
Published as a conference paper at ICLR 2024

A THEOREMS

A.1 PROOF OF THEOREM 3.3

Proof. The proof is by induction on the number n of variables in Π. We recall that {x1, . . . , xD} is
the set of variables and that we assumed, w.l.o.g., λ(xi) = i.

For the base case n = 0, Π does not contain variables and, since Π is satisable, for each constraint


k wkxk + b⊵ 0 in Π, (i) each wk = 0, (ii) b⊵ 0, and (iii) each sample satises Π.

Assume that n > 1 variables appear in Π. Let xk be the variable with the highest λ(xk) value
occurring in Π.

Then, xD, xD−1, . . . , xk+1 do not occur in Π, ΠD = ΠD−1 = . . . = Πk = Π, and

Πk−1 = Πk \ (Π−
k ∪ Π

+
k) ∪ {redk(ϕ

1,ϕ2) | ϕ1 ∈ Π
−
k ,ϕ

2 ∈ Π
+
k }. (5)

Consider an arbitrary sample x̃.

In Πk−1, by construction, less than n variables appear. Thus, for the inductive hypothesis, assume
CL(x̃) satises Πk−1. Proving that CL(x̃) satises Πk is equivalent to proving that CL(x̃) satises
both Π

+
k and Π

−
k , since we know from eq. (5) that Πk ⊆ Πk−1 ∪ Π

−
k ∪ Π

+
k .

The proof is in two steps. We rst prove by contradiction that either (i) lbk < ubk or (ii) lbk = ubk

and there exist two constraints ϕ1 ∈ Π
−
k and ϕ2 ∈ Π

+
k such that: ubk = ε

ϕ1

k (CL(x̃)) and lbk =

ε
ϕ2

k (CL(x̃)), and both ϕ1 and ϕ2 are not strict inequalities. Then, in the second step, we prove that

CL(x̃) satises each constraint ϕ ∈ Π
+
k ∪ Π

−
k .

First step.Assume that either (i) lbk > ubk or (ii) lbk = ubk and at least one between ϕ
1 and ϕ2 is a

strict inequality. If lbk > ubk or lbk = ubk, then lbk ̸= −∞ and ubk ̸= +∞ and thus both Π
−
k and

Π
+
k are not empty. Let ϕ1 (resp. ϕ2) be the constraint in Π−

k (resp. Π+
k) such that ubk = ε

ϕ1

k (CL(x̃))

(resp. lbk = ε
ϕ2

k (CL(x̃))). Such constraints ϕ1 and ϕ2 exist since Π is nite. Then, by denition,

redk(ϕ
1,ϕ2) is equivalent to ε

ϕ1

k − ε
ϕ2

k ≥ 0 if both ϕ1 and ϕ2 are non-strict inequalities, and to

ε
ϕ1

k − ε
ϕ2

k > 0 if at least one between ϕ1 and ϕ2 is a strict inequality.

We know that redk(ϕ
1,ϕ2) ∈ Πk−1 and that, by the inductive hypothesis, CL(x̃) satises Πk−1.

Thus, CL(x̃) satises redk(ϕ
1,ϕ2), which (taken together with the denition of redk(ϕ

1,ϕ2) above)

implies that ε
ϕ1

k (CL(x̃)) − ε
ϕ2

k (CL(x̃)) ≥ 0 if both ϕ1 and ϕ2 are non-strict inequalities, and that

ε
ϕ1

k (CL(x̃))− ε
ϕ2

k (CL(x̃)) > 0 if at least one between ϕ1 and ϕ2 is a strict inequality. However, by

our assumption, ubk = ε
ϕ1

k (CL(x̃)) and lbk = ε
ϕ2

k (CL(x̃)). Thus, we have that ubk ≥ lbk if both

ϕ1 and ϕ2 are non-strict inequalities, and that ubk > lbk if at least one between ϕ1 and ϕ2 is a strict
inequality, deriving a contradiction.

Second step.We now prove that CL(x̃) satises each constraint ϕ ∈ Π
+
k . The statement holds since

1. if ϕ is a non-strict inequality, by denition, we have that CL(x̃)k ≥ lbk ≥ ε
ϕ
k(CL(x̃)), and

2. if ϕ is a strict inequality, we have two cases. In the rst one, lbk = ε
ϕ
k(CL(x̃)) and, since

lbk < ubk, it is possible to choose an ϵ > 0 such that CL(x̃)k = lbk + ϵ < ubk, and thus

CL(x̃)k > lbk = ε
ϕ
k(CL(x̃)). In the second case, lbk > ε

ϕ
k(CL(x̃)) and then CL(x̃)k ≥

lbk > ε
ϕ
k(CL(x̃)).

Analogously, CL(x̃) satises each constraint ϕ ∈ Π
−
k .

14

Published as a conference paper at ICLR 2024

A.2 PROOF OF THEOREM 3.5

Let x̃ be a sample satisfying the constraint in Π. We recall that, w.l.o.g., we assume λ(xi) = i. We
will prove by contradiction that if x̃ satises Π, then CL(x̃) = x̃.

Assume CL(x̃) ̸= x̃. Let i be the lowest index such that CL(x̃)i ̸= x̃i. Then, CL(x̃)i =
mini(maxi(x̃i, lbi), ubi) ̸= x̃i, and thus either x̃i < lbi or x̃i > ubi, both cases being impossi-
ble given

1. the denitions of lbi and ubi,

2. the hypothesis that x̃ satises the constraints in Π, and

3. the fact that all the constraints in Π
−
i ∪ Π

+
i are entailed by Π and thus satised by x̃.

A.3 PROOF OF THEOREM 3.6

We prove the two statements of the theorem in separate lemmas, after a rst introductory lemma.

Lemma A.1. In the hypotheses of Theorem 3.6, CL≥(x̃) is optimal with respect to Π
≥.

Proof. Let x̃ be a sample. We recall that, w.l.o.g., we assume λ(xi) = i.

We show that for every i = 1, . . . , D, there does not exist another sample x̃′ satisfying Π≥ such that

for each 1 ≤ j < i, x̃′
j = CL≥(x̃)j and |x̃

′
i − x̃i| < |CL≥(x̃)i − x̃i|. The proof is by induction on i.

For the base case (i = 1), we know that in Π
≥
1 the only variable that can appear is x1, thus we have

four cases:

1. Π
≥
1 is either empty or contains a constraint c ≥ 0 which is always satised since Π (and

thus Π≥) is satisable. In this case, CL≥(x̃)1 = x̃1 and the statement trivially holds;

2. Π
≥
1 is equivalent to a single constraint {x1 + a ≥ 0} in which case if x̃1 ≥ −a then

CL≥(x̃)1 = x̃1 otherwise CL
≥(x̃)1 = −a and the statement trivially holds;

3. Π
≥
1 is equivalent to a single constraint {−x1 + b ≥ 0} in which case if x̃1 ≤ b then

CL≥(x̃)1 = x̃1 otherwise CL
≥(x̃)1 = b and the statement trivially holds;

4. Π
≥
1 is equivalent to a pair of constraints {x1+ a ≥ 0,−x1+ b ≥ 0}. Since Π is satisable,

a + b ≥ 0. Then, if x̃1 < −a then CL≥(x̃)1 = −a, if −a ≤ x̃1 ≤ b then CL≥(x̃)1 = x̃1,

and if x̃1 > b then CL≥(x̃)1 = b. For each of the three cases, the statement trivially holds.

Assume i = j + 1 > 1. Assume by contradiction that there exists another sample x̃′ satisfying Π
≥

such that for each 1 ≤ j < i, x̃′
j = CL≥(x̃)j and |x̃′

i − x̃i| < |CL≥(x̃)i − x̃i|. By construction of

Π
≥
i , we know that only x1, . . . , xi appear in Π

≥
i . If we substitute each variable xj with j < i with

CL≥(x̃)j in Π
≥
i , then (i) in the resulting set of constraints the only variable is xi, (ii) we are back to

the base case, and (iii) the statement follows.

Lemma A.2. In the hypotheses of Theorem 3.6, CL(x̃) is optimal if CL(x̃) = CL≥(x̃).

Proof. The proof is a direct consequence of the facts that (i) CL(x̃) satises the constraints in Π,

(ii) CL(x̃) = CL≥(x̃), (iii) CL≥(x̃) is optimal wrt Π≥ (from Lemma A.1), and (iv) the samples
satisfying Π are a subset of the samples satisfying Π

≥.

Lemma A.3. In the hypotheses of Theorem 3.6, CL(x̃) tends to CL≥(x̃) as the ϵ values used to
compute CL(x̃) tend to 0.

15

Published as a conference paper at ICLR 2024

Proof. Let ϵ1, . . . , ϵk (k ≥ 0) be the ϵ values (assumed, w.l.o.g., to be distinct) in CL(x̃). If k = 0

then CL(x̃) = CL≥(x̃), and the statement trivially holds.

Consider CL(x̃)i, i = 1, . . . , D, and substitute ϵj with a newly introduced variable vj . CL(x̃)i is a
composition of continuous functions in the newly introduced variables and, thus, it is continuous.
For an arbitrary continuous function f : Rk → R we know that limx→x0

f(x) = f(x0). Thus,

lim
[v1,...,vk]→[0,...,0]

CL(x̃)i = CL≥(x̃)i,

and hence

lim
[v1,...,vk]→[0,...,0]

CL(x̃) = CL≥(x̃).

B EXPERIMENTAL ANALYSIS SETTINGS

B.1 MODELS

In our experimental analysis, we use ve base models:

• WGAN (Arjovsky et al., 2017) is a GAN model trained with Wasserstein loss in a typical
generator discriminator GAN-based architecture. In our implementation, WGAN uses a
MinMax transformer for the continuous features and one-hot encoding for categorical ones.
It has not been designed specically for tabular data.

• TableGAN (Park et al., 2018) is among the rst GAN-based approaches proposed for tab-
ular data generation. In addition to the typical generator and discriminator architecture for
GANs, the authors proposed adding a classier trained to learn the relationship between
the labels and the other features. The classier ensures a higher number of semantically
correct produced records. TableGAN uses a MinMax transformer for the features.

• CTGAN (Xu et al., 2019) uses a conditional generator and training-by-sampling strategy in
a generator-discriminator GAN architecture to model tabular data. The conditional gener-
ator generates synthetic rows conditioned on one of the discrete columns. The training-by-
sampling ensures that the data are sampled according to the log-frequency of each category.
Both help to better model the imbalanced categorical columns. CTGAN transforms discrete
features using one-hot encoding and a mode-based normalization for continuous features.
A variational Gaussian mixture model (Camino et al., 2018) is used to estimate the num-
ber of modes and t a Gaussian mixture. For each continuous value, a mode is sampled
based on probability densities, and its mean and standard deviation are used to normalize
the value.

• TVAE (Xu et al., 2019) was proposed as a variation of the standard Variational AutoEn-
coder to handle tabular data. It uses the same transformations of data as CTGAN and trains
the encoder-decoder architecture using evidence lower-bound (ELBO) loss.

• GOGGLE (Liu et al., 2022) is a graph-based approach to learning the relational struc-
ture of the data as well as functional relationships (dependencies between features). The
relational structure of the data is learned by building a graph where nodes are variables
and edges indicate dependencies between them. The functional dependencies are learned
through a message passing neural network (MPNN). The generative model generates each
variable considering its surrounding neighborhood.

B.2 DATASETS

We use 6 real-world datasets covering both classication and regression tasks. An overview of these
datasets’ statistics can be found in Table 5. For the selection, we focused on datasets with at least
three feature relationship constraints that either were provided with the description of the datasets or
we could derive with our domain expertise. The selected datasets are listed below:

16

Published as a conference paper at ICLR 2024

Table 5: Datasets statistics.

