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A.1 The pharmacological model for dexamethasone

The expert ODE we used is adapted from [18]. As illustrated in Figure 5, it involves five expert
variables z; to z5 (the superscript e is omitted for brevity). The z; represents the innate immune
response to viral infection (measured in the laboratory using Type I IFNs [44, 1]). The z, and
z3 represent the concentration of dexamethasone in lung tissue and plasma respectively. The z4
represents the viral load and z5 represents the adaptive immune response (measured in the laboratory
using Cytotoxic T cells [1]).

The expert model that describes these variables are developed based on specialized knowledge and
laboratory experiments. Firstly, the immune responses and viral replication are modeled as:
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The five terms in the first Equation for z; captures the initial immune reaction to the virus, the
physiological positive feedback, the immune cell mortality, the pathological positive feedback, and
the effect of dexamethasone [18]. The second equation of z4 captures the viral replication, and the
effect of innate and adaptive immune systems on the virus. The last equation captures the adaptive
immune response triggered by the innate immune response [|]. The unknown coefficients kg, kpp,
ko, Emaz> hp, kDex, KDP> k11R, kDO, he are positive real numbers.

The concentration of dexamethasone (23, 23) is described by a standard two-compartmental pharma-
cokinetics model [55, 49]:

Zo = —ko 20+ k3 23 (13)
2:'3 = —kg *Z3 (14)

The coefficients ko, k3 are positive real numbers. In the literature, it is often assumed for simplicity
that the treatment is given at time ¢ = 0, and the initial condition of the plasma concentration z3(0)
corresponds to the dosage [23]. Since the plasma concentration z3 decays exponentially over time,
we can equivalently express it as a sum of exponentials: z3(t) = > . d; - I(t > t;) - exp(k3(t; —t))
when dosages d; are given at time ¢;, ¢ > 1. The function I(-) is an indicator function.

Prior distribution for real-data experiment. The initial condition z(0) corresponds to the patient
state at the time of ICU admission. Since dexamethasone is generally administered during the ICU
stay [60], its concentration at admission should be very close to zero. Hence we use an exponential
distribution with rate A = 100 as the prior of z3(0) and 2z3(0). On the other hand, the immune
response and viral load may vary across patients greatly. To allows for more heterogeneity, we use an
exponential distribution with rate A = 0.1 as the prior of 21 (0), z4(0), and 25(0). The exponential
distribution also reflects the positivity of the expert variables because it has a positive support.
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Figure 5: The expert variables and their temporal interactions as described by the expert ODE.

A.2 Medical importance and impact

A.2.1 Medical importance of LHM

Integration of machine learning (ML) and pathophysiology is a major challenge in adopting ML
models in a clinical setting. While clinicians seek to understand the mechanisms that drive disease
progression for prognosis and treatment allocation, machine learning models do not currently provide
such disease dynamics. With these dynamics, however, model results would translate to clinically
interpretable concepts, would resonate with clinicians, and could then support clinical decision
making.

In addition, disease dynamics are indispensable for the clinical interpretation of predictive modeling
results. Predictive modeling has taken flight in the medical field, but many models are left stranded
because clinicians can solely rely on feature importance and no mechanistic interpretation of the
results. Such an interpretation, however, will increase clinicians’ trust in these models and expedite
their use in clinical practice.

Lastly, the relationship between fundamental and clinical research may yield novel hypotheses and
foster subsequent research. There is a gap between benchwork and the bedside. Bridging this gap
with ML and interpretable models could reveal novel relationships and could inspire research both
ways. Overall, ML with a mechanistic interpretation can provide the next big step in medical data
science and can help bring these models to the bedside.

A.2.2 Dexamethasone in COVID-19

Coronavirus disease 2019 (COVID-19) was an unknown disease to intensive care clinicians worldwide.
Both the natural course of the disease as well as optimal treatment were unknown throughout the
onset of the pandemic. Since inflammatory organ injury appeared to play an important role in the
pathophysiology of COVID-19, glucocorticoids were proposed to mitigate the damaging effects of the
immune system [57]. In particular, Dexamethasone treatment has been shown to reduce mortality in
patients on invasive mechanical ventilation or oxygen alone in the RECOVERY trial [33]. Moreover,
the CoDEX trial demonstrated an increase in the number of ventilator free days with Dexamethasone
treatment in moderate to severe COVID-19 acute respiratory distress syndrome (ARDS)[83]. As a
result, COVID-19 treatment guidelines recommend Dexamethasone treatment in these settings [60].

