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ABSTRACT

Variance Exploding (VE) based diffusion models, an important class of diffusion
models, have empirically shown state-of-the-art performance in many tasks. How-
ever, there are only a few theoretical works on the VE-based models, and those
works suffer from a worse forward process convergence rate 1/poly(T ) than the
exp (−T ) results of Variance Preserving (VP) based models, where T is the for-
ward diffusion time. The slow rate is due to the Brownian Motion without the drift
term and introduces hardness in balancing the different error sources. In this work,
we design a new forward VESDE process with a small drift term, which converts
data into pure Gaussian noise while the variance explodes. Furthermore, unlike
the previous theoretical works, we allow the diffusion coefficient to be unbounded
instead of a constant, which is closer to the SOTA VE-based models. With an
aggressive diffusion coefficient, the new forward process allows a faster exp (−T )
rate. By exploiting this new process, we prove the first polynomial sample complex-
ity for VE-based models with reverse SDE under the realistic manifold hypothesis.
Then, we focus on a more general setting considering reverse SDE and proba-
bility flow ODE simultaneously and propose the unified tangent-based analysis
framework for VE-based models. In this framework, we prove the first quantitative
convergence guarantee for SOTA VE-based models with probability flow ODE.
We also show the power of the new forward process in balancing different error
sources on the synthetic experiments to support our theoretical results.

1 INTRODUCTION

In recent years, diffusion modeling has become an important paradigm for generative modeling and
has shown SOTA performance in image generation, audio synthesis, and video generation (Rombach
et al., 2022; Saharia et al., 2022; Popov et al., 2021; Ho et al., 2022). The core of diffusion models are
two stochastic differential equations (SDE): the forward and reverse processes. The forward process
can be described by an intermediate marginal distribution {qt}t∈[0,T ], which converts the data q0 to
Gaussian noise qT . There are two types of forward SDE (Song et al., 2020b): (1) Variance Preserving
(VP) SDE and (2) Variance Exploding (VE) SDE. The VPSDE corresponds to an Ornstein-Uhlenbeck
(OU) process, and the stationary distribution is N (0, I). The VESDE corresponds to the Brownian
motion with a (deterministic) time change, which has an exploding variance. In earlier times, VP-
based models (Ho et al., 2020; Lu et al., 2022) provide an important boost for developing diffusion
models. Recently, Karras et al. (2022) unify VPSDE and VESDE formula and show that the optimal
parameters correspond to VESDE. Furthermore, VE-based models achieve SOTA performance in
multi-step (Kim et al., 2022; Teng et al., 2023) and one-step image generation (Song et al., 2023).

After determining the forward SDE, the models reverse the forward SDE and generate samples by
running the corresponding reverse SDE (Ho et al., 2020; Lu et al., 2022) or probability flow ODE
(PFODE) (Song et al., 2020a; Karras et al., 2022). Before running the reverse process, three things
need to be chosen: (1) a tractable reverse beginning distribution; (2) discretization scheme; (3)
estimation of the score function ∇ log qt (Ho et al., 2020). These procedures are error sources of the
convergence guarantee, and we need to balance these terms to obtain the quantitative guarantee.

Despite the empirical success of diffusion models, only a few works focus on the convergence
guarantee of these models. Furthermore, many previous works (Chen et al., 2023d;a;c; Lee et al., 2023;
Benton et al., 2023) focus on VPSDE, and the analysis for VESDE is lacking. When considering the
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reverse beginning error, Lee et al. (2022) analyze a special VESDE with constant diffusion coefficient
βt and reverse SDE and obtain a 1/

√
T guarantee. This guarantee is worse than VP-based models

since the reverse beginning error is exp(−T ) for VP-based models. The above reverse beginning
error introduces hardness to balance three error sources to achieve a great sample complexity, as
shown in Section 5. To deal with this problem, De Bortoli et al. (2021) introduce a coefficient α
to balance the drift and diffusion term. When choosing α = 1/T , qT is N (0, T I), and the reverse
beginning error is exp (−

√
T ). However, their framework only allows constant βt, far from the

SOTA choice (Karras et al., 2022), whose coefficient grows fast and is unbounded. Furthermore,
De Bortoli et al. (2021) fail to balance the above three errors and has exponential dependence on
problem parameters. Therefore, the following question remains open:

Is it possible to design a VESDE with a faster forward convergence rate than 1/poly(T ) and balance
error sources to achieve the polynomial complexity when the diffusion coefficient is unbounded?

In this work, for the first time, we propose a new forward VESDE, which allows unbounded
coefficients and enjoys a faster forward convergence rate. We first show that the new process with a
conservative βt has similar trends but performs better compared to the original VESDE on synthetic
data (Section 7). Then, we prove that the new process with a suitable aggressive βt can balance
reverse beginning, discretization and score function errors and achieve the first polynomial sample
complexity for VE-based models. It is worth emphasizing that our results are achieved under the
manifold hypothesis, which means the data q0 is supported on a lower dimensional compact set
M. Different from the previously discussed works, which assume the score function is Lipschitz
continuous (Chen et al., 2023e) or satisfy strong log-Sobelev inequality (LSI) assumption (Lee
et al., 2022; Wibisono and Yang, 2022) to compulsorily guarantee that the score does not explode
when t → 0, the manifold hypothesis allows the expansion phenomenon of the score function (Kim
et al., 2021; Pope et al., 2021). To our knowledge, only Pidstrigach (2022) analyze VESDE in the
continuous reverse process under the manifold hypothesis, which misses the key discretization step.

Besides the polynomial sample complexity for VE-based models, another important point for VE-
based models is the quantitative guarantee for VESDE with reverse PFODE. Recently, many works
show that models with reverse PFODE have faster sample rate (Lu et al., 2022), and VE-based models
with reverse PFODE (Song et al., 2020b; Karras et al., 2022) achieve great performance. Furthermore,
the reverse PFODE can be applied in areas such as computing likelihoods (Song et al., 2020b) and
one-step generation models (Salimans and Ho, 2022; Song et al., 2023). However, except for a few
theoretical works for VPSDE (Chen et al., 2023e;c), the current works focus on reverse SDE. Hence,
after achieving polynomial complexity for reverse SDE, we go one step further and propose the
tangent-based unified framework for VE-based models, which contains reverse SDE and PFODE.
We note that when considering VPSDE with reverse SDE, Bortoli (2022) also use the tangent-based
method. However, as discussed in Section 6.2, the original tangent-based lemma can not deal with
reverse PFODE even in VPSDE. We carefully control the tangent process to avoid additional exp (T )
by using the exploding variance property of VESDE. Using this unified framework, we achieve the
first quantitative convergence for the SOTA VE-based models with reverse PFODE (Karras et al.,
2022). In conclusion, we accomplish the following results under the manifold hypothesis:

1. We propose a new forward VESDE with the unbounded coefficient βt and a drift term that
is typically small. With an aggressive βt, the new process balances different error terms and
achieves the first polynomial sample complexity for VE-based methods with reverse SDE.

2. When considering the general setting of VE-based methods, we propose the tangent-based
unified framework, which contains reverse SDE and PFODE. Under this framework, we
prove the first quantitative guarantee for SOTA VE-based models with reverse PFODE.

3. We show the power of our new forward process via synthetic experiments. For aggressive
drift VESDE, we show it balances reverse beginning and discretization error. For conser-
vative one, we show that it improves the quality of generated distribution without training.

2 RELATED WORK

In the first two paragraphs of this section, we focus on works without the manifold hypothesis. In the
last paragraph, we discuss the manifold hypothesis.
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Analyses for VP-based models. De Bortoli et al. (2021) study VPSDE in TV distance and propose
the first quantitative convergence guarantee with exponential dependence on problem parameters.
Lee et al. (2022) achieve the first polynomial complexity with strong LSI assumption. Chen et al.
(2023d) remove LSI assumption, assume the Lipschitz score and achieve polynomial complexity.
Recently, Chen et al. (2023a) and Benton et al. (2023) further remove the Lipschitz score assumption,
and Benton et al. (2023) achieve optimal dependence on d. When considering PFODE, Chen et al.
(2023e) propose the first quantitative guarantee with exponential dependence on score Lipschitz
constant. Chen et al. (2023c) achieve polynomial complexity by introducing a corrector component.

Analyses for VE-based models. When considering VESDE, most works focus on constant βt and
reverse SDE setting. De Bortoli et al. (2021) provide the first quantitative convergence guarantee
with exponential dependence on problem parameters. Lee et al. (2022) analyze a constant diffusion
coefficient VESDE and achieve polynomial sample complexity. However, the results of Lee et al.
(2022) relies heavily on the LSI assumption, which is unrealistic (Remark 1). When considering the
reverse PFODE and unbounded βt, Chen et al. (2023e) only consider the discretization error and
provide a quantitative convergence guarantee. Furthermore, as discussed in Section 6.2, their results
introduce additional exp (T ) compared to ours.

Analyses for diffusion models under the manifold hypothesis. There are other line works (Pid-
strigach, 2022; Bortoli, 2022; Lee et al., 2023; Chen et al., 2023d;b) that consider the manifold
hypothesis. Pidstrigach (2022) is the first work considering the guarantee of VESDE, VPSDE, and
CLD in the continuous process. Bortoli (2022) study VPSDE with reverse SDE, and it is the most
relevant work to our unified framework. However, as discussed in Section 1, we need a refined
analysis of the tangent process for VESDE with reverser PFODE to avoid exp (T ). Chen et al.
(2023d) and Lee et al. (2023) also analyze VPSDE and achieve the polynomial complexity. Chen
et al. (2023b) study the score learning process and distribution recovery on the low dimensional data.

3 THE VARIANCE EXPLODING (VE) SDE FOR DIFFUSION MODELS

In this section, we introduce the basic knowledge of VE-based diffusion models from the perspective
of SDE and discuss the assumption on the balance coefficient τ and diffusion coefficient βt.

3.1 THE FORWARD PROCESS

First, we denote by q0 the data distribution, X0 ∼ q0 ∈ Rd, and {βt}t∈[0,T ] a non-decreasing
sequence in [0, T ]. Then, we define the forward process:

dXt = −1

τ
βtXt dt+

√
2βt dBt, X0 ∼ q0 , (1)

where (Bt)t≥0 is a d-dimensional Brownian motion, and τ ∈ [T, T 2] is the coefficient to balance the
drift and diffusion term. We also define qτt as the marginal distribution of the forward OU process at
time t. For well-defined βt (Assumption 1), we have that

Xt = mtX0 + σtZ, mt = exp

[
−
∫ t

0

βs/τ ds

]
, σ2

t = τ

(
1− exp

[
−2

∫ t

0

βs/τ ds

])
, (2)

where Z ∼ N (0, I). Later, we will discuss the choice of βt, which depends on the type of reverse
process and the choice of τ . When the previous works consider VESDE, they usually consider the
forward process without the drift term:

dXt =
√

dσ2
t / dt dBt, X0 ∼ q0 , (3)

where σ2
t is a non-decreasing variance sequence. There are two common choices for VESDE. The

first choice (Chen et al., 2023e) is σ2
t = t, whose marginal distribution qT is N (X0, T I). This choice

is the setting that most theoretical works focus on (De Bortoli et al., 2021; Lee et al., 2022) and is
similar to Eq. (1) with τ = T 2 and βt =

1
2 ,∀t ∈ [T ] since qτT = N (exp ( 2

T )X0, (1− exp ( 1
T ))T

2I).
The second SOTA choice (Karras et al., 2022; Song et al., 2023) is σ2

t = t2, which corresponds to
τ = T 2, βt = t and qτT = N (e−1/2E[q0], e−1Cov[q0] + (1 − e−1)T 2I). We note that this qτT still
contains mean and variance information and almost identical to Eq. (3) with σ2

t = t2. To support
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our argumentation, we do simulation experiments and show that these two setting have similar trend
(Fig. 1) . Hence, Eq. (1) is representative enough to represent current VESDE. Furthermore, the
general forward SDE retaining the drift term will lead to a series of VESDE, which is helpful in
choosing the tractable Gaussian distribution qτ∞ and enjoys a greater sample complexity (Section 5).

