
Under review as a conference paper at ICLR 2024

APPENDIX

Roadmap.

In Section A, we provide several basic notations, definitions and more related work. In Section B, we
present our dynamic data-structure. Our algorithm shows the upper bound results. In Section C, we
give our conditional lower bound result by assuming the Hinted MV conjecture.

A PRELIMINARY

Notations For a matrix A, we use A⊤ to denote its transpose. For a non-zero diagonal matrix
D ∈ Rn×n, we use D−1 ∈ Rn×n to denote the matrix where the (i, i)-th diagonal entry is (Di,i)

−1

for all i ∈ [n].

For a vector x ∈ Rn, we use diag(x) ∈ Rn×n to denote an n× n matrix where the i, i-th entry on
the diagonal is xi and zero everywhere else for all i ∈ [n].

In many theoretical computer science (TCS)/machine learning (ML) literature, exp(M) denotes the
matrix exponential, i.e., exp(M) =

∑∞
i=0

1
i!M

i. However, in this paper, we use exp(M) to denote
the entry-wise exponential, i.e.,

exp(M)i,j := exp(Mi,j).

We use 1n to denote the length-n vector where all the entries are ones. We use 0n to denote the
length-n vector where all entries are zeros.

In this work, we use standard notation Tmat(·, ·, ·) (see Definition 2.1) and ω(·, ·, ·) (see Definition 2.2)
for describing the running time of matrix multiplication, see literature Demetrescu & Italiano (2000);
Zwick (2002); Sankowski (2004; 2005); Le Gall (2014); Brand & Nanongkai (2019); Cohen et al.
(2019); Lee et al. (2019); Brand et al. (2019); Brand (2020); Gu & Ren (2021); Jiang et al. (2021);
Brand (2021) for examples.

We give a standard fact that is used in our proof.
Fact A.1 (folklore). Given a set of vectors a1, · · · , ak ∈ Rn and b1, · · · bk ∈ Rd, then we have∑k

i=1 aib
⊤
i = AB⊤ where A ∈ Rn×k and ai is i-th column of A, and B ∈ Rd×k and bi is the i-th

column of B for all i ∈ [k]. Further, we have

• Part 1. Computing AB⊤

– takes O(nkd) time, if we do it naively
– takes Tmat(n, k, d) time, if we use fast matrix multiplication

• Part 2. For any matrix C ∈ Rd×d, computing AB⊤C

– takes Tmat(n, k, d) + Tmat(n, d, d), if we use fast matrix multiplication, first compute
AB⊤ then compute (AB⊤)C

– takes Tmat(k, d, d) + Tmat(n, k, d) time, if we use fast matrix multiplication, first
compute B⊤C, then compute A(B⊤C)

Detailed Comparison with Alman & Song (2023) In Alman & Song (2023), from the upper
bound side, they make use of the ‘polynomial method in algorithm design’. The polynomial method is
a technique for finding low-rank approximations of f(M), where M is a matrix and f is an entry-wise
function. They apply a polynomial method to decompose exp(QK⊤) to U1U2, where U1 and U2 are
low rank matrices. Hence, for the follow-up attention computation (i.e., exp(QK⊤)V ) , they can first
compute U2V , and then compute U1(U2V ). As U1 and U2 are low rank matrices, these two steps
can be computed efficiently. From the lower bound perspective, they give a fine-grained reduction
from the Approximate Nearest Neighbor search (ANN) to attention problems. The hypothesis uses
the Strong exponential time hypothesis.

In our case, from the upper bound side, we first proposed a data-structure that efficiently solves the
Online Diagonal-based normalized Attention Matrix Vector multiplication problem by using the lazy

15



Under review as a conference paper at ICLR 2024

update techniques. Instead of updating the target matrix every time, we set a hyperparameter a that
lets the user strike the balance between the query time and the update time. From the lower bound
side, we make use of a variation of the popular online matrix vector multiplication conjecture which
is called hinted matrix vector multiplication conjecture. Notably, our work achieves congruence
between upper and lower bound results for dynamically maintaining attention computations.

B MAIN UPPER BOUND

In Section B.1, we show the running time of initializing our data structure. In Section B.2, we show
the running time of updating K and V . In Section B.3, we show the correctness and the running
time of querying the target matrix. In Section B.4, we show the correctness and the running time of
recomputing the variables in our data-structure.