Although beneficial effects have been shown of Dexamethasone on a group level, individual response
to treatment remains unknown. Knowing this response would help clinicians to anticipate complica-
tions, to improve individualized prognosis, and potentially determine beneficial treatments in these
patients. Moreover, clinicians could identify patients in which Dexamethasone has a desired effect
and in which patient it may not. For example, in the case of coinfection, Dexamethasone may be
discontinued in selected patients. Lastly, these models can identify novel mechanistic pathways in
COVID-19 patients that can inspire both fundamental and clinical research. Taken together, individu-
alized disease progression in response to Dexamethasone treatment would bring about a large step
forward in COVID-19 research.

22



A.2.3 Potential negative impact

Any decision support system could be used negatively if the user intentionally chooses to worsen the
outcome. This is very unlikely in our case because the intended users of LHM are clinicians.

A.3 Optimization and gradient calculation

We optimize ELBO by stochastic gradient ascent using the ADAM optimizer [46]. The gradient
calculation is enabled by the following two methods.

Reparameterization. To evaluate the ELBO, we need to take samples from the variational distribu-
tion Q4. Here we use the Gaussian reparameterization in all sampling steps to obtain the gradients
for the encoder [47].

Gradient for ODE. We use the torchdiffeq library to calculate the gradient with respect to the ODE
solutions [14]. A variety of ODE solvers are available in the library, we used the adams solver, which
is an adaptive step size solver.

A.4 Simulation study
A.4.1 Data generation details

We generated a variety of datasets to evaluate the model performance under different scenarios. To
evaluate how the number of clinical measurements affects performance, we generated datasets with
D = 20, 40 or 80 measurable physiological variables x. For the pharmacological model, we used the
model provided in Appendix A.1, which involves five inter-related variables (£ = 5). We set the
coefficients hp = h¢ = 2 and the rest to be one.

For each dataset, we set the number of un-modeled states z"™ according to the number of observed
physiological variables to be M = D /10 = 2,4 or 8 (respectively). (We made this choice to reflect
the fact that a larger number of physiological variables often necessitates a larger number un-modeled
states.) The un-modeled states z"™ are governed by a nonlinear ODE

Z;m = tanh(le;" + VVQZ,(E)7
with the coefficient matrices W, € RM*M W, ¢ RM*¥ For each dataset, we sampled the entries
in these matrices independently from N (0, 1).

For each patient ¢, each of the components of its initial condition z;(0) were independently drawn
from an exponential distribution with rate A = 100 (this distribution is also given to the algorithms as
the prior distribution). We consider a time horizon of 7' = 14 days; this is the median length of stay
in hospital for Covid-19 patients [69].

Each patient i will receive a one-time dexamethasone treatment with dosage d; at some time s;,
where d; ~ uniform[0, 10] mg and s; ~ uniform[0, T'].
The true physiological variables are generated by

x; = W3z; + Wya;,
with the coefficient matrices W3 € RX x(M+E) W, € R¥*1 For each dataset, each element in
these matrices was drawn independently from N (0, 1) and then multiplied by a Bernoulli variable
with p = 0.5, so that approximately half of the elements in each of these matrices W3, W, were 0.
(We did this in order to reflect the idea that each physiological variable is only related to some of the
latent variables.) The measurements are generated by

yi(t) = xi(t) + €

with the measurement noise ;4 ~ N (0, o) for o = 0.2,0.4 or 0.8; Equation (1). We first simulate all

the daily measurements at ¢ = 1,2, ...,7, and then randomly remove measurements with probability
0.5; this represents the fact that measurements of made irregularly.

A.4.2 Hyper-parameter settings

As a reminder, the number of measured clinical variables is D, the number of expert variables is F,
the number of ML latent variables is M. The sample size is Ny

The following is the hyperparameter setting used in the simulation study:

23



RMSE (to = 5) RMSE (t, = 10) RMSE (to = 12)

1.0 1.0 1.04 —e— NODE

_ Expert
081§ — i 081 Residual
0.6 0.6 "\\'ﬂ:" 06| P———g | —* Ensemble

—_———— ‘\0\. —e— LHM

0.4 0.4 Y R —

10 100 500 10 100 500 10 100 500

Sample size N Sample size N Sample size N

Figure 6: Simulation results under different lengths of observed history ¢o. Prediction accuracy on future
measurements Y[to : T'] given the observed history V[0 : to] as measured by RMSE. The shaded areas represent
95% confidence intervals.
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Figure 7: RMSE metric for each future time step. Predictions are issued based on historical measurements
V[0 : 12]. The shaded areas represent 95% confidence intervals.