3.2 THE REVERSE PROCESS

Reversing the forward SDE, we obtain the reverse process (Yt)t∈[0,T ] = (XT−t)t∈[0,T ]:

dYt = βT−t

{
Yt/τ + (1 + η2)∇ log qT−t (Yt)

}
dt+ η

√
2βT−t dBt , (4)

where now (Bt)t≥0 is the reversed Brownian Motion and η ∈ [0, 1]. When η = 1, the reverse process
corresponds to reverse SDE. When η = 0, the process corresponds to PFODE. Since ∇ log qt can not
be computed exactly, we need to use a score function s(t, ·) to approximate them. Then, we introduce
the continuous-time reverse process (Ŷt)t∈[0,T ] with approximated score :

dŶt = βT−t

{
Ŷt/τ + (1 + η2)s(T − t, Ŷt)

}
dt+ η

√
2βT−t dBt, Ŷ0 ∼ qτ∞ , (5)

where qτ∞ is the reverse beginning distribution, which always is a tractable Gaussian distribution.
In this work, similar to Karras et al. (2022) and Song et al. (2023), we choose qτ∞ = N (0, σ2

T I).
The last step is to discrete the continuous process. We define {γk}k∈{0,...,K} as the stepsize and
tk+1 =

∑k
j=0 γj . In this work, we adapt the early stopping technique tK = T − δ, which has been

widely used in practice (Ho et al., 2020; Kim et al., 2021; Karras et al., 2022). In this work, we
consider the exponential integrator (EI) discretization (Zhang and Chen, 2022), which freezes the
score function at time tk and defines the new SDE for small interval t ∈ [tk, tk+1]:

dỸt = βT−t

{
Ỹt/τ + (1 + η2)s(T − tk, Ỹt)

}
dt+ η

√
2βT−t dBt, t ∈ [tk, tk+1] . (6)

Compared to the Euler–Maruyama (EM) discretization, EI has better experimental performance, and
the results for EI can transfer to EM discretization (Bortoli, 2022). In this work, we consider βt can
increase rapidly, for example, βt = t2, instead of a constant (Chen et al., 2023d) or in a small interval
[1/β̄, β̄] (Bortoli, 2022). Hence, we make the following assumption on βt.
Assumption 1. Define t 7→ βt as a continuous, non-decreasing sequence. For any τ ∈ [T, T 2], there
exists constants β̄ and G, which are independent of t, such that for any t ∈ [0, T ]: (1) if η = 1, then
1/β̄ ≤ βt ≤ max{β̄, t2}; (2) if η ∈ [0, 1), then 1/β̄ ≤ βt ≤ max{β̄, t} and

∫ T

0
βt/τ dt ≤ G.

This assumption rules out cases where βt grows too fast, such as et. We emphasize that βt grows
slower than t in the real world and satisfies

∫ T

0
βt/τ dt ≤ G (Song et al., 2020b; Karras et al., 2022).

However, our assumption is more general since βt depends on τ instead of at most linearly. For
example, when η = 1 and τ = T 2, we can choose βt = t2, which has the same order compared to τ .

Notations. For x ∈ Rd and A ∈ Rd×d, we denote by ∥x∥ and ∥A∥ the Euclidean norm for vector
and the spectral norm for matrix. We denote by q0PT the distribution of XT , Qqτ∞

tK the distribution of

YtK , Rqτ∞
K the distribution of ỸtK and Qq0PT

tK the distribution which does forward process, then does
reverse process (Eq. (4)). We denote by W1 and W2 the Wasserstein distance of order one and two.

4 THE FASTER FORWARD CONVERGENCE GUARANTEE FOR THE VESDE

Since the previous VESDE (Eq. (3)) does not converge to a stationary distribution, we usually choose
a normal distribution N (m̄T , VT ) to approximate qT . Pidstrigach (2022) show that the optimal
solution is m̄T = E[q0] and VT = Cov[q0] + σ2

T I, which leads 1/σ2
T forward convergence rate. To

obtain a faster forward convergence rate, we introduce a new process, which allows E[q0] and Cov[q0]
decay, as well as the variance explodes. In particular, we have the following lemma.
Lemma 1. The minimization problem minm̄t,Vt

KL (qt | N (m̄t, Vt)) is minimized by m̄t = mtE [q0]
and Vt = m2

t Cov [q0] + σ2
t I, where mt and σt defined in Eq. (2).

Lemma 1 is a general version compare to Pidstrigach (2022) since the existence of variable mt

instead of constant one. Theorem 1 shows that variable mt allows a faster forward convergence rate.
Before introducing the results, we introduce the manifold hypothesis on the data distribution.
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Assumption 2. q0 is supported on a compact set M and 0 ∈ M.

We denote R the diameter of the manifold by R = sup{∥x − y∥ : x, y ∈ M} and assume R > 1.
The manifold hypothesis is supported by much empirical evidence (Bengio et al., 2013; Fefferman
et al., 2016; Pope et al., 2021) and is naturally satisfied by the image datasets since each channel
of images is bounded. Furthermore, different from the Lipschitz score assumption, this assumption
allows the expansion phenomenon of the score Kim et al. (2021) and is studied in the VPSDE setting.
As shown in Bortoli (2022), this assumption also encompasses distributions which admit a continuous
density on a lower dimensional manifold, and R contains the dimension information. For example,
considering a hypercube M = [−1/2, 1/2]p with p ≤ d, the R =

√
p, corresponding to the latent

dimension p. Then, we obtain the following guarantee for the new forward process.
Theorem 1. Let qT be the marginal distribution of the forward process, and qτ∞ = N (0, σ2

T I) be the
reverse beginning distribution. With mT , σT defined in Eq. (2), we have

∥qT − qτ∞∥TV ≤
√
mT D̄/σT ,

where D̄ = d|c|+ E[q0] +R and c is the eigenvalue of Cov[q0] with the largest absolute value.

Recall that mT = exp[−
∫ T

0
βt/τ dt], the previous VESDE (Song et al., 2020b; Karras et al., 2022;

Lee et al., 2022) choose a conservative βt satisfies
∫ T

0
βt/τ dt ≤ G. However, if we allow an

aggressive βt, the forward process will have a faster convergence rate. To illustrate the accelerated
forward process, we use τ = T 2 as an example and discuss the influence of different βt = tα1 , α1 ∈
[1, 2] under large enough T . Due to the definition of σT , σT ≈ T , and the forward convergence rate
mainly depends on

√
mT . When α1 = 1 is conservative, mT is a constant, and the convergence rate

is 1/T . When α1 = 1 + ln(2r ln(T ))/ ln(T ) is slightly aggressive, the convergence rate is 1/T r+1

for r > 0. When α1 ≥ 1+ln(T − ln(T ))/ ln(T ) is aggressive, the forward convergence rate is faster
than exp(−T ). When α1 = 2 is the most aggressive choice, the convergence rate is exp (−T )/T .
In our analysis, whether βt can be aggressive in our unified framework depends on the form of the
reverse process, as the discussion in Section 6. In the following section, we show that when choosing
aggressive βt (reverse SDE setting), the new process balances the reverse beginning, discretization,
and approximated score errors and achieves the first polynomial sample complexity for VE-based
models under the manifold hypothesis.

5 THE POLYNOMIAL COMPLEXITY FOR VESDE WITH REVERSE SDE

In this section, we first pay attention to VESDE with reverse SDE to show the power of our new
forward process and aggressive βt. In this section, we assume an uniform L2-accuracy assumption
on scores, which is exactly the same compared to Chen et al. (2023d); Benton et al. (2023).

Assumption 3 (Approximated score). For all k = 1, . . . ,K,Eqtk

[
∥stk −∇ ln qtk∥

2
]
≤ ϵ2score.

We show that introducing aggressive βt only slightly affects the discretization error (additional
logarithmic factors) and significantly benefits in balancing reverse beginning and discretization errors.
Hence, we can obtain a polynomial sample complexity for VE-based models with unbounded βt.
Corollary 1. Assume Assumption 1, 2, 3. Let γK = δ, γ̄K = argmaxk∈{0,...,K−1}γk , τ = T 2 and

βt = t2. Then, TV
(
R

qτ∞
K , q0

)
is bounded by

TV
(
R

qτ∞
K , q0

)
≤ D̄ exp(−T/2)

T
+

R2
√
d

δ6

√
γ̄KT 5 + ϵscore

√
T 3 ,

where D̄ = d|c|+ E [q0] +R. Furthermore, by choosing δ ≤
ϵ
2/3
W2

(d+R
√
d)1/3

, T ≥ 2 ln D̄
ϵTV

, maximum

stepsize γ̄K ≤ δ12ϵ2TV ln
5(D̄/ϵTV)/R

4d and assuming ϵscore ≤ Õ(ϵTV), the output of Rqτ∞
K is (ϵTV +

ϵscore) close to qδ , which is ϵW2 close to q0, with sample complexity (hiding logarithmic factors) is

K ≤ Õ

(
dR4(d+R

√
d)4

ϵ8W2
ϵ2TV

)
.
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For choice βt = t and τ = T , by choosing δ ≤ ϵW2

(d+R
√
d)1/2

and γ̄K ≤ δ8ϵ2TV ln3(D̄/ϵTV)
R4d , we obtain the

same sample complexity.

First, we discuss the power of our new process and aggressive coefficient under the setting τ = T 2,
which is closer to the SOTA setting. Then, we discuss the results of τ = T and compare them to
existing polynomial sample complexity results in Remark 1. For τ = T 2, the above results show that
our new process with aggressive βt = t2 balances the reverse beginning, discretization scheme and
approximated score errors. If choosing a conservative βt = t, term exp (−T/2) will be removed.
Then, the guarantee has the form 1/T +

√
γ̄KT 5/δ6 + ϵscore

√
T 3, which means if T ≥ 1/ϵTV, then

ϵscore
√
T 3 ≥ ϵscore/

√
ϵ3TV. Hence, it is hard to achieve non-asymptotic results for conservative βt.

However, by choosing aggressive βt, T becomes the logarithmic factor, and these error sources are
balanced. In Section 7.1, we do experiments on 2-D Gaussian to support our above augmentation.
Remark 1. Lee et al. (2022) consider pure VESDE (Eq. (3)) with σ2

t = t and reverse SDE under the
LSI assumption with parameter CLS. The LSI assumption does not allow the presence of substantial
non-convexity and is far away from the multi-modal real-world distribution. Furthermore, they use
unrealistic assumption ϵscore ≤ 1/(CLS + T ) to avoid the effect of the approximated score, which is
stronger than Assumption 3. Under the above strong assumption on data and approximated score
function, Lee et al. (2022) achieve the polynomial sample complexity Õ(L2d(d|c|+R)2/ϵ4TV). Under
the manifold hypothesis and choosing L = R2d2/ϵ4W2

, the sample complexity is Õ(R4d5(d|c| +
R)2/ϵ8W2

ϵ4TV), which worse than Corollary 1.

6 THE UNIFIED ANALYSIS FRAMEWORK FOR VE-BASED METHODS

In this section, we go beyond the reverse SDE setting and introduce the unified analysis framework
for VESDE with reverse SDE and PFODE. In Section 6.1, we show the convergence results in our
unified framework. In Section 6.2, we introduce the detail of our tangent-based unified framework
and discuss the variance exploding property of VESDE, which allows analyzing reverse PFODE.

6.1 THE CONVERGENCE GUARANTEE FOR VESDE

In this part, we consider the reverse beginning and discretization errors and assume an accurate score.
This setting is similar to Chen et al. (2023e), which mainly considers the reverse PFODE. It is a
meaningful step to analyze VESDE with reverse SDE and PFODE in a unified framework and show
the property of VESDE instead of the property of reverse process.
Theorem 2. Assume Assumption 1 and 2, γk supv∈[T−tk+1,T−tk]

βv/σ
2
v ≤ 1/28 for ∀k ∈

{0, ...,K−1}, and δ ≤ 1/32. Let γ̄K = argmaxk∈{0,...,K−1}γk and γK = δ. Then, for ∀τ ∈ [T, T 2],
we have the following convergence guarantee.

(1) If η = 1 (the reverse SDE), choosing an aggressive βt = t2, we have

W1

(
R

qτ∞
K , q0

)
≤ C1(τ)T exp

[
R2

2
(
β̄

δ3
+

1

τ
)

]
[κ2

1(τ)(
β̄

δ3
+

1

τ
)γ̄

1/2
K + κ2

1(τ)]γ̄
1/2
K

+ exp

[
R2

2
(
β̄

δ3
+

1

τ
)

]
D̄ exp (−T/2)√

τ
+ 2(

R

τ
+

√
d)
√
δ ,

where C1(τ) is linear in τ2, κ1(τ) = max
{
β̄, T 2

} (
1/τ + β̄/δ3

)
.

