
A Further definitions

Definition A.1 (Replicable value function estimation). Let A be a policy estimation algorithm that
outputs an estimated Q-value function Q̂ : S ×A → R, from which a policy may be computed, and
where Q̂ is computed from a set of trajectories S sampled from an MDP. Algorithm A is ρ-replicable
for value function estimation if, given independently sampled trajectory sets S1 and S2, and letting
Q̂∗(1)(s, a),← A(S1; r) and Q̂∗(2)(s, a)← A(S2; r), it holds for all states s ∈ S and actions a ∈ A
that

PrS1,S2,r[Q̂
∗(1)(s, a) ̸= Q̂∗(2)(s, a)] ≤ ρ,

where r represents the internal randomness of A . Trajectory sets S1 and S2 may potentially be
gathered from the environment during the execution of an RL algorithm.

Definition A.2 (Replicable MDP estimation). Let A be a policy estimation algorithm that outputs
a model of an MDP M̂, from which a policy may be computed, and where M̂ is computed from
a set of trajectories S, sampled from an MDP. Algorithm A is ρ-replicable for MDP estimation
if, given independently sampled trajectory sets S1 and S2, and letting M̂∗(1) ← A(S1; r) and
M̂∗(2) ← A(S2; r), it holds that

PrS1,S2,r[M̂∗(1) ̸= M̂∗(2)] ≤ ρ,

where r represents the internal randomness of A . Trajectory sets S1 and S2 may potentially be
gathered from the environment during the execution of an RL algorithm.

B Proofs

B.1 rPVI convergence for Lemma 4.1

Proof. The proof closely follows that of Kearns and Singh [1998a]. We want to prove that after T
iterations of Replicable Phased Value Iteration, it holds that

∥Q̂T (s, a)−Q∗(s, a)∥∞ ≤ ε.

We can decompose this into two steps by bounding the error introduced from sampling and the error
introduced via only running for T iterations using the triangle inequality.

∥Q̂T (s, a)−Q∗(s, a)∥∞ ≤ ∥Q̂T (s, a)−QT (s, a)∥∞ + ∥QT (s, a)−Q∗(s, a)∥∞

Note that as long as we choose the number of samples to be sufficiently large, our statistical queries
will give us accuracy guarantees because for every call to PS(GM) we get a sample for every
state-action pair. These samples are i.i.d. and across state-action pairs they are independent. So,
suppose that the values V̂t(s

′) from the rSTAT procedure can be estimated accurately such that the
following probabilities are bounded

∀(s, a) ∈ S ×A, 0 ≤ t ≤ T , Pr
(∣∣∣∣V̂t(s

′)− E
s′∼P

[
V̂t(s

′)
]∣∣∣∣ ≥ α

)
.
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Now, to bound the first term, we can derive a recurrence relation as follows.

∥Q̂t+1(s, a)−Qt+1(s, a)∥∞ = max
(s,a)
|Q̂t+1(s, a)−Qt+1(s, a)|

= max
(s,a)

∣∣∣∣R(s, a) + γV̂t(s
′)−R(s, a)− γ E

s′∼P
[Vt(s

′)]

∣∣∣∣
= max

(s,a)

∣∣∣∣γV̂t(s
′)− γ E

s′∼P
[Vt(s

′)]

∣∣∣∣
= γ

∣∣∣∣V̂t(s
′)− E

s′∼P
[V̂t(s

′)] + E
s′∼P

[V̂t(s
′)]− E

s′∼P
[Vt(s

′)]

∣∣∣∣
≤ γ

∣∣∣∣V̂t(s
′)− E

s′∼P
[V̂t(s

′)]

∣∣∣∣+ γ

∣∣∣∣ E
s′∼P

[V̂t(s
′)]− E

s′∼P
[Vt(s

′)]

∣∣∣∣
≤ γα+ γ

∣∣∣∣ E
s′∼P

[V̂t(s
′)]− E

s′∼P
[Vt(s

′)]

∣∣∣∣
≤ γα+ γmax

s

∣∣∣V̂t(s)− Vt(s)
∣∣∣

≤ γα+ γmax
(s,a)

∣∣∣Q̂t(s, a)−Qt(s, a)
∣∣∣

≤ γα+ γ∥Q̂t(s, a)−Qt(s, a)∥∞

At t = 0, it holds that Q̂0 = Q0,∀(s, a) ∈ S ×A. As a result, the previous result forms a geometric
series and for any t

∥Q̂t(s, a)−Qt(s, a)∥∞ ≤ α
γ

1− γ
.

