
A Method

A.1 Other Efficient Evaluation Techniques

The techniques for efficiently evaluating implicit gradients can be referred to (Koh and Liang, 2017;
Grazzi et al., 2020). As computing the inverse second-order derivatives is the most computation-
intensive operation, we will focus on it. Here, we briefly summarize two supplementary techniques
introduced in Section 3.1.

Conjucate gradient. In Section 3.1, we use the trick of least square to compute the (JJ>)�1J�.
When JJ>

� 0, we can solve the least square problem by the conjugate gradient (CG) method, which
only needs O(d) time to converge. However, the algorithm will be unstable when the matrix JJ> is
ill-conditioned. As observed in Fig. 5, the JJ> is likely to be ill-conditioned for deep networks. But
here we provide this alternative for linear models such that J can be evaluated faster.

Neumann series. We can leverage the Neumann series to compute the matrix inverse. By the
Neumann series, we have (JJ>)�1J� = limt!1

Pt
i=0(I � JJ>)iJ�. Let st , Pt

i=0(I �

JJ>)iJ� and s0 , J�. Then the computation can be done by iteration st+1 = (I � JJ>)st + J�
which only includes Jacobian-vector products.

B Proofs

B.1 Proof of the Approximation by Implicit Gradients

Here, we provide the proof for @Gr(g0)
@g0

= (JJ>)�1J . Recall Eq. (1) as

x⇤ = Gr(g) = argmin
x

LI(x; g) , kr✓L(x, ✓)� gk2 . (8)

The stationary condition of the minimization gives
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Given a small perturbation �g ! 0 on the gradient, we can estimate corresponding perturbation
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where we drop higher-order perturbations. The above derivations can be rigorously proved using the
Implicit Function Theorem. Since @LI(x

⇤;g)
@x⇤ = 2(r✓L(x⇤, ✓)� g)rxr✓L(x⇤, ✓), we can derive

@2LI(x⇤; g)

@g@x⇤ = �2rxr✓L(x
⇤, ✓)

and
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⇤, ✓)� g)r2
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⇤, ✓))>.

As x0 = x⇤ = Gr(g0) and g0 = r✓L(x⇤, ✓), we can substitute them to obtain

@2LI(x0; g)

@g@x0
= �2rxr✓L(x0, ✓) := �2J(x⇤(g0), ✓), (10)

@2LI(x0; g)

@x0
2

= 2(g0 � g)r2
xr✓L(x0, ✓) + 2JJ>. (11)
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Let g = g0. Combine Eqs. (9) to (11) to get
@Gr(g0)

@g0
= (JJ>)�1J.

B.2 Proof of Theorem 3.1

Before we prove our main theorem, we prove several essential lemmas as below.

Lemma B.1.
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Lemma B.3. The inversion loss LI(x; g) defined satisfies krxLI(x; g)�rxLI(x0; g)k 
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By Lemma B.1 and Lemma B.2, we have
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where µ1 = µL krxr✓L(x, ✓)k+ µJ kr✓L(x0, ✓)k and µ2 = µJ kgk. Let µ = 2µ1 + 2µ2. Then
we can get
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Theorem B.1 (Restated from Theorem 3.1). Let x0 be the private data and g0 , r✓L(x0, ✓) be
its corresponding gradient which is treated as a constant. If Assumption 3.4 and 3.5 hold, then the
square root of the recovery RMSE satisfies:

kx0 �Gr(g0 + �)k �
kJ�k

µL kJk+ 2µJ kg0 + �k
, (13)

where J = rxr✓L(x0, ✓).

Proof. Utilize the stationary condition rxLI(x⇤
g; g) = 0 and Lemma B.3 to obtain
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As x0 is the private sample whose gradient is g0 , r✓L(x0, ✓), then we have
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C Experiments

C.1 Experimental Details

Model architectures. The linear model we use is a matrix that maps the input data into a vector. The
LeNet model is a convolutional neural network with 4 convolutional layers and 1 fully connected
layer. We use the modified version following previous privacy papers Sun et al. (2020), whose
detailed structure is in Table 1. ResNet18 is a popular deep convolutional network in computer vision
with batch-normalization and residual layers (He et al., 2015a). Cross entropy loss is used as the loss
function in all the experiments.