(2) If η = 0 (the reverse PFODE), choosing a conservative βt satisfies Assumption 1, we have

W1

(
R

qτ∞
K , q0

)
≤ C2(τ)T exp

[
R2

2
(
β̄

δ2
+

1

τ
) +

1

2

]
[κ2

2(τ)(
β̄

δ2
+

1

τ
)γ̄

1/2
K + κ2

2(τ)]γ̄
1/2
K

+ exp

[
R2

2
(
β̄

δ2
+

1

τ
)

]
D̄√
τ
+ 2(

R

τ
+

√
d)
√
δ ,

where C2(τ) is linear in τ2, κ2(τ) = max{β̄, T}
(
1/τ + β̄/δ2

)
.

Theorem 2 proves the first quantitative guarantee for VE-based models with reverse PFODE in
the unified tangent-based method (Section 6.2). We also show that this framework can deal with
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reverse SDE. As shown in Theorem 2, for different reverse processes, our unified framework chooses
different βt to achieve a quantitative convergence guarantee, which shows the power of our framework.
Correspondingly, the Girsanov-based method (Chen et al., 2023d;a; Benton et al., 2023) can not
obtain the guarantee of reverse PFODE since the diffusion term for reverse process is not well-defined.

For the reverse PFODE, Chen et al. (2023e) employ the Restoration-Degradation framework to
analyze the VESDE. Since their result has an exponential dependence on the Lipschitz constant of
the score, their results also have exponential dependence on R and δ. Furthermore, their results have
exponential dependence on the growth rate of βt (gmax in (Chen et al., 2023e)), which corresponds to
τ of VESDE. However, our dependence on τ appears in the polynomial term. Hence, our framework
is a suitable unified framework for VE-based methods. Furthermore, we emphasize that our tangent-
based unified framework is not a simple extension of Bortoli (2022). We carefully control the
tangent process according to the variance exploding property of VESDE to avoid exp (T ) term when
considering PFODE, as discussed in Section 6.2.
Corollary 2. Assume Assumption 1 and 2. Let ϵ ∈ (0, 1/32), τ ∈ [T, T 2], γK = δ = ϵ2, γ̄K =
argmaxk∈{0,...,K−1}γk,

(1) if η = 1, with an aggressive βt = t2, T ≥ β̄(R2 + 1)/ϵ6, γ̄K ≤ exp (−T )/(T
20
3 τ4C2

1 (τ));

(2) if η = 0, with a conservative βt (Assumption 1), τ ≥ exp (R
2β̄
ϵ4 )/ϵ2 and γ̄K ≤ 1

τT 6 ln2(T )C2
2 (τ)

:

W1

(
R

qτ∞
K , q0

)
≤ (D̄ + 2R2 + 2

√
d)ϵ ,

where D̄ is defined in Theorem 1, and max{C1(τ), C2(τ)} ≤ (16+β̄
3
2 +1)(2+R2)(12R+4τ2

√
d) .

We note that Theorem 2 has exponential dependence on R and δ, which is introduced by the tangent
process. Similar to Bortoli (2022), if we assume the Hessian

∥∥∇2 log qt (xt)
∥∥ ≤ Γ/σ2

t , we obtain a
better control on the tangent process and replace the exponential dependence on δ by a polynomial
dependence on δ and exponential dependence on Γ when considering reverse PFODE.
Corollary 3. Assume Assumption 1, Assumption 2 and

∥∥∇2 log qt (xt)
∥∥ ≤ Γ/σ2

t . Let η = 0

(reverse PFODE), ϵ ∈ (0, 1/32), τ = T 2, βt = t, γ̄K = argmaxk∈{0,...,K−1}γk, γK = δ, we have

W1

(
R

qτ∞
K , q0

)
≤ C2(τ)T

β̄
Γ
2

δΓ
exp

[
Γ + 2

2

]
[κ2

2(τ)(
β̄

δ2
+

1

τ
)γ̄

1/2
K + κ2

2(τ)]γ̄
1/2
K

+
β̄

Γ
2

δΓ
exp

[
Γ + 2

2

]
D̄√
τ
+ 2(

R

τ
+

√
d)
√
δ ,

where C2(τ) is linear in τ2, κ2(τ) = max{β̄, T}
(

1
τ + β̄

δ2

)
.

Though the Γ/σ2
δ bound is stronger than (1 +R2)/σ4

δ in Theorem 2 and Chen et al. (2023d), there
are many special cases such as hypercube M = [−1/2, 1/2]p with p ≤ d satisfy this assumption.
Remark 2. Since the reverse PFODE setting does not involve the aggressive βt = t2, our analysis
still holds if we consider original VESDE Eq. (3) with σ2

t = t2 and reverse PFODE, which means our
analysis can explain the results in (Karras et al., 2022). For consistency, we use Eq. (1) in this work.

Remark 3. In this section, similar to Chen et al. (2023e), we assume an accurate score as the first
step. When considering the approximated score, our guarantee has an additional ϵscoreT term. As
discussed in Remark 1, we can eliminate the effect of ϵscore by adding strong assumption. However, if
assuming Assumption 3, since T in Corollary 2 is not a logarithmic factor, we can not ignore it. One
future work is considering an approximated score in PFODE and achieving a polynomial complexity.

6.2 THE DICUSSION ON THE UNIFIED FRAMEWORK

In this section, we introduce the unified tangent-based framework for reverse SDE and PFODE and
discuss key steps to achieve the quantitative guarantee for PFODE. Firstly, we decompose the goal:

W1

(
R

qτ∞
K , q0

)
≤ W1

(
R

qτ∞
K , Q

qτ∞
tK

)
+W1

(
Q

qτ∞
tK , Qq0PT

tK

)
+W1

(
Qq0PT

tK , q0

)
.
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These terms correspond to the discretization scheme, reverse beginning distribution, and the early
stopping parameter δ. We focus on most difficult discretization term and first recall the stochastic
flow of the reverse process for any x ∈ Rd and s, t ∈ [0, T ] with t ≥ s:

dYx
s,t = βT−t

{
Yx

s,t/τ +
(
1 + η2

)
∇ log qT−t

(
Yx

s,t

)}
dt+ η

√
2βT−tdBt, Yx

s,s = x ,

and the corresponding tangent process

d∇Yx
s,t = βT−t

{
I/τ +

(
1 + η2

)
∇2 log qT−t(Y

x
s,t)
}
∇Yx

s,tdt, ∇Yx
s,s = I , (7)

which is used to control the discretization error in Bortoli (2022). Then, the discretization er-
ror is bounded by time and space discretization error for a small interval [tk, tk+1] and the tan-
gent process

∥∥∇Yx
s,tK

∥∥ for ∀s ∈ [0, tK ]. For the first two terms, we control the Lipshctiz con-
stant

∥∥∇2 log qt (xt)
∥∥ and score perturbation ∥∂t∇ log qt (xt)∥ at time t ∈ [tk, tk+1]. For the key∥∥∇Yx

s,tK

∥∥, we consider the reverse SDE and PFODE simultaneously and propose a general version
of Bortoli (2022). Since the bound of tangent process depend on σ−2

T−tK
, which corresponding to βt,

we introduce an indicator i ∈ {1, 2} for σT−tK . We use τ = T 2 as an example. When βt = t2 is
aggressive, i = 1 , η = 1 and σ−2

T−tK
(i = 1) ≤ 1/τ + β̄/δ3. When βt = t is conservative, i = 2,

η ∈ [0, 1) and σ−2
T−tK

(i = 2) ≤ 1/τ + β̄/δ2. Then, we obtain the following guarantee for the tangent
process.
Lemma 2. Assume Assumption 1 and 2. Then, for ∀s ∈ [0, tK ], x ∈ Rd, and i ∈ {1, 2}, we have

∥∇Yx
s,tK ,i∥ ≤ exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]
.

Furthermore, if assuming
∥∥∇2 log qt (xt)

∥∥ ≤ Γ/σ2
t , we have that

∥∇Yx
s,tK ,i∥ ≤ σ

−(1+η2)Γ
T−tK

(i) exp

[((
1 + η2

)
Γ + 2

) ∫ tK

0

βT−u

τ
du

]
.

We emphasize that the general bound for the tangent process is the key to achieving the guarantee for
VESDE with the reverse ODE. Recall that in the original lemma for the tangent processes, since τ

is independent of T and βt is bounded in a small interval [1/β̄, β̄],
∫ tK
0

βT−u/τdu = Θ(T ), which
means there is an additional exp (T ) when considering VPSDE with revere PFODE. However, our
tangent-based lemma makes use of the variance exploding property of VESDE to guarantee that∫ T

0
βt/τdt ≤ G with a conservative βt = t when considering reverse PFODE. When considering

reverse SDE (η = 1), we can choose aggressive βt = t2 since the choice of βt does not affect
the bound of the tangent process. Then, we control the discretization error for η ∈ [0, 1]. For the
remaining two term, we know that the early stopping terms is smaller than 2(R/τ +

√
d)
√
δ and

W1

(
Q

qτ∞
tK , Qq0PT

tK

)
≤

√
mT D̄

σT
exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]
,

The reason why an exponential dependence in reverse beginning term is that we can not use the data
processing inequality in Wasserstein distance. One future work is introducing the short regularization
technique (Chen et al., 2023c) and suitable corrector to remove this exponential dependence.

7 SYNTHETIC EXPERIMENTS

In this section, we do some synthetic experiments to show the power of the new forward process. In
Section 7.1, we show that with aggressive βt, the new process achieves good balance in different
error terms. Furthermore, we consider the approximated score and show that the conservative drift
VESDE can improve the quality of the generated distribution without training.

7.1 THE POWER OF AGGRESSIVE VESDE IN BALANCING DIFFERENT ERROR SOURCES

In this section, we do experiments on 2-D Gaussian to show that the drift VESDE with aggressive βt

has power in balancing the reverse beginning and discretization errors. Since the ground truth score
of the Gaussian can be directly calculated, we use the accurate score function to discuss the balance
between the other two error terms clearly. We show how to use approximated score in Section 7.2.

8
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(a) Original Figure (b) Pure VESDE (Eq. (3), T = 100) (c) Drift VESDE (T = 100)

Figure 2: Experiment results of Swiss roll with Euler Maruyama Method (Reverse SDE)

Figure 1: Experiment results of 2-D Gaussian

As shown in Fig. 1, the process with aggressive
βt = t2 achieves the best and second perfor-
mance in EI and EM discretization, which sup-
port our theoretical result (Corollary 1). The
third best process is conservative βt = t with
the small drift term. The reason is that though it
can not achieve a exp (−T ) forward guarantee,
it also has a constant decay on prior information,
as shown in Section 3.1. This decay slightly
reduces the effect of the reverse beginning er-
ror. The worst process is pure VESDE since it
is hard to balance different error sources. Our
experimental results also show that EI is better
than EM discretization.

7.2 THE CONSERVATIVE DRIFT VESDE BENEFITS FROM PURE VESDE WITHOUT TRAINING

As shown in Fig. 1, the red and orange lines have similar trends. Hence, for conservative drift VESDE,
which satisfies (2) of Assumption 1, we can directly use the models trained by pure VESDE to
improve the quality of generated distribution. We confirm our intuition by training the model with
pure VESDE (Eq. (3)) with σ2

t = t and use the models to conservative drift VESDE with βt = 1 and
τ = T . From the experimental results (Fig. 2), it is clear that pure VESDE has a low density on the
Swiss roll except for the center one, which indicates pure VESDE can not deal with large dataset
variance Cov[q0], as we discuss in Section 4. For conservative drift VESDE (βt = 1 and τ = T ), as
we discuss in the above section, it can reduce the influence of the dataset information. Fig. 2c support
our augmentation and show that the density of the generated distribution is more uniform compared
to pure VESDE, which means that the drift VESDE can deal with large dataset mean and variance.

There are more experiments on Swiss roll and 1D-GMM to explore different sampling methods
(RK45, reverse PFODE) and different T . We refer to Appendix F for more details and discussion.

8 CONCLUSION

In this work, we analyze the VE-based models under the manifold hypothesis. Firstly, we propose
a new forward VESDE process by introducing a small drift term, which enjoys a faster forward
convergence rate than the Brownian Motion. Then, we show that with an aggressive βt, the new
process has the power to balance different error sources and achieve the first polynomial sample
complexity for VE-based models with unbounded coefficient and reverse SDE.

After achieving the above results, we go beyond the reverse SDE and propose the tangent-based
unified framework, which contains reverse SDE and PFODE. Under this framework, we make use of
the variance exploding property of VESDE and achieve the first quantitative convergence guarantee
for SOTA VE-based models with reverse PFODE. Finally, we do synthetic experiments to show the
power of the new forward process.