We upper bound the second term in the triangle inequality using the standard Bellman operator
defined as

(T Q)(s, a) = R(s, a) + γ E
s′∼P

[Vt(s
′)] (1)

as follows
∥Qt(s, a)−Q∗(s, a)∥∞ = max

(s,a)
|Qt(s, a)−Q∗(s, a)|

= max
(s,a)
|T tQ0(s, a)− T tQ∗(s, a)|

≤ γt max
(s,a)
|Q0(s, a)−Q∗(s, a)|

= γt max
(s,a)
|Q∗(s, a)|

≤
γt

1− γ
.

As a result, we obtain that

∥Q̂T (s, a)−Q∗(s, a)∥∞ ≤ α
γ

1− γ
+

γT

1− γ
= α

γ

1− γ
+

(1− (1− γ))T

1− γ

≤ α
γ

1− γ
+

e−(1−γ)T

1− γ

Now, all we need to do is choose α and T accordingly. If we choose T ≥ log

(
2

(1− γ)2ε

)
/(1− γ)

and we pick α = (1− γ)
ε

2
we obtain

∥Q̂T (s, a)−Q∗(s, a)∥∞ ≤ γ
ε

2
+

ε

2
(1− γ) =

ε

2
.
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B.2 Proof of Theorem 4.1

Proof. We must show that the algorithm is replicable and that the accuracy constraints are not
violated. Suppose that m is sufficiently large to guarantee replicable as well as sufficiently accurate
estimates. We show by induction that this yields replicability across two runs. Then we use a standard
contraction argument to ensure policy convergence.

First, fix some MDPM and consider two independent runs of the Replicable Phased Value Iteration
algorithm with shared internal randomness r. Let S(i) denote the set of transitions drawn and
V (i) the value function in the ith run. Suppose that m is sufficiently large such that our statistical
query estimate yields replicable values estimates such that for all s ∈ S, t ∈ T , it holds that
V̂

(1)
t (s′) = V̂

(2)
t (s′). We show via induction on t that the Q-function is exactly the same across both

runs at every step of Replicable Phased Value Iteration. Let Q̂(1)
t and Q̂

(2)
t be the two Q-functions of

the first and second run at iteration t respectively.
Base Case: In the base case at t = 0, by choice of our intialization for the Q-functions, it holds that
Q̂

(1)
0 = Q̂

(2)
0 = 0⃗ which is always replicable.

Inductive step: Suppose that Q̂(1)
t = Q̂

(2)
t . After one more iteration of value updates,

Q̂
(1)
t+1(s, a)← R(s, a) + V̂

(1)
t (s′) ∧ Q̂

(2)
t+1(s, a)← R(s, a) + V̂

(1)
t (s′)

=⇒ Q̂
(1)
t+1 = Q̂

(2)
t+1 ,

where we used the fact that rewards are deterministic and V̂
(1)
t (s′) = V̂

(2)
t (s′) is computed to be

exactly the same by assumption.
Finally, since Q̂(1)

t = Q̂
(2)
t it also holds for all states s ∈ S that maxa Q̂

(1)
t (s, a) = maxa Q̂

(2)
t (s, a).

The procedure maintains the exact same Q-function across two runs which yield the same policy.

To show convergence to an ε-optimal policy, we can use a standard contraction argument provided in
Lemma 4.1. If our value estimates are not too far off from their expectation which can be ensured via
sufficiently large sample size for the statistical query procedure.

It remains to show that our sample size is sufficiently large to ensure both replicability as well as
accuracy. For this we are interested in the following two quantities ∀(s, a) ∈ S ×A, t ∈ [0, T ],

Pr
[
V̂t(s)− E

s∼P

[
V̂t(s)

]
> α

]
≤ δSQ Pr

[
V̂

(1)
t (s) ̸= V̂

(2)
t (s)

]
≤ ρSQ .