Experimental settings. We conduct two kinds of attacks in our paper: DGL and GS attacks. The
learning rate of the two attacks is 0.1 and we use Adam as the optimizer. To consider a more powerful
attack, only a single image is reconstructed in each inversion. When inverting LeNet, we uniformly
initialize the model parameters in the range of [�0.5, 0.5] as (Sun et al., 2020) to get a stronger attack.
When inverting ResNet18, we use the default initialization method in PyTorch and follow Huang
et al. (2021) to use BN statistics as an additional regularization term to conduct a stronger attack.

Table 1: A modified version of LeNet. Conv represents a convolutional layer. FC means a fully-
connected layer.

Layers

Conv(in_channels=3, out_channels=12, kernel_size=5)
Conv(in_channels=12, out_channels=12, kernel_size=5)
Conv(in_channels=12, out_channels=12, kernel_size=5)
Conv(in_channels=12, out_channels=12, kernel_size=5)

Flattern
FC(out_features=10)

16



(a) ROUGE-1 (b) ROUGE-L (c) Google BLEU (d) Feature MSE

(e) ROUGE-1 (f) ROUGE-L (g) Google BLEU (h) Feature MSE

Figure 9: Evaluation of Ilb on BERT (top) and GPT-2 (bottom). A darker color means a larger noise
variance. Four metrics are used to evaluate the semantic similarity between the original text and the
recovered text. Ilb is linearly correlated to the four semantic metrics, which means Ilb can be used to
estimate the privacy risk of the private text.

C.2 Empirical Validation on Language Data

We evaluate the proposed I2F metric on BERT (Devlin et al., 2018) and GPT-2 (Radford et al.,
2019), which are popular language models in natural language processing. We use TAG (Deng
et al., 2021), which is an attack on Transformer-based language models based on the L1 and L2

distance between the original gradient and the dummy gradient, and follow the code in https:
//github.com/JonasGeiping/breaching. We use the default setting in the code and iteratively
update the input embedding 12,000 times. We randomly sample 70 sentences from WikiText-
103 (Merity et al., 2016) as the private text. We use ROUGE-1, ROUGE-L (Lin, 2004), Google
BLEU (Wu et al., 2016) and feature MSE to measure the semantic similarity between the original text
and the recovered text. ROUGE-1 measures the overlap of 1-grams in the original and recovered text,
while ROUGE-L measures the length of the longest common subsequence between two sentences.
While ROUGE metrics calculate the reconstruction recall, the Google BLEU score uses as the output
the smaller value of the precision and recall of the original and recovered text and has a broader range
of the overlap of n-grams, where n = 1, 2, 3, 4. Since the above three metrics are discrete and not
consistent with our assumptions, we include a continuous metric, the feature MSE, which measures
the distance between the final layer’s feature of the original and recovered text.

The results are presented in Fig. 9. A darker color indicates a larger noise variance. For each
noise variance, we randomly sample the perturbation from a zero-mean Gaussian distribution 5
times and repeat this for 3 different random seeds. It shows that I2F is correlated to these four
metrics, which means I2F can be used to estimate the privacy risk of text datasets with large language
models. The correlation of BERT and GPT-2 between the four metrics has a similar mode. Though
ROUGE-1, ROUGE-L and Google BLEU measure the structural similarity of sentences, which
consists of discrete tokens, I2F presents a clear correlation. For the feature MSE, although I2F has a
less distinguished correlation with feature MSE, it can still be utilized to estimate the privacy risk.

C.3 Efficiency

To show the efficiency of computing the I2F values, we compare it with the GS attack on randomly-
picked CIFAR10 images with ResNet18. As the major complexity comes from evaluating the
maximal eigenvalue via the power iteration method, we compare the time required for the power
iteration against the inversion loss of GS to converge. We notice that the convergence depends on the
initialization of the power iteration and the learning rate for DGL. Thus, we repeat power iteration with
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(a) Power iteration (b) Inversion attack

Figure 10: Evaluation of the efficiency of computing �max(JJ>) (our method) by power iteration
and inversion attack by minimizing inversion loss (LI ). Colors in (a) indicate different seeds. Darker
colors in (b) indicate larger learning rates. Our method using power iteration can converge faster than
direct inversion attacks.