Future Work. This work proposes the first unified framework for VE-based models with an accurate
score. After that, we plan to consider the approximated score error and provide a polynomial sample
complexity for the VE-based models with reverse PFODE under the manifold hypothesis.

9
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APPENDIX

A THE PROOF FOR THE FASTER FORWARD PROCESS

Lemma 1. The minimization problem minm̄t,Vt KL (qt | N (m̄t, Vt)) is minimized by m̄t = mtE [q0]
and Vt = m2

t Cov [q0] + σ2
t I, where mt and σt defined in Eq. (2).

Proof. For simplicity, we denote the mean and covariance of q0 by a and C. We also define the
optimize variable nt = N (m̄t, Ct). We can directly compute the KL divergence KL(qt|nt):

KL (qt|nt) = −H (qt)−
∫

log (nt(x)) qt(x)dx

= −H (qt) +
d

2
log(2π) +

1

2
log (det (Vt)) +

1

2

∫
(x− m̄t)

TV −1
t (x− m̄t)qt(x)dx .

For the last term, we directly compute∫
(x− m̄t)

T
V −1
t (x− m̄t) pt(x)dx

=E
[
(Xt − m̄t)

T
V −1
t (Xt − m̄t)

]
= E

[
(mtX0 + σtZ − m̄t)

T
V −1
t (mtX0 + σtZ − m̄t)

]
=E

[
m2

t (X0 − a)
T
V −1
t (X0 − a)

]
+ (mta− m̄t)

T
V −1
t (mta− m̄t) + σ2

tE
[
ZTV −1

t Z
]

=m2
t tr
(
CV −1

t

)
+ σ2

t tr
(
V −1
t

)
+ (mta− m̄t)

T
V −1
t (mta− m̄t) ,

where the second inequality follows that Xt = mtX0 + σtZ. It is clear that the optimal solution of
m̄t is mta. In the next step, we focus on the optimization problem for Vt:

L
(
V −1
t

)
= log (det (Vt)) + tr

((
m2

tC + σ2
t I
)
V −1
t

)
= − log

(
det
(
V −1
t

))
+ tr

((
m2

tC + σ2
t I
)
V −1
t

)
.

Since the above optimization is a convex optimization problem, we use the method similar to
Pidstrigach (2022), we obtain that the optimal solution of Vt is m2

tC + σ2
t I. ■

Lemma 3. Let m̄t and Vt be the optimal mean and covariance operator from Lemma 1. Then

KL (qt|N (m̄t, Vt)) ≤
1

2
log

(∏d
i=1

(
m2

t ci + σ2
t

)
(σ2

t )
d

)
+

R2mt

σ2
t

≤ dm2
t c

2σ2
t

+
R2mt

σ2
t

+ o(
m2

t c

σ2
t

) ,

KL
(
N (m̄t, Vt)|(N (0, σ2

t )
)
≤

m2
t

∑d
i=1 ci

2σ2
t

+
m2

t (E[q0])2

2σ2
t

+
1

2
log

(
(σ2

t )
d∏d

i=1 (m
2
t ci + σ2

t )

)

≤
m2

t

∑d
i=1 ci

2σ2
t

+
m2

t (E[q0])2

2σ2
t

+
dm2

t c

2σ2
t

+ o(
m2

t c

σ2
t

) ,

where ci are the eigenvalues of Cov [q0], and c is the eigenvalue with the largest absolute value.

Proof. For t ≥ 0, we directly calculate the KL divergence for this term:

KL (qt | N (m̄t, Vt)) = −H (qt) +
1

2
log (det (2πVt)) +

1

2
tr
((
m2

tC + σ2
t I
)
V −1
t

)
= −H (qt) +

1

2
log (det (2πVt)) +

d

2

= −H (qt) +
d

2
log(2π) +

1

2
log

(
d∏

i=1

(
m2

t ci + σ2
t

))
+

d

2
,
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where ci are the eigenvalues of Cov [q0]. Now, we only need to calculate H(qt):

−H (qt) = EXt
[log qt (Xt)] = EXt

[
log

(
EX0

[
(2πσ2

t )
−d/2 exp

(
− 1

2σ2
t

∥Xt −X0∥2
)])]

.

By Assumption 2, it is clear that

exp

(
− 1

2σ2
t

∥Xt −X0∥2
)

≤ exp

(
− 1

2σ2
t

(
∥Xt∥2 + 2⟨Xt, X0⟩

))
.

Then, we know that

E
[
log

(
EX0

[
(2πσ2

t )
−d/2 exp

(
− 1

2σ2
t

∥Xt −X0∥2
)])]

≤E
[
log
(
(2πσ2

t )
−d/2

)
− 1

2σ2
t

(
∥Xt∥2 + 2⟨Xt, X0⟩

)]
≤− d

2
log(2π)− 1

2
log
(
(σ2

t )
d
)
− 1

2σ2
t

E
[
∥Xt∥2

]
+

R2mt

σ2
t

.

we also know that

E
[
∥Xt∥2

]
= m2

tE
[
∥X0∥2

]
+ σ2

tE
[
∥Z∥2

]
= E

[
∥X0∥2

]
+ tE

[
∥Z∥2

]
= m̄2

0 + V0 + σ2
t d .

Finally, put these terms together, we have:

KL (qt|N (m̄t, Vt)) ≤
1

2
log

(∏d
i=1

(
m2

t ci + σ2
t

)
(σ2

t )
d

)
+

R2mt

σ2
t

,

where ci are the eigenvalues of Cov [q0]. Then by choosing the largest absolute value eigenvalue
largest absolute value, we can use the Taylor expansion to obtain the first results of this lemma. For
the second result of this lemma, we directly compute the KL divergence between N (m̄t, Vt) and
N (0, σ2

t ) to obtain the final results. ■

Theorem 1. Let qT be the marginal distribution of the forward process, and qτ∞ = N (0, σ2
T I) be the

reverse beginning distribution. With mT , σT defined in Eq. (2), we have

∥qT − qτ∞∥TV ≤
√
mT D̄/σT ,

where D̄ = d|c|+ E[q0] +R and c is the eigenvalue of Cov[q0] with the largest absolute value.

Proof. We know that

∥qT − qτ∞∥TV

≤ ∥qT −N (mTE[q0],m2
T Cov[q0] + σ2

T I)∥TV + ∥N (mTE[q0],m2
T Cov[q0] + σ2

T I)− qτ∞∥TV .

By directly using the Pinsker’s inequality and Lemma 3, we complete the proof. ■

B THE PROOF OF THE POLYNOMIAL COMPLEXITY FOR REVERSE SDE

In this section, we prove Corollary 1. First, we recall the Girsanov’s Theorem (Le Gall, 2016) used in
Chen et al. (2023d):

Lemma 4 (Girsanov’s theorem). Let PT and QT be two probability measures on path space
C
(
[0, T ];Rd

)
. Suppose that under PT , the process (Xt)t∈[0,T ] follows

dXt = b̃t dt+ αt dB̃t

where B̃ is a PT -Brownian motion, and under QT , the process (Xt)t∈[0,T ] follows

dXt = bt dt+ αt dBt

13
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where B is a QT -Brownian motion. We assume that for each t > 0, αt is a d× d symmetric positive
definite matrix. Then, provided that Novikov’s condition holds,

EQT
exp

(
1

2

∫ T

0

∥∥∥α−1
t

(
b̃t − bt

)∥∥∥2 dt

)
< ∞,

we have that

dPT

dQT
= exp

(∫ T

0

α−1
t

(
b̃t − bt

)
dBt −

1

2

∫ T

0

∥∥∥α−1
t

(
b̃t − bt

)∥∥∥2 dt

)
.

If the Novikov’s condition is satisfied, we apply the Girsanov theorem by choosing PT =

R
qτT
K , QT = Q

qτT
tK , b̃t = βT−t

{
1
τ Ỹt + 2s(T − tk, Ỹt)

}
(for t ∈ [tk, tk+1]), bt =

βT−t

{
1
τYt +

(
1 + η2

)
∇ log qT−t (Yt)

}
, and αt =

√
2βT−tId.

Then, similar to Chen et al. (2023d), we have the following lemma.

Lemma 5. Assuming that RqτT
K and Q

qτT
tK satisfy Novikov’s condition, it holds that

KL
(
Q

qτT
tK∥RqτT

K

)
= E

Q
qτ
T

tK

ln
dQ

qτT
tK

dR
qτT
K

=

K−1∑
k=0

E
Q

qτ
T

tK

∫ tk+1

tk

2βT−t ∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2 dt .

Before using the Girsanov’s Theorem, we need to check the Novikov’s condition. The key proof of
the Novikov’s condition is Lemma 19 of Chen et al. (2023d). Since we assume the accurate score
function in this work, this lemma need to control

sup
x∗∈B(0,R),t∗∈[0,T−δ]

2βT−t∗ ∥∇ ln qT−t∗ (x
∗)∥ =: B < ∞ .

As we shown in Lemma 13, we know that with the early stopping parameter δ, ∥∇ ln qT−t∗ (x
∗)∥ is

controlled. By using Assumption 2, we know that 1
βT−t∗

≤ β̄. Finally, with similar process to Chen
et al. (2023d), we can proof that the Novikov’s condition is satisfied. The following lemma show the
discretization error for VESDE with reverse SDE.
Lemma 6 (Discretization). Suppose that Assumption 2 and Assumption 3 holds. Let γ̄K =
argmaxk∈{0,...,K−1} γk, γK = δ,

(1) If τ = T 2 and βt = t2, then with Q
qτT
tK and R

qτT
K defined in Lemma 5,

TV
(
R

qτT
K , Q

qτT
tK

)2
≲

R4T 5d

σ8
δ

γ̄K +
R6T 5

σ8
δ

γ̄2
K + ϵ2scoreT

3 . .

(2) If τ = T and βt = t, we have

TV
(
R

qτT
K , Q

qτT
tK

)2
≲

R4T 3d

σ8
δ

γ̄K +
R6T 3

σ8
δ

γ̄2
K + ϵ2scoreT

2 .

Proof. First, we control the discretization error in an interval t ∈ [tk, tk+1]:

E
Q

qτ
T

tK

[
∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2

]
≲ ϵ2score + E

Q
qτ
T

tK

[
∥∇ ln qT−tk (Ytk)−∇ ln qT−t (Ytk)∥

2
]

+ E
Q

qτ
T

tK

[
∥∇ ln qT−t (Ytk)−∇ ln qT−t (Yt)∥2

]
≲ E

Q
qτ
T

tK

[∥∥∥∥∇ ln
qT−tk

qT−t
(Ytk)

∥∥∥∥2
]
+ L2E

Q
qτ
T

tK

[
∥Ytk −Yt∥2

]
+ ϵ2score

≲ (τ + βT )L
2dγ̄K + τL2γ̄2

K

(
dτ +R2

)
+ τL3γ̄2

K + L2(βT dγ̄K +R2γ̄2
K) + ϵ2score

≲ (τ + βT )L
2dγ̄K + τL2R2γ̄2

K + ϵ2score ,

14
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where L = maxt∈[0,T−δ]

∥∥∇2 log qT−t (Yt)
∥∥ ≤

(
1 +R2

)
/σ4

δ and the third inequality follows
Lemma 17. Then, we know that for τ = T 2 and βt = t2

K−1∑
k=0

E
Q

qτ
T

tK

∫ tk+1

tk

2βT−t ∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2 dt

≲ T 5L2dγ̄K + L2R2T 5γ̄2
K + ϵ2scoreT

3

≲
R4T 5d

σ8
δ

γ̄K +
R6T 5

σ8
δ

γ̄2
K + ϵ2scoreT

3 .

For τ = T and βt = t, we know that
K−1∑
k=0

E
Q

qτ
T

tK

∫ tk+1

tk

2βT−t ∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2 dt

≲ T 3L2dγ̄K + L2R2T 3γ̄2
K + ϵ2scoreT

2

≲
R4T 3d

σ8
δ

γ̄K +
R6T 3

σ8
δ

γ̄2
K + ϵ2scoreT

2 .