To ensure the first probability holds, we require that our statistical queries return sufficiently accurate
estimates. For this we take a closer look at how the replicable statistical queries give us this guarantee.
In the replicable statistical query procedure, the error is split into a sample approximation error and
the error from discretization

α =
α(ρSQ − 2δSQ)

ρSQ + 1− 2δSQ
+

α

ρSQ + 1− 2δSQ
= α′ +

β

2

where β is the bin size of discretization that is chosen according to the original rSTAT procedure. By
union bound and Chernoff inequality we have that

Pr

 ⋃
(s,a),t

(
V̂t(s)− E

s∼P

[
V̂t(s)

]
> α′

) ≤ |S||A|Te−2mα′2
≤ δ

=⇒ m ≥
1

2α′2 log

(
2|S||A|T

δ

)
.

As long as we pick m at least this large, our value estimates will be accurate. Finally, we are interested
in the probability that in two separate runs, rSTAT fails to output the same estimate for one expected
value computation. Conditioning on accurate estimation in each run, the probability that two estimates
fall into different regions in the rSTAT procedure is given by 2α′/β. Again via union bound, we
have that

Pr

 ⋃
(s,a),t

(
V̂

(1)
t (s) ̸= V̂

(2)
t (s)

] ≤ |S||A|T (2α′/β)

= |S||A|TρSQ − 2δ .
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As long as we pick ρSQ = ρ/|S||A|T , we are guaranteed with probabability ρ that all estimates will
be replicable. Plugging this back into our sample complexity, we obtain

(ρSQ + 1− 2δSQ)
2

2α2(ρSQ − 2δSQ)2
log

(
2|S||A|T

δ

)
≤

4

2α2(ρSQ − 2δSQ)2
log

(
2|S||A|T

δ

)
=

2(|S||A|T )2

α2(ρ− 2δ)2
log

(
2|S||A|T

δ

)
≤ m .

Setting α and T according to the convergence criteria in Appendix B.1 concludes the proof.

B.2.1 Replicable approximate MDPs

Note that the transition model built in standard Phased Q-learning is very sparse and so are the
transitions that are implicitly used in every statisical query of our algorithm. The number of samples
that are used to estimate transition probabilities of a single state are of size Õ(log(|S||A|)) while the
vector that represents the full probability vector is of size |S|. This open up the question whether we
would be able to replicably approximate the full model of the MDP rather than just obtaining estimates
of values. We show that is in fact possible to obtain an exactly replicable MDP in algorithm 4.

Algorithm 4 Replicable ApproximateMDP
Parameters: accuracy ϵ, failure probability δ, replicability failure probability ρ
Input: Generative Model GM
Output:

For all s ∈ S, let ϕs(s
′) := 1[s = s′]

for (s, a, s′) ∈ S ×A× S do
S ← (GM(s, a))m ▷ do m calls to GM and store next states in a set S.
P̂ (s′|s, a) = rSTAT(S[s, a], ϕs(s

′))

R̂(s, a) = R(s, a)
end for
return M̂ built from P̂ (·|s, a) and r̂

While our rPVI algorithm achieves cubed dependence on |S|, trying to obtain replicable transition
dynamics is significantly harder using the rSTAT approach as we show in the following Observa-
tion B.1.

Observation B.1. Let M be a fixed MDP and assume access to a generative model GM. Let
ϵ ∈ [0, 1] be the accuracy parameter, ρ ∈ [0, 1] be the replicability parameter. Suppose

m = O

(
|S|5|A|3

ε2(ρ− 2δ)2
log

(
|S||A|

δ

))
.

is the number of calls to GM for every (s, a, s′) tuple, it holds for all (s, a, s′) across two runs that

Pr[|P (s′|s, a)− P̂ (s′|s, a)| ≥ ε] ∈ O(δ) ∧ Pr[P̂ (1)(s′|s, a) ̸= P̂ (2)(s′|s, a)] ∈ O(ρ) (2)

where P̂ (i) is our approximation of the transitions P in the ith run.