Dataset # Train # Val # Test # Features # Cat. # Cont. Task (# classes)

URL 7K 2K 2K 64 20 44 Binary classication
WiDS 22K 6K 7K 109 9 100 Binary classication
LCLD 494K 199K 431K 29 8 21 Binary classication
Heloc 8K 2K 0.2K 24 8 16 Binary classication
FSP 2K 0.2K 0.2K 28 0 28 Multi-class class. (7)
News 31K 7K 1K 60 14 46 Regression

• URL3 (Hannousse & Yahiouche, 2021) is used to perform webpage phishing detection with
features describing statistical properties of the URL itself as well as the content of the page.

• WiDS4 is used to predict if a patient is diagnosed with a particular type of diabetes named
Diabetes Mellitus, using data from the rst 24 hours of intensive care.

• LCLD5 is used to predict whether the debt lent is unlikely to be collected. In particular, we
use the feature-engineered dataset from Simonetto et al. (2022), inspired from the Lend-
ingClub loan data. The dataset captures features related to the loan as well as client history.

• FICO’s Home Equity Line of Credit dataset (Heloc6) from the FICO xML Challenge is
used to predict whether customers will repay their credit lines within 2 years. Similarly to
LCLD, the dataset has features related to the credit line and the client’s history.

• FSP7(Buscema, 1998) is used to predict 7 types of surface defects in stainless steel plates.
The features approximately capture the geometric shape of the defect and its outline.

• News8 (Fernandes et al., 2015) is used to predict the number of times a news article will
be shared on social networks. The features capture properties of the text, as well as the
publishing time.

For URL,WiDS, and LCLD, we used the train-val-test splits provided by Simonetto et al. (2022). For
Heloc we used the train-test split of 80-20 and 20% of the training set was later split for validation.
Finally, for FSP and News we split the data into 80-10-10% sets, and for the former (which is a
multiclass classication dataset) we preserved the class imbalance.

B.3 CONSTRAINTS DATASHEET

Here we give an overview of the structure of our constraints. To this end, we dene F to be the
number of features appearing in at least one constraint, and we remind thatD is the total number of
features. Then, given a constraint ϕ, we dene F+

ϕ (resp. F−
ϕ) to be the number of features appearing

positively (resp. negatively) in ϕ, and Fϕ = F+
ϕ + F−

ϕ to be the number of features appearing in ϕ.

As we can see from Table 6, the constraints characteristics greatly vary from one dataset to the other.
Indeed, we can have from 4 to 31 constraints annotated for each dataset, with as little as 15% of the
variables appearing in at least a constraint in News to as much as 56.88% in WiDS. Further, we
can see that for almost all datasets, the average number of features appearing per constraint is 2.00,
except for URL, which has a constraint where as many as 17 different features appear, and LCLD
where we have 2 constraints where a single variable appears.

B.4 EVALUATION PROTOCOL

For evaluating the utility of the DGM/C-DGM models presented in our paper, we followed closely
the protocol from Kim et al. (2023) which we also reproduce here.

3Link to dataset: https://data.mendeley.com/datasets/c2gw7fy2j4/2
4Link to dataset: https://www.kaggle.com/competitions/widsdatathon2021
5Link to dataset: https://gshare.com/s/84ae808ce6999fafd192
6Link to the dataset: https://huggingface.co/datasets/mstz/heloc
7Link to dataset: https://www.kaggle.com/datasets/uciml/faulty-steel-plates
8Link to dataset: https://archive.ics.uci.edu/dataset/332/online+news+popularity

17

Published as a conference paper at ICLR 2024

Table 6: Constraints statistics.

Dataset # Constr. F / D Avg. Fϕ Avg. F+
ϕ Avg. F−

ϕ

URL 8 24 / 64 4.25 1.00 3.25
WiDS 31 62 / 109 2.00 1.00 1.00
LCLD 4 5 / 29 1.50 0.75 0.75
Heloc 7 10 / 24 2.00 1.00 1.00
FSP 4 7 / 28 2.00 1.00 1.00
News 5 9 / 60 2.00 1.00 1.00

1. First, we generate a synthetic dataset, split into training, validation and test partitions using
the same proportions as the real dataset.

2. Then, we perform a hyperparameter search using the synthetic training data partition to
train different classiers/regressors.

For the binary classication datasets (i.e., URL,WiDS, LCLD, and Heloc) we use: Decision
Tree (Wu et al., 2008), AdaBoost (Schapire, 2013), Multi-layer Perceptron (MLP) (Haykin,
1994), Random Forest (Ho, 1995), XGBoost (Chen & Guestrin, 2016), and Logistic Re-
gression (Cox, 1958) classiers. For multi-class classication datasets, (i.e., FSP) we use
Decision Tree, MLP, Random Forest, and XGBoost classiers. For the regression dataset,
(i.e., News) we use MLP, XGBoost, and Random Forest regressors and linear regression.
For all the classiers and regressors above, we considered the same hyperparameter set-
tings as those from Table 26 of (Kim et al., 2023) and picked the best hyperparameter
conguration using the real validation set according to the F1-score.

3. Finally, we tested the selected best models on the real test set and averaged the results
across all the classiers/regressors to get performance measurements for the DGM/C-DGM
predictions according to three different metrics: F1-score, weighted F1-score, and Area
Under the ROC Curve.

The above procedure was repeated 5 times for each DGM/C-DGM model, and the results were
averaged separately for each of the metrics.

For evaluating the DGM/C-DGM models in terms of detection, we slightly adapted the procedure
presented by Kim et al. (2023). We rst created the training, validation, and test sets by concatenating
real and synthetic data, including their targets as usual features, and adding a new target column that
species whether the data is real or not. By construction, these datasets are binary classication
datasets and, thus, are suitable for the hyperparameter search procedure presented in Kim et al.
(2023) using the 6 different binary classiers mentioned above. We proceeded to pick the best model
using the newly-created validation set, and then we obtained the nal detection performance on the
newly-created test data (which combines the real and the synthetic data).

B.5 HYPERPARAMETER SEARCH

Prior to experimenting with our C-DGMmethods, we conducted an extensive hyperparameter search
to reveal the best congurations. We always chose the best settings according to the utility perfor-
mance measured either by the average over the F1-score, weighted F1-score, and Area Under the
ROC Curve for the binary and multi-class classication datasets or by the Mean Absolute Error for
the regression dataset.

Initial phase. For GOGGLE, we used the same optimiser and learning rate set as Liu et al. (2022).
Specically, we used Adam (Kingma & Ba, 2015) with a set of 5 different learning rates: {1 ×
10−3, 5 × 10−3, 1 × 10−2}. For TVAE, we used Adam with a set of 5 different learning rates:
{5× 10−6, 1× 10−5, 1× 10−4, 2× 10−4, 1× 10−3}. And for each of the other DGM models, we
used three different optimizers, Adam, RMSProp (Hinton, 2014), SGD (Ruder, 2016), each with a
different set of learning rates:

• for WGAN {1×10−4, 1×10−3}, {5×10−5, 1×10−4, 1×10−3}, and {1×10−4, 1×10−3},
respectively.

18

Published as a conference paper at ICLR 2024

• for TableGAN, {5×10−5, 1×10−4, 2×10−4, 1×10−3}, {1×10−4, 2×10−4, 1×10−3}
and {1× 10−4, 1× 10−3}, respectively.

• for CTGAN, {5× 10−5, 1× 10−4, 2× 10−4}, {1× 10−4, 2× 10−4, 1× 10−3} and {1×
10−4, 1× 10−3}, respectively.

Then, for each of the above optimizer-learning rate pairs, we tested three different batch sizes,
depending on the DGM model: {64, 128, 256} for WGAN, {128, 256, 512} for TableGAN,
{70, 280, 500} for CTGAN and TVAE, and {64, 128} for GOGGLE. The batch sizes for CTGAN
are multiples of 10, to allow for using the CTGAN’s recommended PAC (Lin et al., 2018) value of
10, among other values.

Further search. The initial phase of hyperparameter search allowed us to narrow down the space
of congurations and focus on further investigating the most promising one. For the second phase,
we varied the following parameters for each DGM, keeping xed the rest from the best model of the
initial phase:

• for WGAN we varied initially PAC values to 4, 8, and 16 and then discriminator iterations
to 1,2, and 10.

• for TableGAN we varied separately i) generator layers dimensions to 128 from 100 initially
and ii) embedding dimensions by doubling the value.

• for CTGAN we varied the value of PAC within {1, 5, 15}.

• for TVAE we varied the multiplier of the loss within {1, 2, 3, 4}.

The best hyperparameters settings are presented in Table 7. We used these congurations for the
experiments presented in our paper. The same hyperparameters were then used for C-DGMs. Fur-
thermore, for C-DGMs we reported the variable ordering hyperparameter that needs to be given to
our CL. We give a full description of the orderings and of the impact they have on the performance
in Appendix C.3.

C RESULTS

C.1 BACKGROUND KNOWLEDGE ALIGNMENT

Besides constraints violation rate (CVR) presented in the main text, we measure two additional
metrics: (i) constraints violation coverage (CVC), which, given a set of samples S and Π, represents
the percentage of constraints in Π that have been violated at least once by any of the samples in S ,
and (ii) samplewise constraints violation coverage (sCVC), which represents the average over the
samples in S of the percentage of the constraints violated by each sample.

Table 8 shows that for 5 out of 6 datasets, all the samples generated by unconstrained DGMs violate
at least 50% of the constraints, with CVC reaching up to 100% for WiDS, FSPand News. This entails
that the models actually struggle with the majority of the constraints specied, and that the problem
cannot be solved by just xing a very small subset of the available constraints. Meanwhile, all our
C-DGMs guarantee that not a single constraint is violated by any of the samples.

Regarding sCVC, the results in Table 9 show that for all models and datasets, on average each
sample can violate up to 29.8% of the constraints. As a reminder, even a single constraint violated
indicates an unfeasible example in a real setting. The unconstrained DGM models learn different
representations that produce different rankings for sCVC. For example, WGAN violates on average
the most constraints per samples in LCLD. But, for TableGAN, CTGAN, TVAE and GOGGLE,
LCLD is among the datasets with the lowest sCVC. Again, all our C-DGMs ensure that sCVC is
0.0, meaning not a single constraint is violated for all the samples.

We complement our quantitative analysis of background knowledge alignment for the generated
synthetic samples with some visualizations. In particular, we consider three different constraints
where only two variables appear, and then for each one of them, we create four two-dimensional
scatter plots with the variables appearing in the constraint on the axes. The rst scatter plot represents
the real data, while the other three represent the samples generated by each of the DGMs and the
C-DGMs. We now consider them one by one.

19

Published as a conference paper at ICLR 2024

Table 7: Best hyperparameter settings used for DGMs/C-DGMs in our experiments.

Model/Dataset Hyperparameter URL WiDS LCLD Heloc FSP News

WGAN

Batch size 64 128 128 64 128 128
Optimiser Adam RMSProp SGD Adam RMSProp RMSProp
Learning rate 0.0001 0.001 0.001 0.0001 0.001 0.001
Epochs 300 80 30 200 20 50
Discriminator iters 10 10 5 10 10 10
Ordering Rnd KDE KDE KDE KDE KDE

TableGAN

Batch size 128 128 128 128 128 128
Optimiser Adam RMSProp Adam Adam Adam RMSProp
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Epochs 300 50 25 200 200 50
Ordering Corr Corr KDE Corr KDE KDE

CTGAN

Batch size 500 500 500 500 500 500
Optimiser Adam RMSProp Adam Adam Adam Adam
Learning rate 0.0002 0.0005 0.0002 0.0002 0.0002 0.0002
Epochs 150 50 20 500 300 100
Ordering KDE Corr Rnd Corr Corr Corr

TVAE

Batch size 70 70 500 500 70 70
Optimiser Adam Adam Adam Adam Adam Adam
Learning rate 0.0002 0.000005 0.00001 0.000005 0.00001 0.00001
Epochs 150 50 40 150 500 50
Loss factor 2 2 4 2 1 3
Ordering KDE KDE Corr Corr Corr Corr

GOGGLE

Batch size 128 128 128 64 128 64
Optimiser Adam Adam Adam Adam Adam Adam
Learning rate 0.005 0.01 0.001 0.001 0.005 0.001
Epochs 1000 200 200 1000 1000 250
Patience 50 50 50 50 50 50
Ordering Random Corr Corr Random Corr KDE

Table 8: Constraints violation coverage (CVC) for all datasets and models under study.