■

Combined with the reversing beginning error controlled by Theorem 1, we can obtain the convergence
guarantee for VESDE with reverse SDE.
Corollary 1. Assume Assumption 1, 2, 3. Let γK = δ, γ̄K = argmaxk∈{0,...,K−1}γk , τ = T 2 and

βt = t2. Then, TV
(
R

qτ∞
K , q0

)
is bounded by

TV
(
R

qτ∞
K , q0

)
≤ D̄ exp(−T/2)

T
+

R2
√
d

δ6

√
γ̄KT 5 + ϵscore

√
T 3 ,

where D̄ = d|c|+ E [q0] +R. Furthermore, by choosing δ ≤
ϵ
2/3
W2

(d+R
√
d)1/3

, T ≥ 2 ln D̄
ϵTV

, maximum

stepsize γ̄K ≤ δ12ϵ2TV ln
5(D̄/ϵTV)/R

4d and assuming ϵscore ≤ Õ(ϵTV), the output of Rqτ∞
K is (ϵTV +

ϵscore) close to qδ , which is ϵW2 close to q0, with sample complexity (hiding logarithmic factors) is

K ≤ Õ

(
dR4(d+R

√
d)4

ϵ8W2
ϵ2TV

)
.

For choice βt = t and τ = T , by choosing δ ≤ ϵW2

(d+R
√
d)1/2

and γ̄K ≤ δ8ϵ2TV ln3(D̄/ϵTV)
R4d , we obtain the

same sample complexity.

Proof. By the data processing inequality, we know that

TV
(
R

qτ∞
K , q0

)
≤ TV

(
R

qτ∞
K , R

qτT
K

)
+TV

(
R

qτT
K , Q

qτT
tK

)
≤ TV (qτT , q

τ
∞) + TV

(
R

qτ∞
K , Q

qτT
tK

)
.

Then we have that for τ = T 2 and βt = t2

TV
(
R

qτ∞
K , q0

)
≲

D̄ exp(−T/2)

T
+

R2
√
d

σ4
δ

√
γ̄KT 5 + ϵscore

√
T 3

≲
D̄ exp(−T/2)

T
+

R2
√
d

δ6

√
γ̄KT 5 + ϵscore

√
T 3 ,

where D̄ = d|c|+E [q0] +R. The last inequality by the fact that Lemma 19. We can also use similar
process to obtain the guarantee for τ = T and βt = t

TV
(
R

qτ∞
K , q0

)
≲

D̄ exp(−T/2)√
T

+
R2

√
d

δ4

√
γ̄KT 3 + ϵscore

√
T 2 .

■
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C THE PROOF OF THE CONVERGENCE GUARANTEE IN THE UNIFIED
FRAMEWORK

In this work, we introduce an indicator i ∈ {1, 2} for σT−tK . We use τ = T 2 as an example. When
βt = t2 is aggressive, we choose i = 1 , η = 1 and σ−2

T−tK
(i = 1) ≤ 1

τ + β̄
δ3 . When βt = t is

conservative, we choose i = 2, η ∈ [0, 1) and σ−2
T−tK

(i = 2) ≤ 1
τ + β̄

δ2 . In the proof process of
Lemma 2, Lemma 7, Lemma 8 and Lemma 9, we ignore the indicator i since this lemma does not
involve the specific value of σ2

T−tK
(i). Before the proof of this section, we first recall the stochastic

flow of the reverse process for any x ∈ Rd and s, t ∈ [0, T ] with t ≥ s:

dYx
s,t = βT−t

{
Yx

s,t/τ +
(
1 + η2

)
∇ log qT−t

(
Yx

s,t

)}
dt+ η

√
2βT−tdBt, Yx

s,s = x ,

and the interpolation of its discretization for any k ∈ {0, ...,K} and t ∈ [sk, tk+1):

dȲx
s,t(k) = βT−t

{
Ȳx

s,t/τ +
(
1 + η2

)
s
(
T − sk, Ȳ

x
s,t

)}
dt+ η

√
2βT−tdBt, Ȳx

s,s = x ,

where sk = max (s, tk). To deal with the discretization error, we use the approximation technique
used in Bortoli (2022). Hence, we introduce the tangent process:

d∇Yx
s,t = βT−t

{
I/τ +

(
1 + η2

)
∇2 log qT−t(Y

x
s,t)
}
∇Yx

s,tdt, ∇Yx
s,s = I .

Then, we discuss the interpolation formula, which is used to control the discretization error.
Proposition 1. For s, t ∈ [0, T ) with s < t, any k ∈ {0, ...,K} and (ωv)v∈[s,T ], we define that

bu(ω) = βT−u(
1

τ
ωu + (1 + η2)∇ log qT−u(ωu)) ,

b̄u(ω) = βT−u(
1

τ
ωu + (1 + η2)s(T − sk, ωsk)) , ∆bu(ω) = bu(ω)− b̄u(ω) ,

where sk = max(s, tk) and u ∈ [sk, tk+1). Then, for any x ∈ Rd, we have that

Yx
s,t − Ȳx

s,t =

∫ t

s

∇Yx
u,t

(
Ȳx

s,u

)⊤
∆bu

((
Ȳx

s,v

)
v∈[s,T ]

)
du,

where for any u ∈ [0, T ), there exists a k ∈ {0, ...,K} satisfies u ∈ [sk, tk+1).

For reverse SDE, the augmentation is similar to Bortoli (2022) (Appendix E). When η = 0, the
stochastic extension of the Alekseev–Gröbner formula (Del Moral and Singh, 2022) degenerates into
the original version (Alekseev, 1961). After that, we control the tangent process.
Lemma 2. Assume Assumption 1 and 2. Then, for ∀s ∈ [0, tK ], x ∈ Rd, and i ∈ {1, 2}, we have

∥∇Yx
s,tK ,i∥ ≤ exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]
.

Furthermore, if assuming
∥∥∇2 log qt (xt)

∥∥ ≤ Γ/σ2
t , we have that

∥∇Yx
s,tK ,i∥ ≤ σ

−(1+η2)Γ
T−tK

(i) exp

[((
1 + η2

)
Γ + 2

) ∫ tK

0

βT−u

τ
du

]
.

Proof. Using Eq. (7) and Lemma 13, we have

d
∥∥∇Yx

s,t

∥∥2
≤ 2βT−t

(
1

τ

∥∥∇Yx
s,t

∥∥2 − (1 + η2
) (

1−m2
T−tR

2/
(
2σ2

T−t

))
/σ2

T−t

∥∥∇Yx
s,t

∥∥2)dt .

Using Lemma 18, we have∫ t

s

βT−u

(
1

τ
−
(
1 + η2

)
/σ2

T−u +
(
1 + η2

)
m2

T−uR
2/2σ4

T−u

)
du

≤
((
1 + η2

)
R2/4

) (
σ−2
T−t − σ−2

T−s

)
+

1− η2

2

∫ t

s

βT−u

τ
du

≤
(
1 + η2

)
R2

4σ2
T−t

+
1− η2

2

∫ t

s

βT−u

τ
du .
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Note that ∇Ys,s = I, we get

∥∇Yx
s,tK∥2 ≤ exp

[(
1 + η2

)
R2

2σ2
T−t

+ (1− η2)

∫ tK

0

βT−u

τ
du

]
.

When we assume
∥∥∇ log q2t (xt)

∥∥ ≤ Γ/σ2
t , we know that

d
∥∥∇Yx

s,t

∥∥2 ≤ 2βT−t

(
1

τ
−
(
1 + η2

)
Γ

σ2
T−t

)∥∥∇Yx
s,t

∥∥2 dt .
Using Lemma 18, we have

2

∫ t

s

βT−u/σ
2
T−udu

≤ log

(
exp

[
2

∫ T−s

0

βT−u

τ
du

]
− 1

)
− log

(
exp

[
2

∫ T−t

0

βT−u

τ
du

]
− 1

)

≤ log
(
σ2
T−s

)
− log

(
σ2
T−t

)
+

∫ T−s

T−t

βu

τ
du .

Then we have

∥∇Yx
s,tK∥2 ≤ σ

−(1+η2)Γ
T−tK

exp

[((
1 + η2

)
Γ + 2

) ∫ tK

0

βT−u

τ
du

]
.

Thus we complete our proof. ■

After bounding the gradient of the tangent process, the remaining term is ∥∆b∥:

∥∆b∥ ≤ ∥∆(a,b)b∥+ ∥∆(b,c)b∥+ ∥∆(c,d)b∥ , (8)

where b(a) = b and b(d) = b̄. Moreover,

b(b)u (ω) = βT−u(
1

τ
ωu + (1 + η2)∇ log qT−sk(ωu)) ,

b(c)u (ω) = βT−u(
1

τ
ωu + (1 + η2)∇ log qT−sk(ωsk)) ,

∆a,b
b = b(a) − b(b), ∆b,c

b = b(b) − b(c), ∆c,d
b = b(c) − b(d) .

We then control ∥∆(a,b)b∥, ∥∆(b,c)b∥, ∥∆(c,d)b∥ separately. In this section, ∥∆(c,d)b∥ = 0 since
we assume that the accurate score function is achieved. For

∥∥∆(a,b)bu(ω)
∥∥, we have the following

lemma.
Lemma 7. For s, u ∈ [0, T ) such that u ≥ s, u ∈ [sk, tk+1) and ω = (ωv)v∈[s,T ] we have

∥∆(a,b)bu (ω) ∥
≤
(
1 + η2

)
βT−u sup

v∈[T−u,T−tk]

(
βv/σ

6
v

) (
2 +R2

)
(R+ ∥ωu∥) γk.

Proof. Without loss of generality, we assume s ≤ tk. Then

∥∆(a,b)bu (ω) ∥ ≤
(
1 + η2

)
βT−u∥∇ log qT−u (ωu)−∇ log qT−tk (ωu) ∥

≤
(
1 + η2

)
βT−uγk sup

v∈[T−u,T−tk]

∥∂v∇ log qT−v (ωu) ∥.

Then by Lemma 16, we have

∥∆(a,b)bu (ω) ∥
≤
(
1 + η2

)
βT−u sup

v∈[T−u,T−tk]

(
βv/σ

6
v

) (
2 +R2

)
(R+ ∥ωu∥) γk .

■
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For
∥∥∆(b,c)bu(ω)

∥∥, we have the following lemma.
Lemma 8. For s, u ∈ [0, T ) such that u ≥ s, u ∈ [sk, tk+1) and ω = (ωv)v∈[s,T ] we have

∥∆(b,c)bu (ω) ∥ ≤
(
1 + η2

) (
βT−u/σ

4
T−u

) (
1 +R2

)
∥ωu − ωsk∥ .

Proof. Without loss of generality, we assume s ≤ tk. In this case sk = tk, Then
∥∆(b,c)bu (ω) ∥ ≤

(
1 + η2

)
βT−u∥∇ log qT−tk (ωtk)−∇ log qT−tk (ωu) ∥

≤
(
1 + η2

)
βT−u sup

v∈[u,T−tk]

∥∇2 log qT−tk (ωv) ∥∥ωu − ωtk∥ .

Using Lemma 14, we have that
∥∆(b,c)bu (ω) ∥ ≤

(
1 + η2

) (
βT−u/σ

4
T−u

) (
1 +R2

)
∥ωu − ωtk∥ .

Then the proof is complete. ■

We need to control the reverse process when dealing with ∆b. The following lemma shows an upper
bound for the reverse Yk.

Lemma 9. Assume Assumption 1 ,Assumption 2, and there exists δ > 0 such that γkβT−tk

σ2
T−tk

≤ δ ≤
1/28 for any k ∈ {0, · · · ,K}, then we have

E[∥Yk∥2] ≤ U(τ) = τd+B(1/A+ δ) ,

where
A = 4η2 + 2− 2δ − 4(1 + η2)(1 + δ)µR

B = 4(1 + η2)R2δ + 2(1 + η2)(1 + δ)
R

µ
+ 4η2τd

and µ is an arbitrary positive number which makes A > 0. In particular, if δ ≤ 1/28, then
E[∥Yk∥2] ≤ U0(τ) = 111R2 + 13τd .

Proof. Recall the discretization of the backward process (the explicit form of Eq. (6))

Yk+1 = Yk + γ1,k

(
1

τ
Yk + (1 + η2)s (T − tk, Yk)

)
+ η
√
2γ2,kZk ,

γ1,k = exp

[∫ T−tk

T−tk+1

βs ds

]
− 1, γ2,k =

(
exp

[
2

∫ T−tk

T−tk+1

βs ds

]
− 1

)
/2 ,

where {Zk}k∈K are independent Gaussian random variables. It is clear that γ1,k ≤ γ2,k ≤ 2γ1,k,
and using Lemma 13 we have

⟨xt, s(t, xt)⟩ = ⟨xt,∇ log qt(xt)⟩
≤ −∥xt∥2/σ2

t +mtR∥xt∥/σ2
t

≤ (−1 + µmtR)∥xt∥2/σ2
t + (mtR/µ)/σ2

t ,

where the first equality follows that we assume the accurate score function. For any µ > 0. Again
using Lemma 13, we have

∥s(t, xt)∥2 = ∥∇ log qt(xt)∥2

≤ 2∥xt∥2/σ4
t + 2m2

tR
2/σ4

t .