Proof Sketch.The analysis that falls out of using statistical queries for the model approximation
requires us to distribute the probability or replicability failure across all possible state-action-state
tuples. The proof then is similar to that of rPVI. We use Chernoff bounds to get a sample-complexity
for failure and reproducbility but this time we need to union bound over all of S ×A× S . Since the
union bound dependency from the rSTAT procedure enters our sample size quadratically, we end
up picking ρSQ = ρ/(|S|2|A|) and δSQ = δ/(|S|2|A|). Then, we have consider sampling data for
every (s, a) tuple which leads to the bound in Observation B.1. This highlights the difficulty of the
statistical query approach for full model-based reinforcement learning. It is, however, not unlikely
that more refined tools that utilize vector concentrations could lead to improved sample complexities
for replicably approximate MDPs.

18



B.3 Policy convergence for Lemma 4.2

The proof that Algorithm 2 converges to an ε-optimal policy makes use of lemmas from Kearns
and Singh [1998b] and Brafman and Tennenholtz [2003]. We will use a lemma showing that at
each iteration, πM̂K

is already ε-optimal or there is a high probability that n(s, a) increases for some

(s, a) ̸∈ K. We will also make use of the simulation lemma, which shows that if a model M̂K is
a good enough approximation of a modelM, then an optimal policy for M̂K is an approximately
optimal policy forM. We refer the reader to those works for proof.
Lemma B.1 (Kearns and Singh [1998b]). Let Explore(τ) denote the event that (sh, ah) = (s, a) for
some (s, a) ̸∈ K and some h ∈ [1, H]. Then for any episode in which πM̂K

is not ε-optimal, it holds
that

Prτ∼P (τ)[Explore(τ)] ≥ ε− ( 1
1−γ ) max

(s,a)∈S×A
∥PK(s, a)− P̂K(s, a)∥1 .

Lemma B.2 (Kearns and Singh [1998b]). LetM1 andM2 be two MDPs, differing only in their
transition probabilities P1(·|s, a) and P2(·|s, a). Then for any policy π,

|JM1
(π)− JM2

(π)| ≤ Rmax

2(1−γ)2 max
(s,a)∈S×A

∥P1(s, a)− P2(s, a)∥1

Lemma 4.2 (Convergence). Consider A to be Algorithm 4. Let ε ∈ (0, 1) be the accuracy parameter,
ρ ∈ (0, 1) the replicability parameter, and δ ∈ (0, 1), be the sample failure probability, with δ < ρ/4.
Let T ∈ Θ(H|S||A|

ε + H2 log(1/δ)
ε2 ) be a bound on the number of iterations of Algorithm 2. Suppose

1− γ >
√
ε

H|A| and let m ∈ Õ
(

|S|2|A|2T 4 log(1/ρ)
ρ2

)
be the number of trajectories per iteration. Let

k = H be the lowest expected visit count of a state-action pair before it is known. Let w ∈ O(k)
define the window [k, k + w] for sampling the randomized threshold k′. Then with all but probability
δ, after T iterations, A yields an ε-optimal policy.

With these lemmas in hand, we now proceed with the proof of Lemma 4.2.

Proof of Lemma 4.2. We use Lemma B.1 to ensure that progress is made with probability at least
ε/2 per episode, whenever πM̂K

is suboptimal. To ensure |PK(s′|s, a) − PK(s′|s, a)| < ε(1−γ)2

|S|
for all (s, a) ∈ S × A and s′ ∈ S with high probability, we must set parameters appropriately
when estimating these quantities with replicable statistical queries. Taking ρSQ ∈ O( ρ

|S|2|A| ),

αSQ ∈ O( ε(1−γ)2

|S| ), and δSQ ∈ O( δ
|S|2|A| ) to be the replicability, accuracy, and failure parameters

respectively for the replicable statistical queries, a sample of size O(
|S|2 log(1/δSQ)

(ε(ρSQ−2δSQ))2(1−γ)4 ) is required

by Theorem 2.1. Taking k ∈ O(
|S|2 log(1/δSQ)

m(ε(ρSQ−2δSQ))2(1−γ)4 ) and requiring that a state-action pair (s, a)
be visited O(km) times before being added to K suffices to guarantee all replicable statistical queries
made by Algorithm 2 are ε(1−γ)2

|S| accurate. It follows that at each iteration,

Prτ∼P (τ)[Explore(τ)] ∈ O(ε).