. Learning rate: 0.01

. Batch size: 10

. Early stopping tolerance: 10 epochs
. Max iteration: 400

R

. Number of latent variables in NODE: Z = E + M, i.e. the true value. (additional settings
E+ M+ 4and E+ M + 9 are reported in the sensitivity analysis)

. Number of ML latent variables in LHM: M, i.e. the true value.
. Latent dimensionality in Encoder: 2D

. Number of layers in NODE: 2

. ODE Solver: dorip5

10. ODE rtol: 1E-7 (library default)

11. ODE atol: 1E-8 (library default)

O 0 3 N

A.4.3 Performance under different lengths of observed history

As a reminder, we use the historical measurements V[0 : o] up to some time ¢ to predict the future
measurements Y[to : T]. To evaluate the performance under different lengths of observed history, we
set tp = 5,10, or 12 days and use the default setting o = 0.2 and M = 2. The results are presented
in Figure 6, where each panel corresponds to a different ¢y. As expected, the predictive performance
improved when longer observed history is available. LHM outperforms the benchmarks for all £y’s
we study.

A.4.4 Performance breakdown for each time step

In previous figures, we report the aggregated performance over the time horizon ¢ € [t, T]. To
provide more details, here we report the metric for each time step. Specifically, we set £y = 12 and
shows the performance of 1, 2, and 3 step ahead prediction. We consider the scenarios with different
samples sizes for a typical setting (noise 0 = 0.2 and M = 2 un-modeled latent variables z™). The
RMSE metric is shown in Figure 7 and the CRPS metric is shown in Figure 8. As expected, the
prediction error increases as the model predicts further into the future. LHM achieves best or equally
best performance for each individual time steps
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Figure 8: CRPS metric for each future time step. Predictions are issued based on historical measurements
V[0 : 12]. The shaded areas represent 95% confidence intervals.

RMSE CRPS

.75
0.4

.50

o5 0.2

.00 0.0

6 10 15 6 10 15
Number of latent variables Z Number of latent variables Z

Figure 9: NODE'’s performance under different numbers of latent variables Z. The data are generated
from six true latent variables. Prediction accuracy on future measurements Y[5 : T'] given the observed history
V[0 : 5] as measured by RMSE and CRPS.

A.4.5 Performance of NODE is not sensitive to adding more latent variables

In the simulations reported above, we set the number of latent variables in NODE to be the true
value, i.e. Z = M + E. In practice, Z is a hyper-parameter that we do not know a priori. Here
we study if the performance is sensitive to the exact choice of Z. We consider a setting where the
data is generated from 6 latent variables (including both z™™ and z°) and we vary Z = 6, 10, 15. We
present the results in a typical simulation setting with Ny = 100, o0 = 0.2. As we show in Figure
9, the predictive performance does not significant change even when Z is more than doubled. Note
that similar findings have been reported in prior research [22]. This supports our choice of setting
Z = M + E by default.

A.4.6 Performance gain with Normalizing Flows

To ensure a fair comparison with existing methods, we use the diagonal Gaussian distribution in LHM
as the variational distribution. However, diagonal Gaussian is a restrictive approximation because it
does not capture any correlation structure between the latent variables.

Here we study if using a more flexible distribution will lead to further performance gain. We adopt
the planar normalizing flow proposed in [70] with the number of flows set to 4. As is standard in the
literature, we amortize the initial conditions z(0) as well as the flow parameters u, w and b. The
following shows a typical simulation with Ny = 100, 0 = 0.4 and M = 2.

Figure 10 tracks the loss function (negative ELBO) during training on the training and the evaluation
data respectively. As we expected, the version with normalizing flow (LHM-NF) consistently achieves
smaller loss on the training data due to the increased flexibility of the variational distribution. The
improvement persists when we turn to the evaluation data, and eventually translates into the perfor-
mance gain illustrated in Figure 7. This suggests that using a more flexible variational distribution
(e.g. normalizing flow) tends to improve accuracy as well as the uncertainty estimation.