Combining the results above, we have

E[∥Yk+1∥2] = (1 +
γ1,k
τ

)2E[∥Yk∥2] + (1 + η2)2γ2
1,kE[∥s(T − tk, Yk)∥2]

+ 2(1 + η2)(1 +
γ1,k
τ

)γ1,kE[⟨Yk, s(T − tk, Yk)⟩] + 2η2γ2,kd

≤ ((1 +
γ1,k
τ

)2 + 2(1 + η2)2γ2
1,k/σ

4
T−tk

+ 2(1 + η2)(1 +
γ1,k
τ

)γ1,k(−1 + µmT−tkR)/σ2
T−tk

)E[∥Yk∥2]

+
2m2

T−tk
R2

σ4
T−tk

(1 + η2)2γ2
1,k +

mT−tkR

µσ2
T−tk

(1 + η2)(1 +
γ1,k
τ

)γ1,k + 4η2γ1,kd .
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If we denote δk = γ1,k/σ
2
T−tk

and notice the fact that mt ∈ [0, 1], σ2
t ∈ [0, τ ], η ∈ [0, 1], then we

have

E[∥Yk+1∥2] ≤ (1 + 2δk + δ2k)E[∥Yk∥2] + 8δ2kE[∥Yk∥2]

+ 2(1 + δk)δk(−1 + µR)E[∥Yk∥2] + 8R2δ2k +
2R

µ
δk(1 + δk) + 4τδkd .

We also have that

γ1,k = exp[

∫ T−tk

T−tk+1

βsds]− 1 ≤ exp[βT−tkγk]− 1 ≤ 2βT−tkγk ,

where the last inequality follows that γk = exp (−T ), βT−tkγk ≤ 1/2 for small enough stepsize,
and eω − 1 ≤ 2ω for any ω ∈ [0, 1/2]. We get δk ≤ 2γkβT−tk/σ

2
T−tk

≤ 2δ. Thus

E[∥Yk+1∥2] ≤ (1 + 2δk + 2δkδ)E[∥Yk∥2] + 16δkδE[∥Yk∥2]

+ 4(1 + δ)(−1 + µR)δkE[∥Yk∥2] + 16R2δkδ + 4(1 + δ)
R

µ
δk + 4τdδk .

Hence, we have

E[∥Yk+1∥2] ≤ (1 + δk[−2 + 14δ + 4(1 + δ)µR])E[∥Yk∥2]

+ δk[16R
2δ + 4(1 + δ)

R

µ
+ 4τd] .

We denote A = 2− 14δ − 4(1 + δ)µR and B = 16R2δ + 4(1 + δ)
R

µ
+ 4τd, then

E[∥Yk+1∥2] ≤ (1− δkA)E[∥Yk∥2] + δkB .

Notice that E[∥Y0∥2] = dτ and if E[∥Yk∥2] ≥ B/A it is decreasing, if E[∥Yk∥2] ≤ B/A we have
E[∥Yk+1∥2] ≤ B/A+ δB. so

E[∥Yk∥2] ≤ τd+B(1/A+ δ) .

Notice that when δ ≤ 1/28,if we choose µ = 1/(4(1 + δ)R), A ≥ 1/2, and

B ≤ 37R2 + 4τd .

Then, the proof is complete. ■

The following lemma shows a discretization error in the k-the interval.
Lemma 10. Assume Assumption 1,Assumption 2 and γkβT−tk/σ

2
T−tk

≤ 1/28 for any k ∈
{0, · · · ,K − 1}. Then for any k, t ∈ [tk, tk+1] and i ∈ {1, 2}, we have that

E[∥Ȳt − Ȳtk∥2] ≤ Li(τ)βT−tkγk ,

where Li(τ) = γ̄Kκi(τ)(
64

σ2
T−tK

(i)
+

8

τ
)U0(τ) + 64R2 γ̄Kκi(τ)

σ2
T−tK

(i)
+ 4d, γ̄K , κi(τ) is defined in

Lemma 11 and U0(τ) is defined in Lemma 9.

Proof. Recall the discretized backward process

Ȳt = Ȳtk + (exp[

∫ T−tk

T−t

βsds]− 1)(
1

τ
Ȳtk + (1 + η2)s(T − tk, Ȳtk))

+ η(exp[2

∫ T−tk

T−t

βsds− 1])1/2Z ,

where Z is a standard Gaussian random variable. By directly calculating, we have that

E[∥Ȳt − Ȳtk∥2] = 2(exp[

∫ T−tk

T−t

βsds]− 1)2(
1

τ2
E[∥Ȳtk∥2] + (1 + η2)2E[∥s(T − tk, Ȳtk)∥2])

+ η2(exp[2

∫ T−tk

T−t

βsds]− 1)d .
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By Lemma 13 and accurate score function assumption,

∥s(T − tk, Ȳtk)∥2 ≤ 2∥Ȳtk∥2/σ4
T−tk

(i) + 2m2
T−tk

R2/σ4
T−tk

(i) .

So we have that

E[∥Ȳt − Ȳtk∥2] ≤ 2(exp[

∫ T−tk

T−t

βsds]− 1)2((
8

σ4
T−tk

(i)
+

1

τ2
)E[∥Ȳtk∥2] +

8R2

σ4
T−tk

(i)
)

+ (exp[2

∫ T−tk

T−t

βsds]− 1)d .

By e2w − 1 ≤ 1 + 4w for any w ∈ [0, 1/2] and γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28 for any

k ∈ {0, ...,K − 1}, we have

exp[ρ

∫ T−tk

T−t

βsds]− 1 ≤ 2ρβT−tkγk.

for ρ = 1, 2. And using Lemma 9 and Lemma 19 we have

E[∥Ȳt − Ȳtk∥2]

≤ (
64γk

σ4
T−tk

(i)
+

8βT−tkγk
τ2

)U0(τ)βT−tkγk + 64R2 γk
σ4
T−tk

(i)
βT−tkγk + 4dβT−tkγk .

We denote Li(τ) = γ̄Kκi(τ)(
64

σ2
T−tK

(i)
+

8

τ
)U0(τ) + 64R2 γ̄Kκi(τ)

σ2
T−tK

(i)
+ 4d for i ∈ {1, 2} and the

proof is complete. ■

Lemma 11. Assume Assumption 1 and Assumption 2, γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28 for

any k ∈ {0, ...,K − 1}. Let γ̄K = argmaxk∈{0,...,K−1}γk, κi(τ) = max{β̄, T 2

T−1+i }σ−2
T−tK

(i), and

Ci(τ) = 2(2 +R2)(R+ U
1/2
0 (τ)) + 2L

1/2
i (τ)τ3/2(1 +R2) ,

for i ∈ {1, 2}. Then, for any s, u ∈ [0, tK ] with u ≥ s and i ∈ {1, 2}, we have

E[∥∆bu,i((Ȳs,v)v∈[s,T ])∥] ≤ Ci(τ)[κ
2
i (τ)σ

−2
T−tK

(i)γ̄
1/2
K + κ2

i (τ)]γ̄
1/2
K ,

where Ȳs,s ∼ N(0, I).

Proof. Combining Lemma 7, Lemma 8 and the exact score function, we get

∥∆bu,i(ω)∥ ≤ (1 + η2) sup
v∈[T−tk+1,T−tk]

(β2
v/σ

6
v(i))(2 +R2)(diam(M+ ∥ωu∥))γk

+ (1 + η2)(βT−u/σ
4
T−u(i))(1 + diam(M2))∥ωu − ωsk∥.

For any u ∈ [T − tK , T ], using Lemma 20 we have βu/σ
2
u(i) ≤ κi(τ). Hence,

∥∆bu,i(ω)∥ ≤ (1 + η2) sup
v∈[T−tk+1,T−tk]

(β2
v/σ

6
v(i))(2 + diam(M2))(R+ ∥ωu∥)γk

+ (1 + η2)(βT−u/σ
4
T−u(i))(1 + diam(M2))(∥ωu − ωtk∥)

≤ (1 + η2)(κ2
i (τ)/σ

2
T−tk+1

(i))γk(2 + diam(M2))(R+ ∥ωu∥)
+ (1 + η2)κ2

i (τ)(1 +R2)∥ωu − ωtk∥/βT−u.

Combining this with Lemma 9 and Lemma 10,

E[∥∆bu,i((Ȳs,v)v∈[s,T ])∥] ≤ (1 + η2)(κ2
i (τ)/σ

2
T−tk+1

(i))γ̄K(2 +R2)(R+ U
1/2
0 (τ))

+ (1 + η2)κ2
i (τ)(1 +R2)L

1/2
i (τ)max{β̄, τ}3/2γ̄1/2

K .

We denote Ci(τ) = 2(2+R2)(R+U
1/2
0 (τ))+2L

1/2
i (τ)τ3/2(1+R2), for i ∈ {1, 2}, then we have

E[∥∆bu,i((Ȳs,v)v∈[s,T ])∥] ≤ Ci(τ)((κ
2
i (τ)/σ

2
T−tk+1

)γ̄K + κ2
i (τ)γ̄

1/2
K ).

■
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Lemma 12. Assume Assumption 1 and Assumption 2, γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28 for

any k ∈ {0, ...,K − 1}. Let γ̄K = argmaxk∈{0,...,K−1}γk, γK = δ, and δ ≤ 1/32. Then

W1

(
R

qτ∞
K , Q

qτ∞
tK

)
≤ Ci(τ)κ

2
i (τ)T exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

]
[

γ̄
1/2
K

σ2
T−tK

(i)
+ 1]γ̄

1/2
K ,

where Ci(τ), κi(τ) for i ∈ {1, 2} are the same terms to Theorem 2.

Proof. By Proposition 1 we have

∥YtK − YK∥ = ∥YtK − ȲtK∥ ≤
∫ tK

0

∥∇Yu,tK ,i(Ȳ0,u)∥∥∆bu,i((Ȳ0,v)v∈[0,T ])∥du.

∥YtK − YK∥

≤ exp

[(
1 + η2

)
R2

4σ2
T−t(i)

+
(1− η2)

2

∫ tK

0

βT−u

τ
du

]∫ tK

0

∥∆bu,i((Ȳ0,v)v∈[0,T ])∥du .

Then by definition of Wasserstein distance, we have

W1(q∞QtK , q∞RK)

≤ E[∥YtK − YK∥]

≤ exp

[(
1 + η2

)
R2

4σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]∫ tK

0

E[∥∆bu,i((Ȳ0,v)v∈[0,T ]∥]du

≤ Ci(τ)T exp

[(
1 + η2

)
R2

4σ2
T−tK

(i)
+

(1− η2)

2

]
[κ2

i (τ)σ
−2
T−tK

(i)γ̄
1/2
K + κ2

i (τ)]γ̄
1/2
K .

■

Theorem 2. Assume Assumption 1 and 2, γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28 for ∀k ∈

{0, ...,K−1}, and δ ≤ 1/32. Let γ̄K = argmaxk∈{0,...,K−1}γk and γK = δ. Then, for ∀τ ∈ [T, T 2],
we have the following convergence guarantee.

(1) If η = 1 (the reverse SDE), choosing an aggressive βt = t2, we have

W1

(
R

qτ∞
K , q0

)
≤ C1(τ)T exp

[
R2

2
(
β̄

δ3
+

1

τ
)

]
[κ2

1(τ)(
β̄

δ3
+

1

τ
)γ̄

1/2
K + κ2

1(τ)]γ̄
1/2
K

+ exp

[
R2

2
(
β̄

δ3
+

1

τ
)

]
D̄ exp (−T/2)√

τ
+ 2(

R

τ
+

√
d)
√
δ ,

where C1(τ) is linear in τ2, κ1(τ) = max
{
β̄, T 2

} (
1/τ + β̄/δ3

)
.

(2) If η = 0 (the reverse PFODE), choosing a conservative βt satisfies Assumption 1, we have

W1

(
R

qτ∞
K , q0

)
≤ C2(τ)T exp

[
R2

2
(
β̄

δ2
+

1

τ
) +

1

2

]
[κ2

2(τ)(
β̄

δ2
+

1

τ
)γ̄

1/2
K + κ2

2(τ)]γ̄
1/2
K

+ exp

[
R2

2
(
β̄

δ2
+

1

τ
)

]
D̄√
τ
+ 2(

R

τ
+

√
d)
√
δ ,

where C2(τ) is linear in τ2, κ2(τ) = max{β̄, T}
(
1/τ + β̄/δ2

)
.