Model/Dataset URL WIDS LCLD HELOC Faults News

WGAN 11.1 ± 1.6 100.0 ± 0.0 75.0 ± 0.0 100.0 ± 0 75.0 ± 0.0 84.8 ± 8.7
TableGAN 24.5 ± 3.7 100.0 ± 0.0 50.0 ± 0.0 100.0 ± 0 75.0 ± 0.0 100.0 ± 0.0
CTGAN 16.5 ± 3.8 100.0 ± 0.0 50.0 ± 0.0 99.4 ± 1.3 75.0 ± 0.0 100.0 ± 0.0
TVAE 12.5 ± 0.0 100 ± 0.0 50.0 ± 0.0 100.0 ± 0.0 75.0 ± 0.0 100.0 ± 0.0
GOGGLE 17.5 ± 6.9 99.2 ± 1.7 50.0 ± 0.0 100.0 ± 0.0 75.0 ± 0.0 100.0 ± 0.0

All C-models 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

1. In Figure 4, we consider again the constraint MaxHemoglobinLevel − MinHemoglobinLevel
≥ 0 appearing in WiDS dataset from Section 4.2 in the main text. We visualize the outputs for
the remaining models WGAN, CTGAN, TVAE and GOGGLE and their constrained counterparts
C-WGAN, C-CTGAN, C-TVAE and C-GOGGLE.

2. In Figure 5, we illustrate the behavior of the real and synthetic samples with respect to a constraint
from the Heloc dataset which requires that the number of trades that have been insolvent for
60 days must be greater than the number of trades that have been insolvent for 90 days, i.e.,
NumInsolventTradesGreaterThan60Days ≥ NumInsolventTradesGreaterThan90Days.

3. In Figure 6, we illustrate the behavior of the real and synthetic samples with respect to a con-
straint from the FSP dataset that requires X Maximum ≥ X minimum, where X minimum and
X maximum refer to the value for the X coordinate in images captured of steel plates.

20

Published as a conference paper at ICLR 2024

Table 9: Samplewise constraints violation coverage (sCVC) for all models and datasets under study.

Model/Dataset URL WIDS LCLD HELOC Faults News

WGAN 1.4 ± 0.2 21.2 ± 1.3 29.8 ± 0.2 10.5 ± 2.5 23.3 ± 4.3 12.1 ± 2.4
TableGAN 0.6 ± 0.2 14.4 ± 2.8 1.5 ± 0.2 9.0 ± 3.3 22.9 ± 3.2 24.1 ± 3.3
CTGAN 0.4 ± 0.3 21.6 ± 0.5 3.0 ± 0.7 7.6 ± 0.3 24.4 ± 2.4 15.8 ± 3.9
TVAE 0.4 ± 0.1 21.0 ± 0.2 1.0 ± 0.1 9.4 ± 0.2 21.5 ± 1.5 14.3 ± 1.1
GOGGLE 0.8 ± 0.9 10.6 ± 2.4 3.3 ± 0.7 17.2 ± 4.9 18.8 ± 5.3 10.7 ± 1.6

All C-models 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

The Figures visually demonstrate that the models that incorporate our constrained layer (C-WGAN,
C-CTGAN, C-TableGAN, C-TVAE and C-GOGGLE) are guaranteed to produce outputs only within
the feasible regions of the real data.

Finally, to further investigate the properties of the generated data by C-DGMs, we study the impact
of constraint reparation on the boundary population for the three cases considered above. We dened
a band around the boundary whose width w we set to be proportional to the range of the values of the
considered features in the real dataset. As in all the considered constraints only two features appear,

we set w =


(r1p)2 + (r2p)2, where r1 (resp. r2) represents the range of the rst (resp. second)
feature, while p represents the proportion of the range of values each feature can assume. If p = 1,
then the width is equal to the diagonal of the rectangle dened by the two points with minimum and
maximum coordinates.

The results in Table 10 show the percentage of generated samples that lay on the boundary when
p = {1%, 5%, 10%} for the real dataset (last row), individual DGMs and C-DGMs, as well as their
averages (third and second to last row, respectively). Notice that C-DGMs populate the boundary
at a much closer rate to the real data than their unconstrained counterparts. Indeed the maximum
difference between the percentage of real data points laying at the boundary and the average number
of samples generated by C-DGMs is equal to 14.7% (for dataset WiDS and p = 1%). On the
contrary, the maximum difference between the number of real data points laying at the boundary
and the average number of samples generated by DGMs is equal to 51.5% (for dataset FSP and
p = 1%)

C.2 FEATURE DISTRIBUTION ANALYSIS

Following Kotelnikov et al. (2023) and Zhao et al. (2021) we perform a comparative analysis of the
distributions of data generated by the models under study and the real data. The results are presented
in Table 11 for continuous features, for which we measure the difference between the real data and
generated data distributions using the Wasserstein distance, and in Table 12 for categorical features,
for which we measure the difference between the real data and generated data distributions using the
Jensen-Shannon divergence.

As we can see from Table 11, for every model and dataset there is very little difference in the
Wasserstein distance obtained with the standard DGMs, the P-DGMs, and the C-DGMs. The only
big gap is registered for GOGGLE on the WiDS dataset, where the Wasserstein distance obtained
with C-GOGGLE is equal to 0.05 while the one obtained with GOGGLE and P-GOGGLE is equal
to 0.22. Regarding the results for the categorical features in Table 12 we can see that the differences
between DGMs and C-DGMs are very small, while, as expected, there is no difference between
the results obtained with the DGMs and the P-DGMs. Indeed, our datasets are annotated with no
constraints over the categorical features.

C.3 VARIABLE ORDERING STUDY

In this subsection, we rst discuss how we picked the variable orderings tested in our experimental
analysis, and then we conduct an in-detail experimental analysis of how the different orderings
perform with each model.

21

Published as a conference paper at ICLR 2024

Figure 4: Samples generated by WGAN, CTGAN and TVAE, GOGGLE and their constrained ver-
sions for WiDS. The real and TableGAN distributions are given in Section 4.2 in the main text.

It is easy to see that given a sample x̃, the value of CL(x̃) may depend on the selected variable
ordering, i.e., that different variable orderings may lead to different CL(x̃). Ideally, we would like
the orderings to help in generating the highest quality samples possible. Thus, our intuition has
been that features whose distributions are easier to learn should be assigned a lower ranking, so
that their value can be fruitfully used to compute the value associated with features with higher
ranking. With such intuition, we designed two different heuristics to choose such orderings. To

22

Published as a conference paper at ICLR 2024

Figure 5: Real data and samples generated by WGAN, TableGAN, CTGAN, TVAE, GOGGLE and
their constrained versions for Heloc.

obtain the two orderings described below, for each C-DGM, we rst need to train the respective
standard unconstrained DGM, and then generate a set of samples S .

The rst ordering we propose is a correlation-based (Corr.) ordering. Given the initial real data
dataset D and S , for each variable xi we compute the score σi = |



j ̸=i corr(C
D
i , CD

j) −


j ̸=i corr(C
S
i , C

S
j)|, where CD

j (resp. CS
j) is the vector of the values of the jth column in D

(resp. S). The lower the value of σi is, the lower the position xi gets in the variable ordering, and
the sooner its value is computed (as its relations with the other features should be easier to compute
for the DGM).

The second ordering we propose is a kernel density estimation (KDE)-based ordering, which can be
obtained by following the protocol outlined below:

1. Using scikit-learn’s 9 (Pedregosa et al., 2011) implementation of KDE, we estimated a
probability density function of the multidimensional real data.

2. We then computed the log-likelihood of each sample belonging to D and S under the
estimated model, using again scikit-learn. It is worth noting that scikit-learn returns proba-
bility values normalised over the sample spaces under evaluation. Using these, we treated

9https://scikit-learn.org/stable/index.html

23

Published as a conference paper at ICLR 2024

Figure 6: Real data and samples generated by WGAN, TableGAN, CTGAN, TVAE, GOGGLE and
their constrained versions for FSP.

the problem in a discrete setting and approximated the marginal probability mass function
of each variable. More specically, for each feature xi, we determined its unique values
from D ∪ S and for each unique value uij we summed the KDE scores of the samples for
which xi = uij , separately for D and S . In case no sample was observed with xi = uij ,
we set the value of the marginal probability mass function of xi to 0.

3. Hence, we obtain two marginal probability mass functions for each feature xi (one for
the real data D and one for the generated samples S) and compute the Kullback-Leibler
divergence (KL) between them to get a single value di.

4. Finally, we rank the features xi based on their KL scores di in ascending order.

One disadvantage of this method is that the marginals are computed in a discrete setting. As future
work, one interesting direction would be to use a higher-delity approximation of the marginal
distributions, based on which the KL divergence scores, and hence the variable ranks in the ordering,
are computed.

To assess the impact of using different orderings for each C-DGM model, we compared the two
orderings proposed above with a random ordering (Rnd). Table 13 summarises the average utility

24

Published as a conference paper at ICLR 2024

Table 10: Percentage of the generated samples that lie on the boundary.

WiDS Heloc FSP

p = 1% p = 5% p = 10% p = 1% p = 5% p = 10% p = 1% p = 5% p = 10%

WGAN 28.5±0.4 45.2±0.5 67.0±0.5 22.5±0.4 83.9±0.2 99.4±0.1 14.8±1.3 55.6±1.7 81.2±0.7

C-WGAN 62.1±0.3 72.1±0.2 83.1±0.2 100.0±0.0 100.0±0.0 100.0±0.0 76.8±1.0 83.1±0.8 89.9±0.5

TableGAN 19.7±0.1 71.9±0.2 88.7±0.1 37.4±0.2 94.7±0.1 99.8±0.0 25.3±1.2 76.0±0.9 95.8±0.5

C-TableGAN 72.2±0.2 81.1±0.3 88.7±0.3 83.8±0.3 96.1±0.2 99.1±0.1 75.4±0.5 86.2±0.5 94.3±0.3

CTGAN 6.5±0.0 30.5±0.3 53.2±0.2 80.2±0.4 93.1±0.5 96.8±0.3 2.6±0.3 16.4±0.4 36.7±1.3

C-CTGAN 54.2±0.6 62.4±0.6 73.8±0.5 83.2±0.4 96.0±0.1 98.3±0.1 49.2±0.8 62.3±1.1 72.9±1.4

TVAE 20.2±0.1 42.0±0.2 62.4±0.3 69.4±0.5 90.1±0.4 96.5±0.2 6.5±0.7 37.6±1.6 56.7±1.8

C-TVAE 31.0±0.4 56.9±0.5 69.7±0.3 79.2±0.7 92.7±0.4 97.1±0.2 38.4±1.2 57.5±0.4 77.4±0.9

GOGGLE 0.9±0.1 29.1±0.2 33.1±0.3 46.3±0.4 99.6±0.1 100.0±0.0 35.3±0.0 82.2±0.0 98.9±0.0

C-GOGGLE 7.7±0.1 77.2±0.2 99.1±0.1 83.9±0.3 92.4±0.3 97.0±0.1 81.1±0.0 85.4±0.0 89.7±0.0

DGMs 15.2±0.2 43.8±0.3 60.9±0.3 51.1±0.4 92.3±0.3 98.5±0.1 16.9±0.7 53.5±0.9 73.9±0.9

C-DGMs 45.4±0.3 69.9±0.4 82.9±0.3 86.0±0.3 95.4±0.2 98.3±0.1 64.2±0.7 74.9±0.6 84.8±0.6

Real 60.1±0.0 73.3±0.0 85.1±0.0 85.7±0.0 96.5±0.0 98.9±0.0 68.4±0.0 82.8±0.0 98.9±0.0

Table 11: Wasserstein distance between numerical features.