A.4.7 Tllustration of true and reconstructed trajectories
Figure 11 shows an observed trajectory (o = 0.2, M = 2). A trained LHM takes the history up to

t = 12 and reconstructs the whole trajectory for ¢ € [0, 14]. The reconstructed trajectory closely
follows the trend of the true trajectory.
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Figure 10: Comparison between the standard LHM and the version with normalizing flow (LHM-NF).
Loss on training and evaluation datasets are plotted over training iterations. The loss is the negative ELBO.
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Figure 11: Illustration of true and reconstructed trajectories.

Table 2: Different methods to create hybrid ML models. We consider a static prediction problem with covariates
x € R and target outcome y € R¥ (notations differ from the rest of the paper). The r := y — ¥ denotes the
residuals.

Method Example Expert model ML model Final output
Residual Model [54, 86] v = f(x) r=f"(x) y+r
Ensemble [93,91] Vi=/,(x) F2=[f"(x) wiy1+ w2y
Feature Extraction [41 z¢ = f°(x) y = f"(z°) y
LHM This work Eq. 3 Eq. 4,5 Eq. 4

A.4.8 Computational resources
The simulations were performed on a server with a Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz

and a Nvidia(R) GeForce(TM) RTX 2080 Ti GPU. All individual simulations were finished within 3
hours.

A.5 Extended related works
A.5.1 Hybrid models
Table 2 categorizes various hybrid modeling frameworks in terms the kind of expert model and the

kind of machine learning that are used. For illustrative purposes, we consider a static prediction
problem with measurements (covariates) x € R and target outcome y € R¥.

A.5.2 Other research areas that involve ML and expert ODEs

There are several research areas that involve ML and expert ODEs but they are unrelated to hybrid
model or LHM. We briefly describe them for clarification and completeness.
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Reduced-Order Models. The expert model may involve a large number of variables, but not all of
them are important to the system dynamics (e.g. in large, high-fidelity models of fluid dynamics
[50]). Reduced-Order Models (ROMs) are compact representations of the more complex models
[88]. They are often constructed using dimensionality reduction to retain only the most important
dynamical characteristics of the original model. ROMs often achieve better estimation efficiency
and lower the computational cost. Recently, ML has been applied to ROMs and achieved promising
results [13, 90].

In ROMs, we start with an expert model that is over-complete and contains redundant variables.
In contrast, in LHM, we are given a pharmacological model that is incomplete, i.e. it cannot fully
explain the high-dimensional clinical measurements or provide the link between expert variables
and the measurements. Hence, LHM is essentially solving the opposite problem of ROMs as we are
introducing additional machine-learned latent variables into the system.

Using ML to solve expert equations. Some expert models involves ODEs or PDEs that are computa-
tionally challenging to solve (e.g. the quantum many-body problem [12]). ML has been used to speed
up the solution process by making various approximations [36, 79]. However, the pharmacological
models are generally well-behaved and the standard ODE solvers are able to find the solutions
efficiently.

Learning unknown ODEs from data Step-wise regression is a general framework to discover
unknown ODEs from data. It applies symbolic or sparse regression to the the observed time derivatives.
When these time derivatives are not observed, they are first estimated from the (frequently-sampled)
observations (e.g. by finite difference method) [10, 11, 74]. This approach is not applicable to our
setting because the time derivatives of the expert variables z" are not observed or can be easily
estimated from the data.

In addition to neural ODEs, Gaussian Processes (GP) have also been used to approximate unknown
governing equations [5, 75]. However, most existing works focus on the discrete-time setting or use
fixed step ODE solvers.

A.5.3 Using Pharmacology/Biology models in ML

Several other works have proposed to integrate pharmacological models into machine learning. But
the problem settings they considered and the approach they took is different from LHM.

[39] introduces a pharmacological model (the log-cell kill model) to modulate the state transition
dynamics of a state-space model. Their work considers discrete-time dynamical systems rather than
the continuous-time systems we focus on. The authors recognize that the existing log-cell kill models
are inadequate to model the disease dynamics (e.g. failure to capture relapses). To address this
shortcoming, the authors designed a new set of expert equations to allow for more complex dynamics
before integrating them with ML. Hence, this approach requires a deep understanding of the expert
model, and a fair amount of mathematical knowledge and manual work to modify the expert model.
Furthermore, this modification process has to be repeated for a different expert model. In contrast,
LHM learns the missing dynamics by introducing the ML latent variables z"™ and neural ODEs ™.