We sample m i.i.d. trajectories at each iteration and so, in expectation, at least O(εm) visits to
unknown (s, a) occur in a round. Let πM̂K,i

denote the policy at the start of iteration i and observe
that the sequence of random variables

Xi :=

i∑
j=1

∑
τ∈Sj

H∑
h=1

1[(sh, ah) ̸∈ K]− E
S

[∑
τ∈S

H∑
h=1

1[(sh, ah) ̸∈ K]

]
is a martingale with difference bounds [−mH,mH]. We have taken T ∈ Θ(H|S||A|

ε + H2 log(1/δ)
ε2 )

and so Azuma’s inequality then gives us that

PrS [XT ≤ −mH2 log(1/δ)
ε ] ≤ exp(−O(m

2H4 log2(1/δ)
ε2Tm2H2 ))

≤ exp(−O(H
2 log2(1/δ)

ε2T ))

∈ O(δ).
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Therefore, except with probability O(δ), we can lower-bound the number of visits to unknown (s, a)
over T iterations as follows.

T∑
j=1

∑
τ∈Sj

H∑
h=1

1[(sh, ah) ̸∈ K] ≥
T∑

j=1

E
S

[∑
τ∈S

H∑
h=1

1[(sh, ah) ̸∈ K]

]
− mH2 log(1/δ)

ε

≥ εmT − mH2 log(1/δ)

ε

= Θ

(
mH|S||A|+ mH2 log(1/δ)

ε

)
− mH2 log(1/δ)

ε

∈ Ω(mH|S||A|).

If all of these visits usefully contributed to the counts of unknown (s, a), we could immediately
conclude that Algorithm 2 converges in T iterations, because each (s, a) only needs to be visited
O(mk) times to be added to K and there are |S||A| many (s, a) to add. It is possible, however, that
not every visit to an (s, a) that is unknown at the start of the iteration is useful in terms of making
progress. It could be the case that only the first visit to some (s, a) in an iteration was required for
(s, a) to be added to K, and so any subsequent visits are “wasted” in terms of making progress. We
therefore consider two cases for each iteration: either some (s, a) is added to K or every visit to an
unknown (s, a) is useful. When some (s, a) is added to K, in the worst case mH − 1 of the total
visits to unknown (s, a) can be wasted by repeated visits to (s, a) at that iteration, and so mH|S||A|
is an upper-bound on the number of unproductive visits to unknown (s, a). Of the remaining visits, at
most O(mk|S||A|) can contribute to making progress over the course of the algorithm before some
(s, a) must become known. We have taken k = H , so after T iterations, we have

|K| ∈ Ω(mH|S||A|)−mH|S||A| −mk|S||A| ∈ Ω(|S||A|)

and so all |S||A| must be added to K after T iterations. Every (s, a) ∈ K satisfies

∥P (·|s, a)− P̂ (·|s, a)∥1 ≤ ε(1− γ)2

except with probability O(δ), and so πM̂K
is ε-optimal by Lemma B.2.

To contextualize the sample complexity of Algorithm 2, we first recall that the sample complexity
of the original R-max algorithm of Brafman and Tennenholtz [2003], suppressing dependence on
γ, is roughly Õ

(
|S|2|A| log(1/δ)

ε3

)
. In Theorem 4.2, we show that the total sample complexity of

Algorithm 2 is Õ
(

|S|7|A|7H6

ρ2ε5 + |S|2|A|2H10 log5(1/δ)
ε10

)
, so the sample overhead for replicability that

we obtain is Õ
(

|S|5|A|6H6

ρ2ε2 + |A|H10

ε7

)
.

C Computational requirements

Our code is written in Python and mostly uses functions from the numpy library for parallelization.
Our algorithms can easily run on house-hold grade computers using central processing units (CPUs)
with 2-4 cores. Yet, depending on the speed of the CPUs and the chosen sample-size one run may take
up to 4 hours. Most of this runtime comes from numpy’s sampling procedures. For our experiments,
we had access to 3 Lambda server machines with AMD EPYC™ CPUs and 128-thread support.
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