URL WiDS LCLD Heloc FSP News

WGAN 0.01±0.00 0.04±0.00 0.02±0.00 0.03±0.00 0.04±0.00 0.02±0.00

P-WGAN 0.02±0.00 0.04±0.00 0.02±0.00 0.03±0.00 0.07±0.00 0.02±0.00

C-WGAN 0.03±0.00 0.05±0.00 0.02±0.00 0.03±0.00 0.07±0.00 0.02±0.00

TableGAN 0.01±0.00 0.02±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.02±0.00

P-TableGAN 0.02±0.00 0.02±0.00 0.02±0.00 0.01±0.00 0.03±0.00 0.02±0.00

C-TableGAN 0.01±0.00 0.02±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.02±0.00

CTGAN 0.01±0.00 0.05±0.00 0.03±0.00 0.02±0.00 0.06±0.01 0.01±0.00

P-CTGAN 0.02±0.00 0.05±0.00 0.03±0.00 0.02±0.00 0.08±0.00 0.01±0.00

C-CTGAN 0.01±0.00 0.04±0.00 0.03±0.00 0.02±0.00 0.06±0.01 0.02±0.00

TVAE 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.02±0.00 0.01±0.00

P-TVAE 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.04±0.00 0.01±0.00

C-TVAE 0.01±0.00 0.02±0.00 0.01±0.00 0.01±0.00 0.03±0.00 0.01±0.00

GOGGLE 0.03±0.01 0.22±0.10 0.04±0.00 0.05±0.01 0.12±0.01 0.08±0.01

P-GOGGLE 0.03±0.01 0.22±0.10 0.04±0.00 0.05±0.01 0.12±0.02 0.08±0.01

C-GOGGLE 0.04±0.01 0.05±0.01 0.08±0.02 0.07±0.02 0.14±0.02 0.13±0.03

performance over the binary and multiclass classication datasets (i.e., all except the News) and the
average detection performance over all datasets.

For detection, we can see that the KDE-based ordering performs best for C-WGAN, C-TableGAN
and C-CTGAN— according to all three metrics (i.e., F1-score, weighted F1-score, and Area Under
the ROC Curve) for the rst two, and according to two out of three metrics (i.e. weighted F1-
score and Area Under the ROC Curve) for C-CTGAN. On the other hand, the correlation-based
ordering yields better results for C-TVAE across all three metrics. Only C-GOGGLE gets best de-
tection results across all three metrics using the random ordering. For utility, we see again that
different C-DGM models work best with different orderings. For instance, the KDE-based ordering
performs best w.r.t. all three utility metrics for C-WGAN, C-TVAE and C-CTGAN. However, for
C-TableGAN and C-GOGGLE, the correlation-based ordering outperforms the other orderings.

Overall, the utility and detection results we obtained using KDE-based or correlation-based order-
ings as opposed to random ordering highlight the importance of choosing an ordering that takes
into account the data distribution and/or the feature relations captured by the C-DGM models in
their predictions. Additionally, we can see that a trend emerges for C-WGAN, C-TableGAN, and
C-TVAE: each of these models has a clear preference for the ordering that gives the highest overall

25

Published as a conference paper at ICLR 2024

Table 12: Jensen-Shannon divergence between categorical features.

URL WiDS LCLD Heloc FSP News

WGAN 0.76±0.00 0.79±0.00 0.60±0.00 0.58±0.01 0.33±0.01 0.77±0.00

P-WGAN 0.76±0.00 0.79±0.00 0.60±0.00 0.58±0.01 0.33±0.01 0.77±0.00

C-WGAN 0.77±0.00 0.80±0.01 0.60±0.00 0.58±0.00 0.33±0.01 0.77±0.00

TableGAN 0.78±0.00 0.81±0.00 0.69±0.01 0.62±0.02 0.35±0.01 0.77±0.00

P-TableGAN 0.78±0.00 0.81±0.00 0.69±0.01 0.62±0.02 0.35±0.01 0.77±0.00

C-TableGAN 0.78±0.00 0.80±0.00 0.60±0.01 0.59±0.01 0.37±0.02 0.77±0.00

CTGAN 0.76±0.00 0.75±0.00 0.49±0.01 0.56±0.00 0.33±0.00 0.77±0.00

P-CTGAN 0.76±0.00 0.75±0.00 0.49±0.01 0.56±0.00 0.33±0.00 0.77±0.00

C-CTGAN 0.76±0.00 0.75±0.00 0.49±0.00 0.56±0.01 0.33±0.00 0.77±0.00

TVAE 0.77±0.00 0.79±0.00 0.50±0.00 0.57±0.00 0.33±0.00 0.77±0.00

P-TVAE 0.77±0.00 0.79±0.00 0.50±0.00 0.57±0.00 0.33±0.00 0.77±0.00

C-TVAE 0.77±0.00 0.80±0.00 0.50±0.00 0.57±0.01 0.33±0.00 0.77±0.00

GOGGLE 0.71±0.02 0.76±0.03 0.49±0.01 0.58±0.01 0.37±0.03 0.76±0.00

P-GOGGLE 0.71±0.02 0.76±0.03 0.49±0.01 0.58±0.01 0.37±0.03 0.76±0.00

C-GOGGLE 0.71±0.01 0.82±0.01 0.49±0.01 0.57±0.01 0.39±0.01 0.76±0.01

Table 13: Variable orderings comparison for C-DGMs. The best results are in bold.

Utility (↑) Detection (↓)

F1 wF1 AUC F1 wF1 AUC

C-WGAN
Rnd 0.453 0.477 0.735 0.936 0.933 0.950
Corr 0.475 0.497 0.746 0.919 0.915 0.936
KDE 0.485 0.504 0.748 0.917 0.915 0.935

C-TableGAN
Rnd 0.346 0.409 0.710 0.908 0.904 0.926
Corr 0.361 0.422 0.717 0.897 0.893 0.916
KDE 0.349 0.413 0.706 0.895 0.893 0.916

C-CTGAN
Rnd 0.509 0.530 0.770 0.894 0.896 0.924
Corr 0.513 0.536 0.773 0.887 0.891 0.920
KDE 0.516 0.537 0.773 0.888 0.889 0.919

C-TVAE
Rnd 0.487 0.522 0.766 0.873 0.870 0.901
Corr 0.504 0.534 0.771 0.868 0.868 0.898
KDE 0.504 0.536 0.774 0.875 0.875 0.905

C-GOGGLE
Rnd 0.384 0.406 0.653 0.922 0.916 0.937
Corr 0.409 0.424 0.661 0.929 0.918 0.940
KDE 0.393 0.416 0.661 0.928 0.926 0.941

improvements w.r.t. utility and detection. It is also worth noticing that it is not always the case that
an ordering improves both utility and detection, as we have seen for C-TableGAN and C-TVAE.

We also show the effect of using different orderings on P-DGM models, in Table 14. As opposed
to the trends we noticed for our C-DGMs, here we nd that it is harder to establish clear patterns
in the preference of the P-DGMs towards any of the orderings. This is mainly due to the very small
differences between the results, as it can be seen from the Table.

Exploring other variable orderings. In our work, we explored two variable orderings and con-
ducted extensive experiments with them. However, there are various other ways to dene these
orderings. One advantage of customizing the order is that it can be tailored to the user’s needs. For
example, if users require orderings that consider how closely the generated data distribution matches
the real data distribution, there are numerous ways to achieve this. In our detailed analysis, we exam-
ined a KDE-based ordering that compares the joint distributions of the features. However, a simpler
alternative method would be to use the Wasserstein distance, a metric discussed in Section C.2,

26

Published as a conference paper at ICLR 2024

Table 14: Variable orderings comparison for P-DGM. Best results are in bold.

Utility (↑) Detection (↓)

F1 wF1 AUC F1 wF1 AUC

P-WGAN
Rnd 0.456 0.484 0.731 0.930 0.928 0.945
Corr 0.462 0.489 0.732 0.931 0.930 0.947
KDE 0.463 0.489 0.731 0.933 0.931 0.948

P-TableGAN
Rnd 0.328 0.398 0.705 0.902 0.901 0.925
Corr 0.328 0.399 0.703 0.900 0.900 0.922
KDE 0.326 0.398 0.706 0.901 0.901 0.924

P-CTGAN
Rnd 0.507 0.524 0.769 0.898 0.901 0.926
Corr 0.508 0.527 0.770 0.899 0.902 0.928
KDE 0.507 0.524 0.769 0.899 0.903 0.927

P-TVAE
Rnd 0.490 0.521 0.764 0.879 0.879 0.905
Corr 0.493 0.523 0.763 0.876 0.879 0.904
KDE 0.494 0.524 0.767 0.876 0.875 0.901

P-GOGGLE
Rnd 0.347 0.373 0.626 0.925 0.925 0.943
Corr 0.348 0.375 0.625 0.929 0.926 0.945
KDE 0.347 0.374 0.626 0.929 0.927 0.944

which differs from the KDE approach in that it compares individual distributions of the features
rather than joint ones. In yet another scenario, users could dene orderings without relying on the
outputs of the unconstrained model by considering relations between the features in the real data,
which is a different approach to all the previously-mentioned orderings. For instance, one way to do
this is to order the variables based on the cause-effect relations between them, which we refer to as
a causal-based ordering. More precisely, in such an ordering, there is no instance of a cause-effect
pair of features (xi, xj) in which xj appears before xi in the ordering.

To assess the performance of our layer when constructed using different orderings, we conducted
experiments withWasserstein- and causal-based orderings on theWiDS dataset. For theWasserstein-
based ordering, for each feature we calculated the Wasserstein distance between the real data distri-
bution and the generated data distribution obtained from an unconstrained DGM. We then arranged
the features in ascending order based on the calculated distances, such that the features with gen-
erated data distributions furthest from the real data distributions would be corrected last by our
constraint layer.

We note that the Wasserstein distance can only be dened on a metric space, making it impractical
for use with categorical features without additional modications (i.e. it is possible to dene distance
metrics for each of the categorical features and then apply Wasserstein distance on these features).
However, here we assume that the constraint layer can only be applied on continuous features and,
thus, the position of the categorical features in the orderings will not impact the nal results, as
our constraints exclude such features. As an alternative, we investigated using the Jensen-Shannon
divergence to derive another ordering that compares individual feature distributions. And while this
method offers has the advantage that it can be applied on both continuous and categorical features,
we found that it was unstable in its results, aligning with the observations made by Zhao et al. (2021).

To compute the causal-based ordering, we obtained a directed acyclic graph (DAG), capturing the
cause-effect relations between the features, and topologically sorted the features. Since none of the
datasets we experimented with provided any information on causal relations between features, we
utilized DAG-GNN (Yu et al., 2019) to obtain such relations in the training partition of each dataset.
DAG-GNN is a gradient-based causal discovery method employing graph neural networks to learn a
DAG structure which encodes cause-effect relations. Importantly for our application, we require that
the graph has a topological ordering, implying the graph should be a DAG. However, determining
a DAG structure poses a challenge in the causality domain. In fact, the DAG-GNN method does
not guarantee that its output structure is a DAG, as the DAG constraint is embedded in a loss term
minimised during training. In our experiments, we observed that DAG-GNN produced a few self-
loops (edges connecting a node to itself) for most datasets and one cycle for half of the datasets.

27

Published as a conference paper at ICLR 2024

Table 15: Comparing DGMs with their C-DGM versions using 5 different orderings, when trained
on the WiDS dataset. Best results are in bold.