[94] considers a problem with more expert variables than observable physiological variables, which
is opposite to the setting we consider.* The problem setting is similar to the reduced-order models
discussed above. The authors use a neural network with time ¢ as input and outputs the system status
at that time. In contrast, LHM uses neural ODEs to model the time derivatives and obtains the system
status at time ¢ by solving the ODEs. Finally, the authors evaluate the gradient of the neural network
with respect to ¢ by automatic differentiation and introduce an additional loss function to ensure the
network gradient matches the expert ODEs. LHM does not involve any heuristic modification on the
loss function and follows the standard practice in Bayesian inference.

A.5.4 Causal treatment effect estimation

LHM predicts the disease progression based on governing ODEs. The causal inference literature
studies related problems that involve predicting/estimating treatment effects. Although causal
inference is a diverse field, most existing methods operate in the static or the discrete-time setting. In

“The Systems Biology models considered in [94] usually involve a large number of expert variables. This is
not the case in the pharmacological models we consider.
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Table 3: Methods that are related to predicting future outcomes given the intervention. LHM is based on the
physical/mechanistic view on causality, which naturally applies to the continuous-time setting. Alternative
approaches are developed based on different notions of causality but operate in static or discrete-time settings.

Framework Example  Temporality Core component

Physical/Mechanistic LHM Continuous-time  Governing equations (ODEs) of the dynamics
Potential outcome (PO) [73] Static / discrete Statistical properties of the PO

Causal graphical [65] Static / discrete Causal graphs (DAG) of the variables

Causal structural [66] Static / discrete Structural equations between the variables

contrast, LHM operates in the continuous-time setting due to the irregularity of clinical measurements.
Here we compare the approach taken by LHM with other approaches in the literature for completeness.
These methods are summarized in Table 3.

As discussed in Section 4, LHM predicts the future health status given treatments using the governing
equations (ODEs). This corresponds to the mechanistic (or physical) notion of the causality, which
is recognized as the “gold standard” for modeling natural phenomena by [76]. The governing
ODE:s describes the system dynamics in continuous time, which is essential because the clinical
measurements are made at irregular time points.

The potential outcome framework widely used in Statistics is based on a different notion of causality
[73]. It makes assumptions about the statistical properties of the unobservable potential outcomes (e.g.
independence) to make inference about the (conditional) average treatment effect. Here, the focus
is not on using or discovering the underlying governing equations, but on leveraging the statistical
associations between the observed and the potential outcomes. Unlike the mechanistic framework,
the potential outcome framework does not require the system to be observed over time, making it
suitable for problems involving only static variables.

The causal graphical model [65] uses another notion of causality. It describes the causal structure
between variables as a graph (typically a directed acyclic graph, DAG). Various identification
strategies have been developed to infer the causal effect given the graph (e.g. the backdoor criterion
[66]). A closely related framework is the structural causal model [66], where a set of structural
equations are given in addition to the causal graph. Typically, the structural equations are standard
equations that link the (static or discretely sampled) variables, but they are not ODEs that describe
the continuous-time dynamics.

A.6 Real data experiment
A.6.1 List of clinical variables

We use the measurements of the following temporal physiological variables. These variables are
chosen by our clinical collaborators and reflect the information accessible and important to a clinician
when deciding the treatment plan. They include vital signals, lung mechanics, and the biomarkers
measured in blood tests.

P/F ratio

PEEP

SOFA

. Temperature

. Arterial blood pressure

. Heart Rate

Bilirubin

I Y N

Thrombocytes

e

Leukocytes

_‘
e

Creatinine

—
—_

. C Reactive Protein

—_
[\

. Arterial lactate
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13. Creatine kinase

14. Glucose

15. Alanine transaminase
16. Aspartate transaminase
17. Prone positioning

18. Tidal volume

19. Driving pressure

20. FiO2

21. Lung compliance (static)
22. Respiratory rate

23. Pressure above PEEP
24. Arterial PaCO2

25. Arterial PH

26. PaCO2 (unspecified)
27. PH (unspecified)

We used the following static covariates:

. Age

Sex

. Body Mass Index

. Comorbidity: cirrhosis

. Comorbidity: chronic dialysis

. Comorbidity: chronic renal insufficiency
. Comorbidity: diabetes

. Comorbidity: cardiovascular insufficiency

. Comorbidity: copd

—_
o

. Comorbidity: respiratory insufficiency

11. Comorbidity: immunodeficiency

A.6.2 Eligibility criterion

We selected all patients in DDW who stayed in the ICU for more than 2 days and less than 31 days
(2097 out of 3464). Patients with a very short length of stay will not give us enough data points for
training or evaluation.