Proof. To obtain the convergence guarantee, we need to control three error terms:

W1

(
R

qτ∞
K , q0

)
≤ W1

(
R

qτ∞
K , Q

qτ∞
tK

)
+W1

(
Q

qτ∞
tK , Qq0PT

tK

)
+W1

(
Qq0PT

tK , q0

)
.

For term W1

(
R

qτ∞
K , Q

qτ∞
tK

)
, we use Lemma 12.
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For the second term, we define
(
Yx

0,t

)
t∈[0,T ]

and
(
Yy

0,t

)
t∈[0,T ]

be the reverse processes with initial
condition x and y. Then we have

∥Yx
0,t −Yy

0,t∥ ≤ ∥x− y∥
∫ 1

0

∥∇Yzλ
0,t∥dλ ,

where zλ = λx + (1 − λ)y. In this work, we choose x ∼ qτ∞ and y ∼ q0PT . Combined with the
above inequality, Theorem 1 and Lemma 2, we know that:

W1

(
Q

qτ∞
tK , Qq0PT

tK

)
≤ exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]
∥q0PT − qτ∞∥

≤
√
mT D̄

σT
exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]
.

For the last term, we use exactly the same process with Bortoli (2022) with bounded σ2
T−tK

:

W1

(
Qq0PT

tK , q0

)
≤ E [∥X −mT−tKX + σT−tKZ∥]

≤ (
R

τ
+

√
d)σT−tK

≤ 2(
R

τ
+
√
d)
√
δ ,

where the second inequality follows that σ2
T−tK

+ τmT−tK = τ . ■

In the end of the section, we provide the proof of Corollary 3.
Corollary 3. Assume Assumption 1, Assumption 2 and

∥∥∇2 log qt (xt)
∥∥ ≤ Γ/σ2

t . Let η = 0

(reverse PFODE), ϵ ∈ (0, 1/32), τ = T 2, βt = t, γ̄K = argmaxk∈{0,...,K−1}γk, γK = δ, we have

W1

(
R

qτ∞
K , q0

)
≤ C2(τ)T

β̄
Γ
2

δΓ
exp

[
Γ + 2

2

]
[κ2

2(τ)(
β̄

δ2
+

1

τ
)γ̄

1/2
K + κ2

2(τ)]γ̄
1/2
K

+
β̄

Γ
2

δΓ
exp

[
Γ + 2

2

]
D̄√
τ
+ 2(

R

τ
+

√
d)
√
δ ,

where C2(τ) is linear in τ2, κ2(τ) = max{β̄, T}
(

1
τ + β̄

δ2

)
.

Proof. The proof of this corollary is almost identical to the proof of Theorem 2. We just need to
replace the first bound for the tangent process in Lemma 2 by the second bound. ■

D LEMMAS FOR THE LOGARITHMIC DENSITY

In this section, we introduce auxiliary lemmas to control the gradient and Hessian of the logarithmic
density under the manifold hypothesis. Lemma 13, Lemma 14 and Lemma 15 come from Lemma C.1,
Lemma C.2, and Lemma C.5 of Bortoli (2022). Since these lemmas do not involve the relationship
between mt and σt, we can directly use the results from Bortoli (2022). Following Bortoli (2022),
we also define a empirical version of q0 with N datapoints, i.e. qN0 = (1/N)

∑N
k=1 X

k, with{
Xk
}N
k=1

∼ q⊗N
0 . We denote by

(
qNt
)
t>0

such that for any t > 0 the density w.r.t. the Lebesgue
measure of the distribution of XN

t , and when N → +∞, qNt = qt.
Lemma 13. Assume Assumption 2. Then for any t ∈ (0, T ] and xt ∈ Rd we have that

⟨∇ log qt(xt), xt⟩ ≤ −∥xt∥2/σ2
t +mR∥xt∥/σ2

t .

In addition, we have

∥∇ log qt (xt) ∥2 ≤ 2∥xt∥2/σ4
t + 2m2

tR
2/σ4

t .
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Lemma 14. Assume Assumption 2. Then for any t ∈ (0, T ], xt ∈ Rd and M ∈ Md

(
Rd
)

〈
M,∇2 log qt (xt)M

〉
≤ −

(
1−m2

tR
2/
(
2σ2

t

))
/σ2

t ∥M∥2.

In addition, we have ∥∥∇2 log qt (xt)
∥∥ ≤

(
1 +R2

)
/σ4

t .

The following lemma shows that the derivatives up to the fourth order are uniformly bounded since
τ ∈ [T, T 2]. Thus we can use the stochastic extension of the Alekseev–Gröbner formula (Del Moral
and Singh, 2022).

Lemma 15. Assume Assumption 2. Then, there exists C̄ ≥ 0 such that for any t ∈ (0, T ] we have∥∥∇2 log qt(x)
∥∥+ ∥∥∇3 log qt(x)

∥∥+ ∥∥∇4 log qt(x)
∥∥ ≤ C̄/σ8

t .

The following lemma shows that ∥∂t∇ log qt (xt) ∥ is bounded. The proof before using the relation-
ship between σt and mt is identical compared to Lemma C.3 in Bortoli (2022). For the sake of
completeness, we also give the proof process of this part.

Lemma 16. Assume Assumption 2. Then for any t ∈ (0, T ] and xt ∈ Rd we have

∥∂t∇ log qt (xt) ∥ ≤
(
βt/σ

6
t

) (
2 +R2

)
(R+ ∥xt∥) .

Proof. Let N ∈ N and t ∈ (0, T ]. We denote for any x ∈ Rd, qNt (x) = q̄Nt (x) /
(
2πσ2

t

)d/2
with

q̄Nt (x) = (1/N)

N∑
k=1

ekt (x) , ekt (x) = exp
[
−∥x−mtX

k∥2/
(
2σ2

t

)]
.

Next we denote fk
t ≜ log ekt . Then we have

∂t log q̄
N
t (x)

N∑
k=1

∂tf
k
t (x) ekt (x) /

N∑
k=1

ekt (x) .

Therefore we have

∂t∇ log q̄Nt (x)

=

N∑
k=1

∂t∇fk
t (x)e

k
t (x)/

N∑
k=1

ekt (x) +
N∑

k=1

∂tf
k
t (x)∇fk

t (x)e
k
t (x)/

N∑
k=1

ekt (x)

−
N∑

k,j=1

∂tf
k
t (x)∇f j

t (x)e
k
t (x)e

j
t (x)/

N∑
k,j=1

ekt (x)e
j
t (x)

=

N∑
k=1

∂t∇fk
t (x)e

k
t (x)/

N∑
k=1

ekt (x)

+ (1/2)

N∑
k,j=1

(
∂tf

k
t (x)− ∂tf

j
t (x)

)(
∇fk

t (x)−∇f j
t (x)

)
ekt (x)e

j
t (x)/

N∑
k,j=1

ekt (x)e
j
t (x).

In what follows, we provide upper bounds for |∂tfk
t − ∂tf

j
t |, ∥∇fk

t −∇f j
t ∥ and ∂t∇fk

t . First we
notice that ∇fk

t (x) = −
(
x−mtX

k
)
/σ2

t , and using mt ≤ 1 we get

∥∇fk
t (x)−∇f j

t (x)∥ ≤ mR/σ
2
t ≤ R/σ2

t .

and

∂tf
k
t (t) = ∂tσ

2
t /
(
2σ4

t

)
∥x−mtX

k∥2 + ∂tmt/σ
2
t

〈
Xk, x−mtX

k
〉
.
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Notice the fact that ∂tσ2
t = −2τmt∂tmt = 2βtm

2
t and ∂tmt = −βt

τ
mt, combined with the above

equality, we know that

∂tf
k
t (t) = −βtmt/σ

2
t

[
−
(
mt/σ

2
t

)
∥x−mtX

k∥2 + 1

τ

〈
x−mtX

k, Xk
〉]

= −βtmt/σ
2
t

〈
x−mtX

k,−
(
mt/σ

2
t

) (
x−mtX

k
)
+

1

τ
Xk

〉
= −βtmt/σ

4
t

〈
x−mtX

k,−mtx+

(
m2

t +
σ2
t

τ

)
Xk

〉
= βtmt/σ

4
t

(
mt∥x∥2 +mt

∥∥Xk
∥∥2 + (1 +m2

t

) 〈
x,Xk

〉)
,

where the last equality holds that τm2
t + σ2

t = τ . The rest of the proof is identical to the Lemma C.3
in Bortoli (2022).

So using mt ≤ 1 we have∣∣∣∂tfk
t (x)− ∂tf

j
t (x)

∣∣∣ ≤ 2βtm
2
tR

2/σ4
t + βtmt

(
1 +m2

t

)
R∥x∥/σ4

t

≤ 2
(
βt/σ

4
t

)
R(R+ ∥x∥)

Now we compute ∇∂tf
k
t (x) for any x ∈ Rd

∇∂tf
k
t (x) = 2βtm

2
t/σ

4
t x+

(
βtmt/σ

4
t

) (
1 +m2

t

)
Xk.

So we can bound the norm of it by

∥∂t∇fk
t (x) ∥ ≤ 2

(
βt/σ

4
t

)
(R+ ∥x∥).

Combining results above we get for any x ∈ Rd∥∥∂t∇ log q̄Nt (x)
∥∥ ≤ 2

(
βt/σ

4
t

)
(R+ ∥x∥) +

(
βt/σ

6
t

)
R2(R+ ∥x∥)

≤
(
βt/σ

6
t

) (
2 +R2

)
(R+ ∥x∥)

Note that
lim

N→+∞
∂t∇ log qNt (xt) = ∂t∇ log qt

and the proof is complete. ■

In the following lemma, similar to Chen et al. (2023d), we obtain a better control on the time
discretization error instead of controlling ∥∂t∇ log qt (xt)∥ for ∀xt ∈ Rd.
Lemma 17. Assume Assumption 2 and Xt satisfies the forward process Eq. (1). Define L =
maxt∈[0,T−δ]

∥∥∇2 log qT−t (Yt)
∥∥ ≤

(
1 +R2

)
/σ4

δ , then we have that

E
Q

qτ
T

tK

[∥∥∥∥∇ ln
qT−tk

qT−t
(Ytk)

∥∥∥∥2
]

≲ τL2dγ̄K + τL2γ̄2
K(dτ +R2) + τL3γ̄2

K + τL4γ̄2
K(βT dγ̄K +R2γ̄2

K) .

Proof. Due to the property of the forward process, we know that if S : Rd → Rd is the mapping
S(x) := exp(−(t − tk))x, then qT−tk = S#qT−t ∗ normal

(
0, τ

(
1− exp(−2

∫ tk+1

tk
βs/τds)

))
Similar to Chen et al. (2023d), we define α = exp

[∫ tk+1

tk

βs

τ ds
]

= 1 + O(γ̄K) and σ2 =

τ
(
1− exp(−2

∫ tk+1

tk
βs/τds)

)
= O(τ γ̄K). Then we can use Lemma C.12 of Lee et al. (2022) to

obtain

E
Q

qτ
T

tK

[∥∥∥∥∇ ln
qT−tk

qT−t
(Ytk)

∥∥∥∥2
]

≲ τL2dγ̄K + τL2γ̄2
K ∥Ytk∥

2
+ τL2γ̄2

K ∥∇ ln qT−t (Ytk)∥
2

≲ τL2dγ̄K + τL2γ̄2
K(dτ +R2) + τL3γ̄2

K + τL4γ̄2
K(βT dγ̄K +R2γ̄2

K) .
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The last inequality follows Lemma 21 and the fact that

∥∇ ln qT−t (Ytk)∥
2 ≲ ∥∇ ln qT−t (Yt)∥2 + ∥∇ ln qT−t (Ytk)−∇ ln qT−t (Yt)∥2

≲ ∥∇ ln qT−t (Ytk)∥
2
+ L2(βT dγ̄K +R2γ̄2

K)

≲ L+ L2(βT dγ̄K +R2γ̄2
K) .

■

E AUXILIARY LEMMAS

Lemma 18. For any s, t ∈ [0, T ] we have∫ t

s

βT−u/σ
2
T−udu =

[
−1

2
log

(
exp

[
2

∫ T−u

0

βv

τ
dv

]
− 1

)]t
s

,

∫ t

s

βT−um
2
T−u/σ

4
T−udu =

[
(1/2τ) /

(
1− exp

[
−2

∫ T−u

0

βv

τ
dv

])]t
s

.