Utility (↑) Detection (↓)

F1 wF1 AUC F1 wF1 AUC

C-WGAN

Rnd 0.303 0.360 0.797 0.995 0.996 0.999
Corr 0.284 0.343 0.796 0.975 0.976 0.989
KDE 0.316 0.372 0.815 0.975 0.975 0.989
WD 0.273 0.331 0.770 0.932 0.925 0.948
Caus 0.275 0.334 0.775 0.944 0.929 0.956

C-TableGAN

Rnd 0.213 0.279 0.777 0.984 0.984 0.996
Corr 0.246 0.309 0.775 0.956 0.957 0.974
KDE 0.208 0.274 0.767 0.962 0.963 0.979
WD 0.242 0.305 0.770 0.961 0.962 0.977
Caus 0.225 0.289 0.770 0.962 0.963 0.979

C-CTGAN

Rnd 0.364 0.408 0.836 0.990 0.990 0.997
Corr 0.365 0.409 0.826 0.988 0.988 0.995
KDE 0.360 0.403 0.832 0.986 0.986 0.994
WD 0.368 0.411 0.842 0.953 0.955 0.970
Caus 0.365 0.409 0.838 0.954 0.956 0.970

C-TVAE

Rnd 0.248 0.311 0.773 0.965 0.965 0.982
Corr 0.305 0.363 0.804 0.959 0.960 0.977
KDE 0.321 0.378 0.816 0.961 0.962 0.979
WD 0.297 0.356 0.794 0.958 0.959 0.976
Caus 0.316 0.373 0.808 0.958 0.959 0.976

C-GOGGLE

Rnd 0.139 0.210 0.643 0.965 0.965 0.979
Corr 0.185 0.253 0.675 0.972 0.971 0.984
KDE 0.171 0.239 0.678 0.975 0.975 0.984
WD 0.207 0.273 0.705 0.980 0.980 0.990
Caus 0.175 0.244 0.681 0.966 0.965 0.979

To address these issues, we eliminated the self-loops and broke the cycles by randomly selecting
an edge from each cycle and removing it from the graph. This approach enabled us to obtain a
DAG structure and, consequently, a topological ordering that we eventually used as the causal-based
ordering in our experiments.

For our experiments we considered the medium-sized datasets and selected WiDS. Our choice was
mainly guided by the levels of difculty involved when manually checking the causality relations
found by the DAG-GNN model. Compared to the other datasets, WiDS’ columns had a clearer
and more explanatory description, which allowed us to determine whether the cause-effect relations
between the columns were sensible. In Tables 15 and 16 we compared the 5 different orderings on
the WiDS dataset for all C-DGMs and P-DGMs, respectively. As we can see in Table 15, both the
causal- and Wasserstein distance-based orderings achieved better results than the random ordering
in 12 (and 11) out of 15 cases for detection (and utility). On the other hand, we notice that when used
during postprocessing, these two new orderings can only bring small performance improvements.
However, similarly to the other orderings we explored, it is harder to distinguish trends where the
new orderings might be more helpful than the random ordering.

Future work on variable orderings. As we can see, using custom-made orderings can improve
the performance of C-DGMs which use a random ordering of the variables w.r.t. both utility and
detection. However, it is not straightforward to determine which ordering works best in which sce-
nario. To leverage the constraint layer’s capabilities to the maximum, for future work we plan to
investigate when different feature orderings might work best and uncover patterns in the models’
and datasets’ preferences towards certain orderings.

28

Published as a conference paper at ICLR 2024

Table 16: Comparing DGMs with their P-DGM versions using 5 different orderings, when trained
on the WiDS dataset. Best results are in bold.

Utility (↑) Detection (↓)

F1 wF1 AUC F1 wF1 AUC

P-WGAN

Rnd 0.319 0.372 0.777 0.979 0.980 0.992
Corr 0.332 0.384 0.781 0.976 0.977 0.991
KDE 0.334 0.386 0.783 0.978 0.978 0.991
WD 0.332 0.384 0.776 0.979 0.979 0.992
Caus 0.332 0.383 0.774 0.980 0.981 0.992

P-TableGAN

Rnd 0.173 0.242 0.749 0.962 0.963 0.980
Corr 0.174 0.242 0.731 0.963 0.964 0.981
KDE 0.171 0.240 0.735 0.962 0.963 0.980
WD 0.181 0.250 0.738 0.962 0.963 0.979
Caus 0.171 0.240 0.741 0.963 0.964 0.980

P-CTGAN

Rnd 0.364 0.407 0.837 0.991 0.991 0.997
Corr 0.365 0.407 0.835 0.989 0.989 0.997
KDE 0.357 0.400 0.835 0.991 0.991 0.997
WD 0.375 0.419 0.836 0.990 0.990 0.997
Caus 0.363 0.406 0.835 0.990 0.990 0.997

P-TVAE

Rnd 0.266 0.327 0.785 0.962 0.963 0.978
Corr 0.282 0.342 0.787 0.962 0.962 0.979
KDE 0.285 0.345 0.797 0.963 0.964 0.979
WD 0.280 0.340 0.778 0.962 0.962 0.979
Caus 0.269 0.329 0.793 0.962 0.962 0.979

P-GOGGLE

Rnd 0.192 0.202 0.665 0.988 0.988 0.993
Corr 0.191 0.201 0.667 0.988 0.988 0.993
KDE 0.189 0.197 0.667 0.987 0.987 0.993
WD 0.191 0.200 0.663 0.988 0.988 0.993
Caus 0.191 0.200 0.669 0.988 0.988 0.994

C.4 FULL RESULTS ON DGMS VS. C-DGMS

To assess the impact of constraining DGMs with our method, we conducted an extensive exper-
imental analysis where we compared the performance of our C-DGM models with the baseline
DGM models in terms of utility and detection, as specied in Section 4.1. In Tables 17-23 we
present full utility and detection results. More specically, in each table we report results for each
dataset, each DGM and each C-DGM, using 3 different orderings (i.e., random, correlation-based
and KDE-based). Additionally, for each result in the table, we report the standard deviation from
the mean. As a reminder, we obtained the results by running each experiment with 5 different seeds.
As shown, in most cases at least one of the orderings used for the C-DGMs outperforms the DGMs,
particularly for detection.

Comparing WGAN with C-WGAN, we note that the only dataset for which we do not get an im-
provement in utility with either of the three different metrics is LCLD. However, the gap between
the WGAN and the best C-WGAN is small for all the 3 different metrics: 0.7%, 0.1%, 0.2% for
F1-score, weighted F1-score and Area Under the ROC Curve, respectively. In most cases, with C-
WGAN we see signicant utility improvements, e.g. 7.7%, 5% and 3.8% for Heloc in F1-score,
weighted F1-score and Area Under the ROC Curve, respectively.

For TableGAN, we see that C-TableGAN outperforms the unconstrained models for all binary and
multiclass classication datasets in terms of utility, according to at least 2 out of 3 metrics. For the
cases where the performance is not improved under some metric, we notice that the difference in
performance between TableGAN and C-TableGAN is small, e.g., 0.5% for the FSP dataset and 0.2%
for the Heloc dataset in Area Under the ROC Curve. It is worth noticing that out of all the C-DGMs,
C-TableGAN brings the highest improvements overall. For example, C-TableGAN outperforms the

29

Published as a conference paper at ICLR 2024

unconstrained TableGAN by at least 4.5% according to the F1-score in 4 datasets, with the highest
improvement, of 7.5%, recorded for WiDS.

As opposed to C-TableGAN, C-CTGAN does not show the same trend, with most models giving
either moderate improvements or performing close to the unconstrained CTGAN. However, it is
still the case that most of the datasets (four out of six) show improvements over all three metrics
(with the remaining two datasets showing improvements on two out of three metrics). Notably, with
C-CTGAN we did observe a large improvement of 64.9 points in the mean absolute error for utility
when training on the News dataset, which is the highest improvement we observed with any of the
C-DGM models.

Similarly, to the C-WGAN case, there is only one dataset for which C-TVAE does not improve
the utility performance in any of the three metrics, namely the Heloc dataset. Nevertheless, the
difference between the overall best C-TVAE model (i.e. using the KDE ordering) and TVAE is small
for all the 3 different metrics: 0.4%, 0.2%, 0.1% for F1-score, weighted F1-score and Area Under
the ROC Curve, respectively. In most cases, with C-TVAE we see major utility improvements, e.g.
4.0%, 3.6% and 1.5% for WiDS in F1-score, weighted F1-score and Area Under the ROC Curve,
respectively, and 2.6%, 2.9% and 1.4% for FSP in F1-score, weighted F1-score and Area Under the
ROC Curve, respectively.

For C-GOGGLE, we see that ve out of six datasets outperform the standard GOGGLE results on
all three metrics, giving major improvements (with the largest improvement being of 17.1% in the
F1-score for utility when training on the URL dataset). Only the FSP dataset does not show any
improvements on any of the orderings when using the C-GOGGLE version.

For detection, with C-WGAN we get an improvement (or do not change the performance, as it hap-
pens in a few cases) over all datasets in all metrics, the only exception being the Area Under the ROC
Curve for the URL dataset. With C-TableGAN, C-CTGAN, and C-TVAE, we see an improvement
in 4 out of 6 datasets, where we outperform the unconstrained models (i) according to all metrics
for 3 datasets and (ii) according to at least two out of three metrics for 1 dataset, respectively. With
C-GOGGLE we see again an improvement in 4 out of 6 datasets, where we outperform the uncon-
strained models (i) according to all metrics for 2 datasets and (ii) according to at least one out of
three metrics for 2 datasets, respectively.

C.4.1 DGMS VS. C-DGMS: UTILITY RESULTS

In Tables 17-19 we present the utility results on all datasets using 3 metrics in the following order:
F1-score, weighted F1-score, and Area Under the ROC Curve. Separately, in Table 20, we report the
performance of real and synthetic data for the News dataset (which is a regression dataset), using 4
different metrics: Explained Variance (XV) and Mean Absolute Error (MAE).

C.4.2 DGMS VS. C-DGMS: DETECTION RESULTS

In Tables 21-23 we present the detection results on all datasets using 3 metrics in the following
order: F1-score, weighted F1-score and Area Under the ROC Curve.

C.5 FULL RESULTS ON DGMS VS. P-DGMS

Our constrained layer uses the constraints to correct the predictions both at training and inference
time, however, the constraints can simply be used at inference time to correct the predictions only
once. This latter approach, which we call P-DGM, is a way of putting guardrails on the output space
of the DGMs and could be the preferred option for users who do not want to make any modications
to their models or retrain them. Both methods guarantee that the constraints are satised by the pre-
dictions, however, their impact on the models’ performance might differ. To see this, we compared
DGMs with P-DGMs whose predictions have been corrected according to three different label or-
derings: random, correlation-based, and KDE-based. In each of the following tables, we report the
mean and standard deviation from the mean.

30

Published as a conference paper at ICLR 2024

C.5.1 DGMS VS. P-DGMS: UTILITY RESULTS

In Tables 24, 25 and 26 we compare the performance of the DGM and P-DGM models in terms of
utility and report the results w.r.t. 3 different metrics: F1-score, weighted F1-score, and Area Under
the ROC Curve. Separately, in Table 27, we report the performance of the synthetic data for the
News dataset, using two metrics: XV and MAE.

As we can see, putting guardrails on the output space of the models can help increase the perfor-
mance, however, the overall gains are not as high as those used by our C-DGMmodels which correct
the outputs at training time.

C.5.2 DGMS VS. P-DGMS: DETECTION RESULTS

In Tables 28, 29 and 30 we compare the performance of the DGM and P-DGM models in terms of
detection. Similarly to the utility case, post-processing the outputs of the unconstrained models can
help slightly increase the overall performance.

Table 17: Binary (macro) F1-score utility results with their corresponding stddevs for binary (multi-
class) classication datasets.