A.6.3 Hyper-parameter settings

The following is the hyperparameter setting used in the real-data study. They are decided based on a
pilot study.

. Learning rate: 0.01

. Batch size: 100

. Early stopping tolerance: 10 epochs

. Max iteration: 1500

. Number of latent variables in NODE: 20

. Number of ML latent variables in LHM: 15 (this is to ensure the total number of latent
variables is the same as NODE).

7. Latent dimensionality in Encoder: 1.2D

AN L W =
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Table 4: Prediction accuracy (RMSE) on Y[tg : to + H] over different time horizons H (hours). The
standard deviations are shown in the brackets.

Method \H= 6 12 24 72

Expert 0.734(0.99) 0.724 (1.00)  0.713 (0.03)  0.993 (0.03)
Residual 0.555(0.98) 0.575(1.08) 0.607 (0.04) 0.983 (0.05)
Ensemble 0.556 (0.71)  0.573 (0.73)  0.599 (0.04)  0.713 (0.05)
NODE 0.661 (1.00)  0.654 (1.00)  0.650 (0.02)  0.996 (0.02)

ODE2VAE  0.627 (1.11)  0.616(1.09) 0.619 (0.02) 1.113 (0.01)
GRU-ODE  0.549 (0.71) 0.571(0.72)  0.601 (0.04)  0.711 (0.05)
Time LSTM  0.610 (0.81)  0.620 (0.82)  0.631 (0.04)  0.807 (0.05)
LHM 0.517 (0.72)  0.511 (0.73)  0.511 (0.03)  0.691 (0.03)

8. Number of layers in NODE: 2
9. ODE Solver: adams
10. ODE rtol: 1E-7 (library default)
11. ODE atol: 1E-8 (library default)

A.6.4 Accuracy over different time horizons

Table 4 shows the performance over different prediction horizons H given Ny = 1000 training
samples. LHM achieves the best or equally the best performance in all cases.

A.6.5 License and anonymity

Access to the DDW is regulated. We have signed an end user license before access to the data was
granted. All data were pseudonymized in DDW.

A.7 Practical extensions

Incorporating static covariates. Static covariates such as the demographics often impact disease
progression. We can easily incorporate these variables in LHM by treating them as time-constant
“treatments”. This will allow the static covariates to impact the latent dynamics as well as the mapping
between the latent and physiological variables (Equation 3 to 5).

Informative sampling. It is well known that the sampling frequency may carry information about
the variables being measured (e.g. clinicians tend to take measurements more often if a patient is
critically ill) [3]. One approach to incorporate informative sampling is to explicitly model it as a
marked point process [72]. Another popular approach is to concatenate the measurements x with
the masking vector that indicates which variable is measured, and train the model on the extended
measurement vector [45]. Both approaches are compatible with LHM.

Correcting model mis-specification. Equation Replacement is a general approach that applies to
any misspecified expert model and it can be combined with all the methods discussed above, and
to LHM [35, 64, 98]. In this approach, one first identifies which equations in the expert model are
misspecified, and then replaces these by flexible function approximators (such as neural networks),
that will approximate the true equation after training. Equation replacement only attempts to correct
the misspecifications in the original model, but does not introduce any new variables.

Efficient online inference. The inference method presented in Section 3.4 requires to re-process the
entire history each time a new measurement is made. Instead, it may be desirable to incrementally
update the posterior of z;(0) based on the most recent measurement only. Fortunately, online Bayesian
update (also known as Bayesian Filtering) is a well studied problem with many proven solutions (e.g.
Kalman filter and extensions [71]). These inference methods can be applied when the efficiency of
online inference is of concern.

Improving encoder architecture. For a fair comparison with related works, we used the reversed
time-aware LSTM encoder proposed in [14]. Essentially, it is a LSTM with the observation time as
an additional input channel and running backward through time. To further improve performance,
one may explore other architectures. Essentially, any architecture that takes irregularly sampled data
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as input is applicable. Examples include the Neural Controlled Ordinary Differential Equation [45]
and the Neural ODE Processes [61].
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