(a) DGL attack (b) GS attack

Figure 11: Comparison of the efficiency of computing Ilb (our method) by power iteration and
inversion attack by minimizing inversion loss (LI ). Blue bars indicate the time of computing Ilb

while orange bars indicate the time of minimizing inversion loss by DGL and GS. The time ratio
of computing Ilb versus minimizing inversion loss is present above the orange bars. The x-axis are
model-dataset pairs sorted by the model scales: MLP-MNIST, MLP-CIFAR10, LeNet-MNIST, LeNet-
CIFAR10, RN18-MNIST, RN18-CIFAR10, RN34-CIFAR10, RN50-CIFAR10, RN101-CIFAR10,
RN152-CIFAR10, RN152-ImageNet. For large models and datasets, where minimizing inversion
loss needs a huge computation overhead, Ilb can provide an efficient estimation of the privacy risk.

5 different seeds. For the inversion attack, we evaluate multiple learning rates (1, 0.5, 0.1, 0.05, 0.01)
to show the fastest convergence. Each experiment is repeated 5 times with different random seeds.
As shown in Fig. 10, the power iteration method can converge to the maximal eigenvalue within 50
iterations (5 seconds at most). In comparison, the inversion loss demands 3000 more iterations in
150 seconds to fully converge, which is 20 times larger than the power iteration method. Thus, our
method can give an accurate and fast approximation of the recovery MSE without the exhaustive
whole inversion process.

In Fig. 11, we compare the computation cost of computing Ilb with minimizing inversion loss. We
show that for almost all the models and datasets we evaluate, the time ratio is larger than 1, which
means it is more efficient to compute Ilb than minimize the inversion loss. It indicates that our
method is a more efficient way to estimate the privacy risk for most models and datasets, than the
empirical inversion attack. Another key point is that, for large models and datasets, such as models
larger than RN18 with CIFAR10 or ImageNet, the time ratio is even much larger than 500. When the
time consumption of inversion attacks on these models and datasets is huge (about 16 minutes or even
longer), our method significantly reduces the computation overheads for estimating the privacy risks.
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(a)
� = 3.90

(b)
� = 0.12

(c)
� = 0.03

(d)
� = 0.0006

Figure 12: Same perturbation sizes but different protection effects by different eigenvectors of LeNet.
Recovered CIFAR10 images associated with different eigenvectors are present. When perturbing
with eigenvectors with smaller eigenvalues, the recovered images are more noisy.

(a) 2.60 (b) 2.71 (c) 2.39 (d) 3.97

(e) 0.15 (f) 0.28 (g) 0.32 (h) 0.33

Figure 13: Same perturbation sizes but different protection effects by different eigenvectors of
ResNet18. Recovered CIFAR10 images associated with different eigenvalues are present. When
perturbing with eigenvectors with smaller eigenvalues, the recovered images are more noisy and lack
some semantic information.

C.4 More Visual Results

More images of unequal perturbations. We present in Fig. 12 the recovered CIFAR10 images
when perturbing the gradient with eigenvectors with different eigenvalues. When perturbing with
eigenvectors with smaller eigenvalues, the recovered images are more noisy, which is consistent with
our former observation.

We also present the unequal perturbations with different eigenvectors of ResNet18 on the CIFAR10
dataset in Fig. 13. Even with the same perturbation scale, the eigenvectors with larger eigenvalues
provide stronger protection, where the corresponding recovered images are more noisy and lose some
semantic information.

More images of unfair privacy protection. We show more results of unfair privacy protection in
Fig. 14. The images of digits 5 and 8 can still be recognized by their outlines, while images of digits
7 and 9 are unrecognizable noise.

We also show the unfair privacy protection of ResNet18 on the CIFAR10 dataset in Fig. 15. In
this experiment, we also observe a large variance of recovery MSE among samples, indicating
sample-wise unfairness. At the class level, we still can find gradients of a few classes to be easily
inverted. For example, class 8 has most MSEs lower than the average value.