URL WiDS LCLD Heloc FSP

WGAN - 0.756±0.030 0.329±0.059 0.239±0.026 0.634±0.099 0.357±0.020

C-WGAN
Rnd 0.792±0.021 0.302±0.075 0.196±0.026 0.643±0.060 0.333±0.028

Corr 0.790±0.026 0.284±0.040 0.232±0.050 0.704±0.039 0.367±0.027

KDE 0.801±0.004 0.316±0.044 0.232±0.050 0.711±0.030 0.367±0.027

TableGAN - 0.562±0.051 0.171±0.037 0.123±0.041 0.593±0.058 0.199±0.044

C-TableGAN
Rnd 0.534±0.096 0.213±0.027 0.148±0.058 0.636±0.073 0.199±0.031

Corr 0.611±0.111 0.246±0.047 0.130±0.036 0.638±0.061 0.179±0.036

KDE 0.576±0.074 0.207±0.043 0.174±0.063 0.582±0.114 0.208±0.053

CTGAN - 0.822±0.017 0.362±0.033 0.247±0.087 0.736±0.035 0.374±0.034

C-CTGAN
Rnd 0.833±0.006 0.365±0.019 0.235±0.057 0.744±0.010 0.370±0.006

Corr 0.830±0.009 0.365±0.020 0.260±0.081 0.730±0.027 0.383±0.019

KDE 0.836±0.002 0.360±0.022 0.265±0.040 0.736±0.010 0.381±0.030

TVAE - 0.810±0.008 0.282±0.029 0.185±0.021 0.735±0.010 0.473±0.016

C-TVAE
Rnd 0.824±0.004 0.249±0.038 0.143±0.018 0.720±0.014 0.501±0.012

Corr 0.826±0.007 0.305±0.021 0.158±0.011 0.733±0.017 0.496±0.018

KDE 0.824±0.004 0.322±0.041 0.146±0.023 0.731±0.008 0.498±0.014

GOGGLE - 0.622±0.094 0.189±0.038 0.163±0.119 0.596±0.072 0.152±0.003

C-GOGGLE
Rnd 0.782±0.035 0.139±0.068 0.157±0.085 0.723±0.018 0.117±0.008

Corr 0.793±0.013 0.185±0.108 0.219±0.023 0.714±0.013 0.136±0.024

KDE 0.788±0.014 0.171±0.036 0.167±0.082 0.708±0.025 0.134±0.016

31

Published as a conference paper at ICLR 2024

Table 18: Weighted F1-score utility results with their corresponding stddevs for binary and multi-
class classication datasets.

URL WiDS LCLD Heloc FSP

WGAN - 0.764±0.018 0.381±0.057 0.359±0.019 0.599±0.050 0.339±0.021

C-WGAN
Rnd 0.782±0.025 0.360±0.068 0.339±0.020 0.585±0.079 0.316±0.029

Corr 0.785±0.011 0.344±0.036 0.358±0.037 0.648±0.022 0.349±0.028

KDE 0.790±0.007 0.373±0.040 0.358±0.037 0.649±0.011 0.349±0.028

TableGAN - 0.659±0.035 0.240±0.034 0.286±0.029 0.615±0.030 0.199±0.043

C-TableGAN
Rnd 0.644±0.061 0.280±0.025 0.306±0.043 0.618±0.042 0.198±0.030

Corr 0.695±0.071 0.309±0.042 0.292±0.029 0.633±0.036 0.180±0.034

KDE 0.670±0.052 0.274±0.039 0.314±0.029 0.596±0.048 0.209±0.051

CTGAN - 0.799±0.033 0.405±0.034 0.379±0.061 0.675±0.015 0.372±0.034

C-CTGAN
Rnd 0.818±0.008 0.408±0.019 0.369±0.044 0.684±0.005 0.369±0.007

Corr 0.816±0.012 0.409±0.019 0.388±0.060 0.688±0.010 0.379±0.020

KDE 0.820±0.008 0.403±0.023 0.392±0.030 0.690±0.010 0.380±0.032

TVAE - 0.802±0.012 0.342±0.027 0.330±0.016 0.696±0.006 0.463±0.017

C-TVAE
Rnd 0.817±0.007 0.311±0.034 0.301±0.012 0.687±0.006 0.492±0.013

Corr 0.816±0.007 0.363±0.019 0.311±0.011 0.690±0.009 0.488±0.019

KDE 0.816±0.008 0.378±0.038 0.305±0.016 0.694±0.003 0.490±0.014

GOGGLE - 0.648±0.074 0.198±0.067 0.315±0.086 0.566±0.050 0.139±0.002

C-GOGGLE
Rnd 0.741±0.032 0.210±0.061 0.314±0.065 0.663±0.012 0.103±0.008

Corr 0.752±0.024 0.253±0.098 0.357±0.020 0.637±0.023 0.121±0.024

KDE 0.749±0.029 0.239±0.032 0.318±0.060 0.656±0.014 0.119±0.017

Table 19: Area under the ROC curve utility results with their corresponding stddevs for binary and
multiclass classication datasets.

URL WiDS LCLD Heloc FSP

WGAN - 0.839±0.016 0.775±0.038 0.618±0.011 0.677±0.033 0.742±0.007

C-WGAN
Rnd 0.860±0.018 0.798±0.028 0.616±0.009 0.672±0.037 0.728±0.010

Corr 0.865±0.011 0.796±0.017 0.612±0.016 0.714±0.017 0.742±0.022

KDE 0.858±0.011 0.816±0.015 0.612±0.016 0.715±0.011 0.742±0.022

TableGAN - 0.843±0.020 0.740±0.021 0.587±0.027 0.707±0.007 0.642±0.026

C-TableGAN
Rnd 0.853±0.018 0.778±0.017 0.593±0.019 0.692±0.029 0.637±0.022

Corr 0.868±0.007 0.775±0.015 0.605±0.016 0.705±0.030 0.630±0.037

KDE 0.865±0.010 0.767±0.016 0.587±0.017 0.676±0.037 0.635±0.028

CTGAN - 0.859±0.040 0.835±0.012 0.651±0.020 0.744±0.009 0.760±0.014

C-CTGAN
Rnd 0.880±0.004 0.837±0.003 0.626±0.028 0.749±0.008 0.757±0.008

Corr 0.877±0.010 0.827±0.013 0.643±0.015 0.755±0.007 0.760±0.009

KDE 0.880±0.007 0.833±0.007 0.641±0.015 0.751±0.011 0.759±0.012

TVAE - 0.863±0.011 0.800±0.016 0.631±0.004 0.752±0.003 0.789±0.007

C-TVAE
Rnd 0.876±0.008 0.773±0.036 0.630±0.002 0.750±0.005 0.803±0.009

Corr 0.878±0.005 0.803±0.014 0.633±0.003 0.749±0.005 0.791±0.015

KDE 0.879±0.007 0.815±0.028 0.632±0.003 0.751±0.002 0.794±0.009

GOGGLE - 0.742±0.071 0.656±0.049 0.543±0.039 0.600±0.056 0.577±0.010

C-GOGGLE
Rnd 0.800±0.029 0.643±0.088 0.569±0.055 0.719±0.005 0.535±0.016

Corr 0.794±0.030 0.675±0.051 0.593±0.046 0.696±0.022 0.546±0.011

KDE 0.802±0.016 0.678±0.029 0.572±0.051 0.713±0.021 0.538±0.020

32

Published as a conference paper at ICLR 2024

Table 20: Utility performance comparison between DGM and C-DGM models trained on News,
using XV and MAE. In the rst row, we report the real data performance.

XV MAE

Real data - -0.001±0.001 3001.1±55.0

WGAN - -0.006±0.003 3133.6±242.1

C-WGAN
Rnd -0.008±0.012 3093.0±202.3

Corr -0.002±0.002 3014.0±79.1

KDE -0.004±0.001 3070.0±98.4

TableGAN - -0.001±0.001 2992.2±35.8

C-TableGAN
Rnd -0.001±0.001 3033.1±53.9

Corr -0.002±0.002 3015.9±40

KDE -0.002±0.002 3016.8±70.8

CTGAN - -0.002±0.001 3043.8±37.8

C-CTGAN
Rnd -0.002±0.001 3034.6±29.4

Corr -0.002±0.001 2978.9±28.7

KDE -0.003±0.001 3029.1±72.7

TVAE - -0.001±0.000 3021.3±10.0

C-TVAE
Rnd -0.002±0.001 3067.7±71.5

Corr -0.001±0.001 3005.0±56.2

KDE -0.002±0.001 3011.7±44.2

GOGGLE - -0.004±0.003 3054.5±44.7

C-GOGGLE
Rnd -0.001±0.001 3042.6±54.1

Corr -0.001±0.001 3026.0±34.6

KDE -0.001±0.000 2999.0±27.3

Table 21: Binary F1-score detection results with their corresponding stddevs for all datasets.

URL WiDS LCLD Heloc FSP News

WGAN - 0.865±0.035 0.975±0.002 0.999±0.001 0.964±0.004 0.914±0.018 0.954±0.022

C-WGAN
Rnd 0.864±0.046 0.996±0.003 0.916±0.013 0.970±0.024 0.900±0.078 0.969±0.015

Corr 0.879±0.027 0.975±0.006 0.923±0.005 0.964±0.007 0.843±0.037 0.928±0.023

KDE 0.877±0.016 0.975±0.002 0.923±0.005 0.957±0.018 0.843±0.037 0.926±0.011

TableGAN - 0.831±0.029 0.963±0.006 0.895±0.024 0.923±0.011 0.909±0.021 0.927±0.009

C-TableGAN
Rnd 0.840±0.020 0.984±0.002 0.870±0.016 0.963±0.021 0.839±0.061 0.953±0.010

Corr 0.849±0.025 0.956±0.004 0.874±0.011 0.952±0.010 0.818±0.012 0.933±0.011

KDE 0.828±0.031 0.962±0.007 0.869±0.014 0.948±0.018 0.830±0.015 0.933±0.011

CTGAN - 0.850±0.027 0.990±0.002 0.848±0.016 0.914±0.024 0.926±0.011 0.901±0.018

C-CTGAN
Rnd 0.834±0.026 0.990±0.001 0.863±0.022 0.910±0.013 0.859±0.022 0.909±0.016

Corr 0.820±0.025 0.987±0.003 0.845±0.025 0.903±0.012 0.861±0.021 0.905±0.019

KDE 0.838±0.033 0.986±0.002 0.848±0.017 0.897±0.023 0.857±0.022 0.902±0.014

TVAE - 0.813±0.037 0.926±0.001 0.842±0.019 0.914±0.011 0.843±0.027 0.877±0.013

C-TVAE
Rnd 0.826±0.037 0.965±0.001 0.796±0.030 0.905±0.022 0.874±0.015 0.874±0.018

Corr 0.815±0.037 0.959±0.003 0.808±0.030 0.905±0.014 0.855±0.020 0.863±0.008

KDE 0.814±0.030 0.961±0.002 0.799±0.020 0.907±0.021 0.879±0.008 0.890±0.019

GOGGLE - 0.892±0.019 0.987±0.018 0.890±0.017 0.924±0.006 0.912±0.010 0.949±0.023

C-GOGGLE
Rnd 0.890±0.044 0.965±0.006 0.904±0.011 0.939±0.008 0.866±0.020 0.967±0.009

Corr 0.898±0.021 0.972±0.005 0.910±0.017 0.939±0.010 0.884±0.009 0.968±0.015

KDE 0.903±0.019 0.975±0.013 0.911±0.017 0.938±0.008 0.887±0.014 0.957±0.020

33

Published as a conference paper at ICLR 2024

Table 22: Weighted F1-score detection results with their corresponding stddevs for all datasets.