Proof. We directly compute∫ t

s

βT−u/σ
2
T−udu =

1

τ

∫ t

s

βT−u/

(
1− exp

[
−2

∫ T−u

0

βv

τ
dv

])
du

=
1

τ

∫ t

s

βT−u exp

[
2

∫ T−u

0

βv

τ
dv

]
/

(
exp

[
2

∫ Tu

0

βv

τ
dv

]
− 1

)
du

= −1

2

∫ t

s

∂u log

(
exp

[
2

∫ T−u

0

βv

τ
dv

]
− 1

)
du .

Similarly ∫ t

s

βT−um
2
T−u/σ

4
T−u

=
1

τ2

∫ t

s

βT−u exp

[
−2

∫ T−u

0

βv

τ
dv

]
/

(
1− exp

[
−2

∫ T−u

0

βv

τ
dv

])2

du

= (1/2τ)

∫ s

t

∂u

(
1− exp

[
−2

∫ T−u

0

βv

τ
dv

])−1

du.

■

Lemma 19. Assume Assumption 1. For i ∈ {1, 2}, we have σ2
T−tK

(i) ≤ 2δ and σ−2
u (i) ≤

σ−2
T−tK

(i) ≤ 1

τ
+

β̄

δ4−i
,∀u ∈ [T − tK , T ].

Proof.

σ2
T−tK (i) = τ

(
1− exp

[
−2

∫ T−tK

0

βs

τ
ds

])

≤ 2

∫ T−tK

0

βs ds ≤ 2δ ,

where the first inequality follows from for any a ≥ 0, exp[−a] ≥ 1− a; the second inequlity follows
from Assumption 1 and δ ≤ 1.

25



Under review as a conference paper at ICLR 2024

σ−2
T−tK

(i) =
1

τ

(
1− exp

[
−2

∫ T−tK

0

βs

τ
ds

])−1

≤ 1

τ

1 +

(
2

∫ T−tK

0

βs

τ
ds

)−1


≤ 1

τ
+

β̄

δ4−i
,

where the first inequality follows from for any a ≥ 0, 1/(1 + exp[−a]) ≤ 1 + 1/a, the second in-
equality follows from Assumption 1. It is easy to check that σ−2

u (i) ≤ σ−2
T−tK

(i),∀u ∈ [T − tK , T ].

■

Using the bound on σ−2
T−tK

(i) immediately yields the following control of βu/σ
2
u(i).

Lemma 20. Assume Assumption 1. Then, we have for any u ∈ [T − tK , T ]: (1) if i = 1, then

βu

σ2
u(i = 1)

≤ κ1(τ) = max{β̄, T 2}
(
1

τ
+

β̄

δ3

)
(2) if i = 2, then

βu

σ2
u(i = 2)

≤ κ2(τ) = max{β̄, T}
(
1

τ
+

β̄

δ2

)
In the rest of this section, we provide the useful lemma to achieve polynomial sample complexity for
VE-based models with reverse SDE. As shown in Lemma 13, we also need to control E[∥Xt∥2] in
the forward process. The following lemmas shows that this term is bounded by the R2 and exploding
variance.

Lemma 21. Suppose that Assumption 2hold. Let (Xt)t∈[0,T ] denote the forward process Eq. (1).
Then, for all t ≥ 0,

E
[
∥Xt∥2

]
≤ dσ2

t ∨R2 .

Proof. As shown in Eq. (2),

E
[
∥Xt∥2

]
≤ E

[
∥X0∥2

]
+ σ2

t d ≤ dσ2
t ∨R2 .

■

Lemma 22 (movement bound for VESDE). Let (Xt)t∈[0,T ] denote the forward process Eq. (1). For
0 ≤ s < t with δ := t− s, if δ ≤ 1, then

E
[
∥Xt −Xs∥2

]
≲ 2βtδd+ δ2R2 .

Proof.

E
[
∥Xt −Xs∥2

]
≲ E

[∥∥∥√2βt (Bt −Bs)
∥∥∥2]+ δ

∫ t

s

E
[
∥Xr∥2

]
dr ≲ 2βtδd+ δ2R2 .

■

Similar to Chen et al. (2023d), we can also show that if we do forward process for time δ, qδ will be
close to q0 in W2 distance.

Lemma 23. Suppose Assumption 2 holds. Let ϵW2
> 0. If β2

t = t2 and τ = T 2, we choose the early

stopping parameter δ ≤
ϵ
2/3
W2

(d+R
√
d)1/3

. If βt = t and τ = T , we choose δ ≤ ϵW2

(d+R
√
d)1/2

. If consider

pure VESDE (SMLD) (Eq. (3)) with σ2
t = t, we choose δ ≤ ϵ2W2

d . Then we have W2 (qδ, q0) ≤ ϵW2
.
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Proof. For the forward process Eq. (1), we know that Xt := mtX0+σtZ, where Z ∼ normal (0, Id)
is independent of X0 and mt ≤ 1. Hence, for δ ≲ 1,

W 2
2 (q0, qδ) ≤ (1−mt)

2E
[
∥X0∥2

]
+ E

[
∥σδZ∥2

]
.

For βt = t2 and τ = T 2, we have that

W 2
2 (q0, qδ) ≤ δ3d+

R2δ6

T 2

Hence, we can take δ ≤
ϵ
2/3
W2

(d+R
√
d)1/3

. For βt = t and τ = T , we have that

W 2
2 (q0, qδ) ≤ δ2d+

R2δ4

T 2

Hence, we can take δ ≤ ϵW2

(d+R
√
d)1/2

. For pure VESDE (Eq. (3)) with σt = t, we have

W 2
2 (q0, qδ) ≤ δd .

■

F ADDITIONAL SYNTHETIC EXPERIMENTS

In this section, we do synthetic experiments to show the power of our new forward process with small
drift term in different setting.

F.1 THE SYNTHETIC EXPERIMENTS WITH ACCURATE SCORE FUNCTION

In this section, we do numerical experiments on 2-dimension Gaussian distribution to show the power
of our new VESDE forward process in balancing different error sources.

Experiment Setting. We set the mean of target distribution E[q0] = [6, 8], the covariance matrix

Cov[q0] =
[
25 5
5 4

]
, the diffusion time T = 2, τ = T 2 and the reverse beginning distribution is

N (0, T 2I). We choose uniform stepsize γk = h,∀k ∈ [K] where h ∈ {0.005, 0.01, 0.02, 0.04}. For
score functions, we directly calculate the ground truth score function instead of learning it by the
score matching objective. We calculate the KL divergence between the generation distribution and
target distribution q0 as the experiments.

The implementable algorithm. We choose three different VESDE forward processes in the
experiments: (1) aggressive βt = t2 with τ = T 2; (2) conservative βt = t with τ = T 2 and
(3) VESDE without drift term Eq. (3) with σ2

t = t2. After determining the forward process, we
run the reverse SDE with the above γk, k ∈ [K]. For the discretization scheme, we choose two
common method: exponential integrator (EI) (Zhang and Chen, 2022) and Euler-Maruyama (EM)
discretization (Ho et al., 2020).

Observations. The experimental results are shown in Fig. 1. We note that the red line (EI, VESDE
without drift, σ2

t = t2) and orange line (conservative drift VESDE, βt = t and τ = T 2) has a similar
trend. Furthermore, the conservative drift VESDE has better performance compared to pure VESDE
without drift term. Hence, our new forward process is representative enough to represent current
VESDE, as discussed in Section 3.1.

The experimental results also support our theoretical results and show the power of the new forward
process in balancing different error terms. As shown in Fig. 1, the process with aggressive βt = t2

with small drift term achieves the best and second performance in EI and EM discretization since it
can balance the reverse beginning and discretization. The third best process is conservative βt = t
with the small drift term. The reason is that though it can not achieve a exp (−T ) forward process
guarantee, it also has a constant decay on prior information, as shown in Section 3.1. This decay
slightly reduces the effect of the reverse beginning error. The worse process is VESDE without drift
term since it is hard to balance different error sources. Our experimental results also show that EI
discretization is better than EM discretization.
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F.2 THE SYNTHETIC EXPERIMENTS WITH APPROXIMATED SCORE FUNCTION

In this section, instead of using an accurate score function, we train an approximated score function
on the pure VESDE (Eq. (3)) without drift term on two synthetic datasets: multiple Swiss rolls and
1-D GMM. Then, for the drift VESDE, we do not train the approximated score corresponding to
Eq. (1); we directly use the approximated score learned by pure VESDE and show that the drift
VESDE can improve the generated distribution without the training process.

Datasets. The 1-D GMM distribution contains three modes:
3

10
N (−8, 0.01) +

3

10
N (−4, 0.01) +

4

10
N (3, 1) .

For multiple Swiss rolls, we use a similar code compared to Listing 2 of Lai et al. (2023), except
Line 6. We change Line 6. to data /=10. to obtain a larger variance dataset. Each dataset contains
50000 datapoints.

The implementable algorithm. In this subsection, we adapt the code of a particular repository1,
which corresponds to Eq. (3) with σ2

t = t, as mentioned in the Appendix C.2 of Karras et al. (2022).
Hence, we choose two forward processes: (1) conservative βt = 1 with τ = T ; (2) pure VESDE
without drift term (Eq. (3)) with σ2

t = t. To match our analysis, we choose two sampling methods for
the reverse process: Euler-Maruyama method for reverse SDE and RK45 ODE solver for the reverse
PFODE method.

We note that although aggressive setting βt = t and τ = T has shown its power in theory (Lemma 5)
and the experiments with accurate score (Fig. 1), other sampling issues may arise in practice. We
leave the experimental exploration for drift VESDE with aggressive βt as a future work.

The training detail. For each dataset, we train a score function with pure VESDE (Eq. (3), σ2
t = t)

by using exactly the same network compared to the above repository. We train for 200 epochs with
batch size 200 and learning rate 10−4. For both training and inference, the start time is δ = 10−5.
For the conservative VESDE, we directly adapt the checkpoint learned by the pure VESDE since the
conservative drift VESDE has a similar trend compared to pure VESDE, as shown in Fig. 1.

Observation. We do experiments with T = 100 and lager T = 625 and these two choice show
similar phenomenon. In this paragraph, we first use T = 100 as an example to discuss the results.
As shown in Table 1, the conservative drift VESDE has smaller KL divergence compared to pure
VESDE under all sampling methods and datasets. From Fig. 2 and Fig. 3, it is clear that pure VESDE
has low density on the Swiss roll except the center one, which means that though pure VESDE can
deal with small E[q0], it is hard to deal with large dataset variance Cov[q0], as we discuss in Section 4.
For conservative drift VESDE (βt = 1 and τ = T ), as we discuss in Section 3.1, there is a constant
decay on the prior information E[q0] and Cov[q0], which is helpful in deal with large dataset mean
and variance. The experimental results support our augmentation. Fig. 2c, Fig. 3c and Fig. 4c show
that the density of the generated distribution is more uniform compared to pure VESDE, which means
that the drift VESDE can deal with large dataset mean and variance.

We also do experiments with larger T = 625. As we discuss in Section 4, larger T will reduce the
influence of the prior data information and have greater generated distribution, as shown in Fig. 4b
and Fig. 3c. The experiments of 1D-GMM (Fig. 4) show a similar phenomenon compared to the
multi Swiss rolls.

1https://colab.research.google.com/drive/120kYYBOVa1i0TD85RjlEkFjaWDxSFUx3?usp=sharing
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Table 1: The KL divergence for pure VESDE (Eq. (3)) and conservative drift VESDE with different
sampling method.

Forward Process 1-D GMM Swiss roll
Reverse SDE PFODE Reverse SDE PFODE

Pure VESDE (T = 100) 0.082 0.434 9.58 21.05
Drift VESDE (T = 100) 0.043 0.249 8.71 7.77
Pure VESDE (T = 625) 0.027 0.057 8.00 8.20
Drift VESDE (T = 625) 0.025 0.031 7.95 7.21

(a) Original Figure (b) Pure VESDE (T = 100) (c) Drift VESDE (T = 100)

(d) Pure VESDE (T = 625) (e) Drift VESDE (T = 625)

Figure 3: Experiment results of Swiss roll with reverse PFODE

(a) Original Figure (b) Pure VESDE (T = 625) (c) Drift VESDE (T = 625)

Figure 4: Experiment results of 1D-GMM with reverse PFODE
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