D I2F with Gradient Pruning Defense

We present the relationship between the RMSE and Ilb in Fig. 16. The y-axis is RMSE and the x-axis
is Ilb. It shows Ilb can be used to estimate the worst-case privacy risk with gradient pruning defense.

E Comparison of I2F with More Metrics

MSE is a pixel-wise distance that lacks semantic and structural information. To evaluate the effec-
tiveness of I2F on more metrics, we consider SSIM and LPIPS (Zhang et al., 2018) to measure the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: Original (top) and corresponding recovered (bottom) images of LeNet on the MNIST
dataset. The gradients are perturbed with Gaussian noise of variance 10�3. The defense is unfair as
images of digit 5 and digit 8 can be recognized by the outline.

Figure 15: The sample-wise and class-wise statistics of the GS MSE on the CIFAR10 dataset of
ResNet18. The purple lines indicate the average values. Large variances are observed among samples.
The original (first row) and recovered (second row) images for the well- and poorly-protected classes
are depicted at the bottom. The defense is unfair as some classes, e.g., class 7 (horse) and class 8
(ship), are more vulnerable to inversion attacks.

(a) RN18-CIFAR10-GS (b) RN18-CIFAR10-DGL (c) RN18-MNIST-GS (d) RN18-MNIST-DGL

(e) LeNet-MNIST-GS (f) LeNet-MNIST-DGL (g) LeNet-CIFAR10-GS (h) LeNet-CIFAR10-DGL

Figure 16: RMSE (y-axis) vs. Ilb (x-axis) with gradient pruning. A darker color indicates a smaller
pruning ratio. It shows that Ilb is a good estimator of RMSE.
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structural similarity and semantic distance between the original and recovered images, respectively.
The relationship between SSIM and LPIPS is shown in Fig. 17. Since Ilb aims to lower bound the
privacy risk in terms of RMSE, Ilb does not have the same scale as SSIM and LPIPS. Nevertheless,
Ilb also has a positive correlation between SSIM and LPIPS, which implies that it is a good estimator
for the structural similarity and semantic distance between the original and recovered images.

(a) RN18-CIFAR10-GS (b) RN18-CIFAR10-
DGL

(c) LeNet-MNIST-GS (d) LeNet-MNIST-DGL

(e) RN18-CIFAR10-GS (f) RN18-CIFAR10-
DGL

(g) LeNet-MNIST-GS (h) LeNet-MNIST-DGL

Figure 17: Ilb is positively correlated with these two metrics and is a good estimator for the structural
similarity and semantic distance between the original and recovered images. Darker color indicates
higher variance. Top ((a)-(d)): SSIM (y-axis) vs. Ilb (x-axis). Bottom ((e)-(h)): LPIPS (y-axis) vs.
Ilb (x-axis). A higher SSIM and a lower LPIPS indicate a higher privacy risk.

F Dynamics of Ilb During Training

Previous existing empirical results show that privacy risk decreases by training epochs (Balunović
et al., 2022; Geiping et al., 2020). We evaluate the dynamics of Ilb, RMSE with DGL attack and
RMSE during training in Fig. 18. It shows that as the training epoch increases, the Ilb also has an
increasing trend. While the RMSE of RN18 on the CIFAR10 dataset has a similar trend as Ilb, that
of LeNet on the MNIST dataset has a significant rise at the epoch 60, which is due to the slower
learning speed of LeNet than RN18. Moreover, almost for all the epochs, there is a sample with low
Ilb, which again emphasizes the unfairness in privacy protection.

G The Impact of ✏ on Efficient Matrix Inversion

In Fig. 19, we study the impact of ✏ on efficient matrix inversion proposed in Section 4. We evaluate
the impact on the LeNet with the MNIST dataset. The y-axis is the RMSE. I (matrix inversion) is
calculated as defined in Eq. (4). Ilb (matrix norm) is calculated as defined in Eq. (5). It shows with
✏ 2 [1, 10], Ilb is a lower bound of the RMSE. It also shows that Ilb is an accurate estimator of I2F.
Thus, we can directly use Ilb in practice to lower bound the privacy risk to avoid fine-tuning the ✏.