URL WiDS LCLD Heloc FSP News

WGAN - 0.856±0.008 0.976±0.002 0.999±0.001 0.964±0.004 0.910±0.027 0.954±0.020

C-WGAN
Rnd 0.851±0.017 0.996±0.003 0.912±0.013 0.970±0.024 0.900±0.072 0.969±0.016

Corr 0.861±0.016 0.975±0.006 0.917±0.007 0.964±0.007 0.845±0.022 0.929±0.022

KDE 0.871±0.010 0.975±0.002 0.917±0.007 0.957±0.019 0.845±0.022 0.925±0.013

TableGAN - 0.822±0.007 0.964±0.006 0.895±0.022 0.925±0.011 0.906±0.028 0.929±0.013

C-TableGAN
Rnd 0.830±0.011 0.984±0.002 0.859±0.015 0.963±0.021 0.834±0.054 0.953±0.011

Corr 0.835±0.011 0.957±0.003 0.866±0.022 0.952±0.010 0.813±0.020 0.936±0.010

KDE 0.827±0.006 0.963±0.007 0.871±0.013 0.947±0.019 0.817±0.021 0.934±0.011

CTGAN - 0.862±0.014 0.990±0.002 0.850±0.019 0.915±0.023 0.927±0.016 0.896±0.023

C-CTGAN
Rnd 0.843±0.017 0.990±0.001 0.867±0.015 0.911±0.013 0.861±0.022 0.904±0.018

Corr 0.839±0.015 0.988±0.002 0.846±0.024 0.904±0.013 0.865±0.028 0.901±0.023

KDE 0.849±0.020 0.986±0.002 0.837±0.014 0.897±0.023 0.868±0.009 0.894±0.018

TVAE - 0.831±0.013 0.927±0.001 0.832±0.010 0.916±0.010 0.847±0.006 0.855±0.019

C-TVAE
Rnd 0.829±0.014 0.966±0.001 0.795±0.025 0.908±0.020 0.868±0.018 0.856±0.012

Corr 0.832±0.011 0.960±0.003 0.795±0.014 0.908±0.013 0.857±0.011 0.854±0.010

KDE 0.829±0.014 0.962±0.002 0.797±0.019 0.909±0.020 0.873±0.014 0.882±0.024

GOGGLE - 0.880±0.012 0.987±0.018 0.892±0.014 0.926±0.005 0.916±0.011 0.955±0.019

C-GOGGLE
Rnd 0.891±0.030 0.965±0.005 0.905±0.010 0.940±0.008 0.823±0.030 0.970±0.008

Corr 0.898±0.014 0.971±0.005 0.912±0.017 0.939±0.009 0.817±0.004 0.972±0.012

KDE 0.902±0.017 0.975±0.013 0.913±0.018 0.939±0.008 0.865±0.033 0.963±0.015

Table 23: Area under the ROC curve detection results with their corresponding stddevs for all
datasets.

URL WiDS LCLD Heloc FSP News

WGAN - 0.872±0.008 0.989±0.002 1.000±0.000 0.983±0.004 0.916±0.016 0.964±0.021

C-WGAN
Rnd 0.877±0.017 0.999±0.001 0.941±0.009 0.983±0.018 0.918±0.060 0.981±0.010

Corr 0.879±0.009 0.989±0.002 0.946±0.006 0.982±0.007 0.874±0.020 0.945±0.020

KDE 0.883±0.009 0.989±0.001 0.946±0.006 0.975±0.018 0.874±0.020 0.941±0.011

TableGAN - 0.850±0.007 0.980±0.004 0.926±0.020 0.953±0.009 0.907±0.022 0.940±0.011

C-TableGAN
Rnd 0.851±0.006 0.995±0.001 0.900±0.012 0.978±0.016 0.866±0.048 0.964±0.012

Corr 0.856±0.004 0.974±0.002 0.904±0.019 0.970±0.008 0.845±0.005 0.950±0.010

KDE 0.849±0.005 0.978±0.005 0.909±0.012 0.965±0.017 0.849±0.012 0.947±0.010

CTGAN - 0.879±0.008 0.996±0.001 0.896±0.011 0.953±0.016 0.932±0.007 0.912±0.021

C-CTGAN
Rnd 0.865±0.013 0.997±0.000 0.908±0.011 0.950±0.008 0.896±0.016 0.925±0.021

Corr 0.864±0.009 0.995±0.001 0.900±0.020 0.946±0.004 0.894±0.025 0.922±0.019

KDE 0.867±0.015 0.995±0.001 0.897±0.012 0.943±0.018 0.893±0.007 0.919±0.022

TVAE - 0.854±0.007 0.935±0.002 0.861±0.009 0.947±0.005 0.872±0.008 0.881±0.019

C-TVAE
Rnd 0.854±0.008 0.982±0.001 0.844±0.013 0.942±0.015 0.904±0.015 0.883±0.012

Corr 0.853±0.009 0.977±0.001 0.840±0.011 0.943±0.011 0.896±0.008 0.880±0.014

KDE 0.849±0.013 0.979±0.001 0.843±0.012 0.944±0.014 0.904±0.013 0.909±0.030

GOGGLE - 0.891±0.009 0.993±0.013 0.928±0.010 0.949±0.003 0.920±0.006 0.973±0.013

C-GOGGLE
Rnd 0.898±0.028 0.979±0.007 0.938±0.010 0.958±0.008 0.871±0.009 0.977±0.007

Corr 0.906±0.020 0.984±0.005 0.943±0.013 0.960±0.007 0.865±0.011 0.980±0.012

KDE 0.907±0.018 0.985±0.009 0.944±0.013 0.960±0.007 0.880±0.014 0.973±0.009

34

Published as a conference paper at ICLR 2024

Table 24: Binary (macro) F1-score utility results with their corresponding stddevs for binary (multi-
class) classication datasets when postprocessing the unconstrained predictions.

URL WiDS LCLD Heloc FSP

WGAN - 0.756±0.030 0.329±0.059 0.239±0.026 0.634±0.099 0.357±0.020

P-WGAN
Rnd 0.767±0.034 0.318±0.053 0.201±0.030 0.641±0.113 0.355±0.020

Corr 0.766±0.036 0.332±0.050 0.214±0.021 0.641±0.115 0.358±0.024

KDE 0.767±0.035 0.334±0.059 0.214±0.021 0.641±0.112 0.358±0.024

TableGAN - 0.562±0.051 0.171±0.037 0.123±0.041 0.593±0.058 0.199±0.044

P-TableGAN
Rnd 0.565±0.048 0.173±0.049 0.115±0.028 0.594±0.058 0.195±0.046

Corr 0.553±0.050 0.174±0.045 0.125±0.032 0.594±0.060 0.194±0.037

KDE 0.556±0.060 0.171±0.042 0.119±0.025 0.592±0.060 0.193±0.042

CTGAN - 0.822±0.017 0.362±0.033 0.247±0.087 0.736±0.035 0.374±0.034

P-CTGAN
Rnd 0.819±0.014 0.364±0.032 0.255±0.089 0.735±0.038 0.365±0.021

Corr 0.814±0.008 0.365±0.038 0.246±0.087 0.743±0.032 0.372±0.033

KDE 0.823±0.017 0.357±0.040 0.248±0.077 0.736±0.031 0.371±0.035

TVAE - 0.810±0.008 0.282±0.029 0.185±0.021 0.735±0.010 0.473±0.016

P-TVAE
Rnd 0.810±0.011 0.266±0.020 0.172±0.011 0.739±0.004 0.464±0.019

Corr 0.815±0.009 0.283±0.026 0.176±0.028 0.730±0.006 0.462±0.018

KDE 0.815±0.009 0.285±0.034 0.171±0.030 0.735±0.007 0.463±0.021

GOGGLE - 0.622±0.094 0.189±0.038 0.163±0.119 0.596±0.072 0.152±0.003

P-GOGGLE
Rnd 0.626±0.098 0.193±0.042 0.164±0.121 0.600±0.060 0.151±0.007

Corr 0.623±0.089 0.191±0.038 0.169±0.126 0.601±0.063 0.155±0.010

KDE 0.626±0.096 0.189±0.039 0.169±0.126 0.597±0.066 0.155±0.011

Table 25: Weighted F1-score utility results with their corresponding stddevs for binary and multi-
class classication datasets when post-processing the unconstrained predictions.

URL WiDS LCLD Heloc FSP

WGAN - 0.764±0.018 0.381±0.057 0.359±0.019 0.599±0.050 0.339±0.021

P-WGAN
Rnd 0.768±0.028 0.372±0.052 0.342±0.019 0.600±0.057 0.337±0.022

Corr 0.769±0.027 0.384±0.048 0.352±0.014 0.598±0.054 0.341±0.026

KDE 0.762±0.028 0.386±0.057 0.352±0.014 0.603±0.059 0.341±0.026

TableGAN - 0.659±0.035 0.240±0.034 0.286±0.029 0.615±0.030 0.199±0.043

P-TableGAN
Rnd 0.660±0.035 0.243±0.045 0.281±0.022 0.614±0.028 0.195±0.046

Corr 0.657±0.035 0.243±0.041 0.285±0.023 0.614±0.030 0.195±0.036

KDE 0.658±0.040 0.240±0.039 0.285±0.018 0.613±0.029 0.193±0.042

CTGAN - 0.799±0.033 0.405±0.034 0.379±0.061 0.675±0.015 0.372±0.034

P-CTGAN
Rnd 0.794±0.031 0.407±0.032 0.383±0.070 0.671±0.015 0.363±0.019

Corr 0.801±0.008 0.407±0.040 0.379±0.068 0.678±0.010 0.370±0.033

KDE 0.802±0.032 0.399±0.042 0.380±0.058 0.671±0.010 0.368±0.033

TVAE - 0.802±0.012 0.342±0.027 0.330±0.016 0.696±0.006 0.463±0.017

P-TVAE
Rnd 0.802±0.015 0.327±0.018 0.324±0.009 0.696±0.004 0.454±0.020

Corr 0.806±0.008 0.342±0.024 0.325±0.018 0.691±0.004 0.452±0.019

KDE 0.806±0.008 0.344±0.031 0.322±0.020 0.694±0.004 0.453±0.022

GOGGLE - 0.648±0.074 0.198±0.067 0.315±0.086 0.566±0.050 0.139±0.002

P-GOGGLE
Rnd 0.645±0.071 0.202±0.070 0.315±0.086 0.566±0.047 0.139±0.006

Corr 0.645±0.070 0.201±0.067 0.318±0.090 0.566±0.047 0.142±0.009

KDE 0.650±0.072 0.197±0.069 0.318±0.090 0.565±0.048 0.141±0.011

35

Published as a conference paper at ICLR 2024

Table 26: Area under the ROC curve utility results with their corresponding stddevs for binary and
multiclass classication datasets when post-processing the unconstrained predictions.

URL WiDS LCLD Heloc FSP

WGAN - 0.839±0.016 0.775±0.038 0.618±0.011 0.677±0.033 0.742±0.007

P-WGAN
Rnd 0.840±0.019 0.777±0.037 0.618±0.010 0.682±0.042 0.736±0.011

Corr 0.839±0.020 0.782±0.035 0.617±0.008 0.683±0.038 0.740±0.010

KDE 0.834±0.021 0.783±0.039 0.617±0.008 0.682±0.041 0.740±0.010

TableGAN - 0.843±0.020 0.740±0.021 0.587±0.027 0.707±0.007 0.642±0.026

P-TableGAN
Rnd 0.848±0.019 0.749±0.019 0.585±0.027 0.703±0.008 0.641±0.030

Corr 0.846±0.020 0.731±0.022 0.587±0.028 0.707±0.011 0.645±0.031

KDE 0.855±0.016 0.736±0.016 0.587±0.027 0.707±0.011 0.644±0.035

CTGAN - 0.859±0.040 0.835±0.012 0.651±0.020 0.744±0.009 0.760±0.014

P-CTGAN
Rnd 0.859±0.038 0.837±0.012 0.652±0.024 0.743±0.008 0.753±0.008

Corr 0.866±0.007 0.835±0.012 0.650±0.023 0.745±0.008 0.754±0.011

KDE 0.863±0.035 0.836±0.012 0.651±0.018 0.743±0.009 0.753±0.009

TVAE - 0.863±0.011 0.800±0.016 0.631±0.004 0.752±0.003 0.789±0.007

P-TVAE
Rnd 0.866±0.013 0.785±0.017 0.630±0.007 0.751±0.003 0.787±0.011

Corr 0.870±0.007 0.787±0.009 0.629±0.004 0.752±0.004 0.779±0.014

KDE 0.870±0.007 0.797±0.016 0.630±0.002 0.750±0.001 0.788±0.010

GOGGLE - 0.742±0.071 0.656±0.049 0.543±0.039 0.600±0.056 0.577±0.010

P-GOGGLE
Rnd 0.738±0.067 0.665±0.043 0.548±0.035 0.602±0.056 0.575±0.008

Corr 0.740±0.063 0.667±0.044 0.542±0.036 0.601±0.058 0.576±0.010

KDE 0.741±0.067 0.667±0.060 0.542±0.036 0.603±0.058 0.578±0.014

Table 27: Utility performance comparison between DGM and P-DGM models trained on News.

