYRSLKVEHK
20 DSRMDSGYDDLLAVQLE GEEQNLEALQDRIDENL
21 PSGRPEEAWEAVVGAAER GEEQNLIALQDVLDDNQ
22 PSGRPEELWEAVVGAAER GEEQNIEAVQDSFDENQ
23 ASGRPLELWEANVGAAER AEEQNKEAIQDVEDENQ
24 SSGRPEELWEAVVGAAER IPRPRSNTSDGQKLKGKT
25 ASGRSEELWEAVKGAAER LPRPRLNASDFQSLKSTY
26 PSGRPFELWEAKVGAAER LPRPRLNTSDFQELKPKA
27 ASGRPHELWEAVVGAAER LPRPRLNISDFQKLKLVY
28 ESGDPRELWEAVVGAAER LPRPRLNTSDFQLLKRKE
29 ESGRPPELWEAKVGAAEN LPRPRLNKSDFQSCKPKI
30 SSEENCRLVVLVFGMCCPA IPRPRLNASDFQSLKKGY
31 SSEMILRLVVLVTGMSCPA LPRPRTCISDFQKFKEKV
32 HRRGVARGAIAKKKLAELKY IPRPRLNTSDFQKLKRKG
33 HLRGVGAGAIAKKKLIEAKY IPRPRLNTSEFQELYMKE
34 VTRGVGRGAIADKKLAEAKY LFTDDYSQEITAEHYREALK
35 HRRGVRMGAIAKKKLAEAKY LFTDLYSQKITAEEARELLK
36 HRRGVNMGAIAKKKLAEAKY LFTDLVSQAITAEEARDDLP
37 HRRGVGKGAIAKKKLAEAKY LFTDLYSQEITAEEPREAAP
38 HSRCVGGGAIADKALAEDKY LFTDLYSQEITAEEARELLN
39 HLREVLGGAIAKKKLAEAKY LFTDLYSNCITFEEYREDLP
40 HEREVGLGAIAKKKLAEAKY LFTDLYSQEIGDEEYREALP
41 HFREVGAGAIAKKKLAELKY LFYDLYSQEITKEEPREALK
42 ALAKLLLESNIRLWVNRPSIIIT LFTDLYSQEITKEEPREALK
43 ALPRNLLKSSIVPWVNISSVIQT LFTDLYSQPITDEEPREALK
44 ALEEALLFSSLVSWNVYPIVIQK NKPMAKDKEGFTMYKYILQHKIQ
45 AVDKNGLNGNIREVNVIPIIIIT NLLMPTDLAKIGPHWRSLDTSSS
46 SGPKDMLELGGVIWNNRSQNLYS EAIMLISIDEGNEFKAELNGKTV
47 AGPKNLLELGIVLVVRLYKFILS MSGAPDTLGQGGGGGGGGGPGSGR
48 ALNEGLLEGLGQLVVQTVSNIYK MSGAPDTLGQGGGGGGGGGGGSGR
49 AAASAGATRALLLLLMAVAAPSRA MSGAPDTGSQGGGGGGIGGYGSGR
50 AAASAGATRWLLLLLMAVAAPSRA MSGAPDTLGQGGGGGGGGGTGSGR
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Conditional image for generating NLS Conditional image for generating NES

Figure 11: Conditional images for protein localization signal generation.

21


	Introduction
	Related works
	Technical background
	Diffusion model for continuous state spaces
	Diffusion model for discrete state spaces

	Methodology
	Proposed method
	Model details

	Experiments
	Datasets
	Implementation details
	Protein image generation

	Discussions
	Ablation on cross attention module
	Potential applications

	Conclusion
	Implementation of Discrete Diffusion Model
	Protein image generation
	Virtual staining results
	Localization signal generation