H Discussion

H.1 Validity of Assumption 3.4-3.5

We make assumptions about the Lipschitz continuous Jacobian and gradient in Assumption 3.4 and
Assumption 3.5, respectively. These two assumptions are not necessary for I2F but are only used to
provide a theoretical validation of I2F when the noise � is not infinitesimal. To discuss the validity of
these two assumptions in practice, we calculate the value of µJ and µL of LeNet with two datasets.
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(a) RN18 on CIFAR10

(b) LeNet on MNIST

Figure 18: Privacy risks decrease by training epochs (x-axis). Different colors indicate different
samples. The y-axis from left to right: Ilb, RMSE w/ DGL attack, RMSE w/ GS attack whose smaller
values indicate lower risks. The blue line indicates the mean value and the shadow is the variance
(some outliers are dropped). The noise is sampled from a Gaussian distribution with a mean zero and
variance 10�3.

For the CIFAR10 dataset, µL = 0.5014 and µJ = 1.7⇥10�13. For the MNIST dataset, µL = 0.7192
and µJ = 3.7⇥ 10�13. These values are not so large that they are reasonable in practice.

H.2 Extension of I2F to the GS Attack

The derivation of I2F is considered in the DGL attack as defined in Eq. (1), but I2F can also be applied
to the GS attack. Note that the minimizer of the DGL attack is one solution to the GS attack. That
means the GS attack can be attained by an optimal DGL attack which is our assumption. Therefore,
the DGL attack-based theorem is applicable to the GS attack.

Empirically, we evaluate Ilb on GS attack in Figs. 2 and 16. It shows that Ilb is linearly correlated to
the metrics of RMSE, which proves the utility of I2F under GS attack.

H.3 Extension of I2F with Prior Knowledge

Our theorem of I2F can be extended to take into account the prior knowledge. Consider the inversion
optimization problem with prior knowledge as minx L0

I(x; g) = LI(x; g) + IC(x) where IC(x)
constrains x in the prior space C and LI(x; g) = kr✓L(x; ✓) � gk defined in Eq. (1). Then the
optimization problem can be rewritten as minx2C LI(x; g). Thus, as long as the original image x0

is in the feasible region defined by IC(x), our Assumption 3.1 and theorems are also applicable.
Intuitively, a good regularization should satisfy the requirement, otherwise, it will unreasonably reject
the correct recovery.
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(a) DGL (✏ = 0.1) (b) DGL (✏ = 1) (c) DGL (✏ = 10) (d) DGL (Ilb)

(e) GS (✏ = 0.1) (f) GS (✏ = 1) (g) GS (✏ = 10) (h) GS (Ilb)

Figure 19: The impact of the value of ✏ is evaluated on LeNet with the MNIST dataset. The y-axis is
the RMSE. (a)(b)(c)(d): DGL attack. (e)(f)(g)(h): GS attack. It is observed that I (matrix inversion)
is effective with ✏ 2 [1, 10] but not ✏ = 0.1. It shows that (1) there exists a range of ✏ where Ilb can
lower bound the RMSE; (2) Ilb is an accurate estimator of I2F, thus we can avoid fine-tuning ✏.

H.4 Discussion with Prior Works

Closest to our work, Hannun et al. (2021) provided a second-order worst-case metric for analyzing
privacy attacks. However, our work provides novel contributions both on technique and implications
which essentially root from the proposed I2F metric.

Technical difference. First, we focus on a different scope against (Hannun et al., 2021). Hannun
et al. (2021) proposed Fisher information loss (FIL) to measure the information leakage risk in the
context of model inversion and attribute inference, e.g., only the attribute inference is considered in
their experiments. Instead, we evaluate the privacy risk under gradient inversion attacks. Second, our
metric is more scalable and applicable to large models. For example, in Eq. (18) in (Hannun et al.,
2021), the inverse of the Hessian matrix needs to be calculated even when quantifying the information
leakage of only one sample, which is inefficient and intractable for large models. Because of the
computation inefficiency, only linear regression and logistic regression models are considered in
their theories and experiments. Instead, we verify the feasibility of I2F in much larger models like
ResNet152 on ImageNet in Fig. 3.