XV MAE

WGAN - -0.006±0.003 3133.6±242.1

P-WGAN
Rnd -0.005±0.002 3151.3±219.8

Corr -0.012±0.011 3109.2±220.4

KDE -0.006±0.003 3159.7±210.7

TableGAN - -0.001±0.001 2992.2±35.8

P-TableGAN
Rnd -0.001±0.001 2981.9±32.3

Corr -0.001±0.001 3015.3±43.9

KDE -0.001±0.001 3022.7±23.6

CTGAN - -0.002±0.001 3043.8±37.8

P-CTGAN
Rnd -0.003±0.004 3013.4±36.2

Corr -0.006±0.002 2999.3±27.3

KDE -0.003±0.003 3004.8±47.4

TVAE - -0.001±0.000 3021.3±10.0

P-TVAE
Rnd -0.001±0.001 3040.5±60.4

Corr -0.002±0.001 3003.8±22.7

KDE -0.001±0.001 3032.2±39.3

GOGGLE - -0.004±0.003 3054.5±44.7

P-GOGGLE
Rnd -0.006±0.005 3024.1±37.2

Corr -0.005±0.002 3077.9±54.1

KDE -0.004±0.003 3012.3±36.6

36

Published as a conference paper at ICLR 2024

Table 28: Binary F1-score detection results with their corresponding stddevs for all datasets when
post-processing the unconstrained predictions.

URL WiDS LCLD Heloc FSP News

WGAN - 0.865±0.035 0.975±0.002 0.999±0.001 0.964±0.004 0.914±0.018 0.954±0.022

P-WGAN
Rnd 0.856±0.037 0.979±0.003 0.916±0.008 0.964±0.004 0.910±0.015 0.954±0.022

Corr 0.857±0.033 0.977±0.002 0.921±0.004 0.968±0.005 0.911±0.018 0.954±0.026

KDE 0.862±0.037 0.978±0.003 0.921±0.004 0.967±0.004 0.911±0.018 0.957±0.019

TableGAN - 0.831±0.029 0.963±0.006 0.895±0.024 0.923±0.011 0.909±0.021 0.927±0.009

P-TableGAN
Rnd 0.843±0.034 0.962±0.006 0.896±0.026 0.923±0.010 0.858±0.031 0.932±0.010

Corr 0.833±0.035 0.963±0.005 0.900±0.024 0.922±0.011 0.860±0.029 0.920±0.009

KDE 0.835±0.041 0.962±0.006 0.901±0.019 0.921±0.011 0.857±0.029 0.928±0.004

CTGAN - 0.850±0.027 0.990±0.002 0.848±0.016 0.914±0.024 0.926±0.011 0.901±0.018

P-CTGAN
Rnd 0.845±0.028 0.990±0.002 0.839±0.015 0.916±0.028 0.902±0.029 0.898±0.012

Corr 0.855±0.014 0.989±0.003 0.845±0.019 0.913±0.028 0.895±0.030 0.898±0.006

KDE 0.850±0.023 0.991±0.002 0.841±0.019 0.913±0.027 0.895±0.032 0.902±0.010

TVAE - 0.813±0.037 0.926±0.001 0.842±0.019 0.914±0.011 0.843±0.027 0.877±0.013

P-TVAE
Rnd 0.806±0.039 0.962±0.002 0.835±0.018 0.914±0.007 0.881±0.007 0.873±0.012

Corr 0.806±0.044 0.962±0.001 0.829±0.022 0.912±0.011 0.881±0.011 0.866±0.014

KDE 0.806±0.044 0.964±0.001 0.837±0.010 0.909±0.011 0.874±0.012 0.868±0.012

GOGGLE - 0.892±0.019 0.987±0.018 0.890±0.017 0.924±0.006 0.912±0.010 0.949±0.023

P-GOGGLE
Rnd 0.884±0.025 0.988±0.017 0.892±0.012 0.927±0.006 0.907±0.005 0.952±0.021

Corr 0.897±0.010 0.988±0.016 0.902±0.005 0.926±0.006 0.909±0.006 0.951±0.021

KDE 0.898±0.015 0.987±0.017 0.902±0.005 0.928±0.007 0.907±0.009 0.951±0.020

Table 29: Weighted F1-score detection results with their corresponding stddevs for all datasets when
post-processing the unconstrained predictions.

URL WiDS LCLD Heloc FSP News

WGAN - 0.856±0.008 0.976±0.002 0.999±0.001 0.964±0.004 0.910±0.027 0.954±0.020

P-WGAN
Rnd 0.852±0.011 0.979±0.003 0.907±0.010 0.965±0.004 0.907±0.009 0.957±0.020

Corr 0.853±0.008 0.977±0.002 0.914±0.002 0.968±0.004 0.912±0.018 0.955±0.025

KDE 0.855±0.010 0.978±0.003 0.914±0.002 0.967±0.004 0.912±0.018 0.959±0.017

TableGAN - 0.822±0.007 0.964±0.006 0.895±0.022 0.925±0.011 0.906±0.028 0.929±0.013

P-TableGAN
Rnd 0.823±0.005 0.963±0.006 0.888±0.031 0.924±0.011 0.873±0.018 0.934±0.012

Corr 0.826±0.006 0.964±0.005 0.898±0.025 0.924±0.011 0.868±0.016 0.923±0.009

KDE 0.824±0.005 0.963±0.006 0.896±0.021 0.923±0.011 0.873±0.022 0.928±0.006

CTGAN - 0.862±0.014 0.990±0.002 0.850±0.019 0.915±0.023 0.927±0.016 0.896±0.023

P-CTGAN
Rnd 0.859±0.017 0.990±0.002 0.840±0.014 0.917±0.027 0.905±0.026 0.894±0.006

Corr 0.860±0.012 0.989±0.003 0.850±0.009 0.914±0.027 0.902±0.017 0.894±0.014

KDE 0.861±0.017 0.991±0.002 0.847±0.006 0.913±0.027 0.905±0.025 0.899±0.014

TVAE - 0.831±0.013 0.927±0.001 0.832±0.010 0.916±0.010 0.847±0.006 0.855±0.019

P-TVAE
Rnd 0.828±0.012 0.963±0.002 0.832±0.010 0.915±0.007 0.877±0.010 0.856±0.017

Corr 0.829±0.012 0.963±0.001 0.825±0.011 0.914±0.011 0.882±0.012 0.860±0.015

KDE 0.829±0.012 0.964±0.001 0.831±0.014 0.910±0.011 0.870±0.016 0.848±0.014

GOGGLE - 0.880±0.012 0.987±0.018 0.892±0.014 0.926±0.005 0.916±0.011 0.955±0.019

P-GOGGLE
Rnd 0.878±0.018 0.988±0.017 0.889±0.015 0.928±0.005 0.911±0.007 0.957±0.017

Corr 0.875±0.021 0.988±0.016 0.901±0.006 0.927±0.005 0.907±0.012 0.957±0.017

KDE 0.883±0.011 0.987±0.017 0.901±0.006 0.929±0.006 0.906±0.011 0.956±0.017

37

Published as a conference paper at ICLR 2024

Table 30: Area under the ROC curve detection results with their corresponding stddevs for all
datasets when post-processing the unconstrained predictions.

URL WiDS LCLD Heloc FSP News

WGAN - 0.872±0.008 0.989±0.002 1.000±0.000 0.983±0.004 0.916±0.016 0.964±0.021

P-WGAN
Rnd 0.867±0.003 0.992±0.002 0.936±0.010 0.985±0.002 0.927±0.006 0.966±0.020

Corr 0.869±0.004 0.991±0.002 0.942±0.001 0.985±0.003 0.931±0.013 0.966±0.024

KDE 0.870±0.003 0.991±0.002 0.942±0.001 0.985±0.002 0.931±0.013 0.969±0.017

TableGAN - 0.850±0.007 0.980±0.004 0.926±0.020 0.953±0.009 0.907±0.022 0.940±0.011

P-TableGAN
Rnd 0.850±0.006 0.980±0.004 0.925±0.024 0.953±0.009 0.894±0.016 0.946±0.012

Corr 0.848±0.007 0.980±0.003 0.929±0.023 0.953±0.008 0.886±0.018 0.937±0.011

KDE 0.852±0.009 0.979±0.003 0.933±0.016 0.952±0.008 0.890±0.022 0.939±0.006

CTGAN - 0.879±0.008 0.996±0.001 0.896±0.011 0.953±0.016 0.932±0.007 0.912±0.021

P-CTGAN
Rnd 0.876±0.012 0.997±0.001 0.892±0.008 0.953±0.021 0.925±0.019 0.915±0.012

Corr 0.878±0.004 0.997±0.001 0.896±0.005 0.952±0.018 0.922±0.013 0.921±0.017

KDE 0.876±0.013 0.998±0.001 0.893±0.004 0.952±0.020 0.925±0.017 0.919±0.021

TVAE - 0.854±0.007 0.935±0.002 0.861±0.009 0.947±0.005 0.872±0.008 0.881±0.019

P-TVAE
Rnd 0.849±0.010 0.978±0.002 0.862±0.008 0.948±0.004 0.907±0.008 0.887±0.021

Corr 0.850±0.009 0.979±0.001 0.858±0.007 0.946±0.007 0.910±0.011 0.884±0.014

KDE 0.850±0.009 0.979±0.001 0.861±0.005 0.944±0.006 0.895±0.013 0.874±0.018

GOGGLE - 0.891±0.009 0.993±0.013 0.928±0.010 0.949±0.003 0.920±0.006 0.973±0.013

P-GOGGLE
Rnd 0.889±0.017 0.994±0.013 0.923±0.008 0.952±0.004 0.924±0.011 0.976±0.012

Corr 0.895±0.010 0.994±0.012 0.931±0.005 0.952±0.003 0.919±0.011 0.977±0.011

KDE 0.894±0.017 0.993±0.012 0.931±0.005 0.952±0.003 0.917±0.010 0.976±0.012

C.6 REAL DATA PERFORMANCE

Table 31: Utility scores calculated on real data.

F1 wF1 AUC

URL 0.884±0.007 0.875±0.014 0.903±0.009
WiDS 0.383±0.021 0.434±0.020 0.832±0.009
LCLD 0.171±0.030 0.316±0.013 0.645±0.007
Heloc 0.772±0.003 0.662±0.011 0.707±0.008
FSP 0.662±0.011 0.659±0.009 0.848±0.010

To ensure that the comparisons be-
tween our C-DGM models and the
baseline unconstrained DGMs are
meaningful, we conducted a hyperpa-
rameter search as detailed earlier in
Section B.5, allowing us to get close
to (and sometimes even surpass) the
real data utility performance. We re-
port the latter in Table 31 using the
same three metrics we used for mea-
suring the synthetic data utility per-
formance (i.e., F1-score, weighted
F1-score, and Area Under the ROC Curve) following the same protocol as the one described in
Appendix B.4. Comparing the results here with those for the synthetic data in Tables 17-19 we can
see that, overall, C-WGAN and C-CTGAN models got utility scores similar to those obtained on
the real data. For C-TableGAN and C-TVAE we notice several cases where our method helped in
bringing the performance of the synthetic data closer to the real data. In particular, for LCLD we
notice that the real data got an F1-score 4.8% higher than the unconstrained TableGAN, but our
C-TableGAN model was able to match the real data performance (scoring slightly better than it, i.e.,
by 0.3%). It is also worth noticing that the gap between real and synthetic performance was reduced
the most for the LCLD and WiDS datasets, both of which are highly unbalanced. For instance, all
C-WGAN, WGAN, C-CTGAN, and CTGAN models yield a higher F1-score than the real LCLD
data. We notice similar trends for the other metrics, weighted F1 and Area Under the ROC Curve.
On the other hand, none of the DGM or C-DGM models get close to the real FSP data. One possible
reason is the datasets’ small size and multiclass nature, which makes it harder for the DGM models
to capture patterns that lead to the correct different targets.

38