Our new findings. First, though the unfairness of information leakage of different samples was
discussed in (Hannun et al., 2021), we investigate the issue in a different attack method and justify
the commonness of the unfairness in different attacks. Second, we additionally provide other insights
than (Hannun et al., 2021). For instance, the influence on gradient inversion of different initialization
methods is studied. We also find the influence of perturbations is not equivalent even in the same noise
scale. We believe these insights are also critical to the privacy and security community, especially in
the area of gradient inversion.

Besides, (Guo et al., 2022; Hayes et al., 2023) propose to bound the reconstruction attack in terms
of the attack success rate and the expectation of the L2 distance between the recovered and original
image. Nevertheless, their conclusions are based on the differential privacy (DP) quantification
framework so it is hard to analyze the influence of other defense mechanisms such as gradient
pruning and arbitrary noise. Also, they bound the privacy risk from the statistical sense raised by the
randomness of DP, while our work can evaluate the sample-wise worst-case privacy risk at any time
during the model training. Moreover, they assume the access of the attacker to the remaining samples
(except for the privacy sample) or the multi-round gradient, which is not practical in real gradient
inversion scenarios.
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H.5 Discussions about the Worst-case Assumption

Our work is mainly built upon the Assumption 3.1 that there is only a unique minimizer for LI(x; g)
given a gradient vector g. Because of the hardness of optimizing a non-linear objective in attack
(Eq. (1)), the worst-case may not be reachable in practice. Here, we discuss when the assumption
has to be relaxed and why our method is still applicable. In addition, we emphasize that a stronger
attacker exists theoretically, resulting in the necessity of a worst-case assumption.

Non-bijective inversion mapping Gr(g). Gr(g) could be non-bijective when the loss function is
non-convex. In other words, given the same g, the output of Gr(g) could include multiple choices.
We want to argue that this case does not conflict with our assumption. Consider an attack given the
exact gradient of a sample. Note that the sample itself is a solution to Eq. (1). Thus, given the exact
gradient of a sample, the attack can exactly recover the sample. Even if the solution is non-unique,
we can still essentially assume the attack can attain the sample in the worst case.

Optimizing the gradient inversion objective may not converge to the original image. Note that
the original image is always an optimal solution for the inversion loss in Eq. (1). Even though the
convergence is not guaranteed, there always exists an algorithm that can converge to the original
image. To our best knowledge, there is no evidence to show the attack cannot approach the worst case
where the original input is recovered. Instead, empirical results have shown that the images can be
recovered almost perfectly (Geiping et al., 2020). Thus, due to the sensitivity of privacy, a worst-case
assumption is necessary to strictly bound possible privacy risks with arbitrary strong attacks, which is
commonly imposed by the literature (Dwork, 2006; Abadi et al., 2016).

I Realistic Impact

Federated learning (FL) (McMahan et al., 2017) is a popular distributed training paradigm that
benefits from the data and computation sources from multiple clients. As a principle of FL, clients
will upload the local gradient based on the private data to the server for the concerns of data privacy
and safety, instead of directly sharing the private data of each client. However, recent works (Geiping
et al., 2020; Zhu et al., 2019) show that an attacker, who has access to the local gradient (e.g., a
malicious server), can leverage the local gradient to recover the private data of the clients, which we
call Deep Gradient Leakage (DGL). Even with large models like Transformer, the attacker can still
successfully recover the private data given the gradient (Hatamizadeh et al., 2022).

Auditing potential privacy risks is essentially desired for privacy-sensitive applications, including
but not limited to finance (Long et al., 2020), healthcare (Antunes et al., 2022; Xu et al., 2021), and
clinical data (Dayan et al., 2021; Roth et al., 2020). Such privacy concerns have been discussed
extensively in previous work. For instance, Zhang et al. (2023) raises the privacy concern of FL in
financial crime detection while (Kaissis et al., 2021; Li et al., 2023) discusses it in the medical and
healthcare applications, respectively.

To echo the demands for privacy risk auditing, we provide a fundamental tool for bounding the
worst-case risks of DGL. We show multiple insights, for example, the unfairness of privacy protection
using random noise defense. Thus, we expect our work can call the attention of the community to the
privacy concern raised by DGL, especially the worst-case instance-level privacy risk. Moreover, We
expect I2F to be a keystone for designing more powerful defense mechanisms.
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