We propose our upper bound result as the following:

Theorem B.1 (Main algorithm, formal version of Theorem 1.3). For any constant a ∈ (0, 1]. Let
d = O(n). There is a dynamic data structure that uses O(n2) space and supports the following
operations:

• INIT(Q,K, V ). It runs in O(Tmat(n, d, n)) time.

• UPDATEK(i ∈ [n], j ∈ [d], δ ∈ R). This operation updates one entry in K, and it runs in
O(Tmat(n, n

a, n)/na) amortized time.

• UPDATEV(i ∈ [n], j ∈ [d], δ ∈ R). This operation takes same amortized time as K update.

• QUERY(i ∈ [n], j ∈ [d]). This operation outputs (D−1(exp(QK⊤))V )i,j operation takes
in O(na) worst case time.

Remark B.2. The amortized time in UPDATEK and UPDATEV can be made into worst case time by
using standard techniques, e.g. see Section B of Brand et al. (2019).

Algorithm 1 Dynamic Data Structure

1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: members
3: Q ∈ Rn×d ▷ Query token
4: K ∈ Rn×d ▷ Key token
5: V ∈ Rn×d ▷ Value token
6: M ∈ Rn×n ▷ The logits matrix, M = QK⊤

7: A ∈ Rn×n ▷ The attention matrix, A = exp(QK⊤)
8: D ∈ Rn×n ▷ The diagonal matrix,
9: C ∈ Rn×d ▷ Intermediate matrix, C = exp(QK⊤)V

10: B ∈ Rn×d ▷ Target matrix, B = D−1AV
11: ListA ▷ List with size na

12: ListC ▷ List with size na

13: ListD ▷ List with size na

14: ctK , ctV
15: end members
16:
17: procedure INIT(Q,K, V ) ▷ Lemma B.3
18: Q← Q, K ← K, V ← V
19: M ← QK⊤, A← exp(QK⊤)
20: C ← exp(QK⊤)V
21: B ← D−1AV
22: ctK ← 0
23: ctV ← 0
24: end procedure
25: end data structure

16



Under review as a conference paper at ICLR 2024

Algorithm 2 Algorithm that update K and maintain the data structure

1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: procedure UPDATEK(i ∈ [n], j ∈ [d], δ) ▷ Lemma B.4
3: ctK ← ctK + 1
4: K̃i,j ← Ki,j + δ
5: (∆M )∗,i ← δ · Q︸︷︷︸

n×d

ej︸︷︷︸
d×1

▷ ∆M only have entries in i-th column

6: ▷ Here ◦ denotes entry-wise product
7: (∆A)∗,i ← (A∗,i ◦ (exp((∆M )∗,i)− 1n))

8: M̃ ←M + (∆M )∗,ie⊤i ▷ We only update i-th column of M
9: Ã← A+ (∆A)∗,ie⊤i ▷ We only update i-th column of A

10: Obtain diagonal vector Dtmp from ListD[ctK −1].GETB ▷ It takes O(n) time
11: D̃ ← D−1

tmp + diag(∆A)∗,i
12: for j = 1→ n do
13: (∆D)j,j ← (Dtmp)

−1
j,j − D̃−1

j,j

14: end for
15: if ctK < na then
16: ListC [ctK − 1].(a, b)← ((∆A)∗,i ∈ Rn, V ⊤ei ∈ Rd)

17: ListD[ctK − 1].(a, b)← (∆D ∈ Rn×n, D̃−1 ∈ Rn×n) ▷ Diagonal matrices
18: else ▷ Tmat(n, n

a, d) = nω(1,1,a) time
19: RECOMPUTE() ▷ Algorithm 5. Re-compute everything
20: end if
21: /*Referesh the memory*/
22: K ← K̃
23: A← Ã
24: M ← M̃
25: end procedure
26: end data structure

Algorithm 3
1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: procedure UPDATEV(i ∈ [n], j ∈ [d], δ) ▷ Lemma B.5
3: ctV ← ctV +1
4: if ctV < na then
5: ListV [ctV −1].(a, b)← (ei ∈ Rn, δej ∈ Rd)
6: else
7: RECOMPUTE() ▷ Algorithm 5. Re-compute everything
8: end if
9: end procedure

10: end data structure

B.1 INITIALIZATION

We first give the running time of the initialization procedure.
Lemma B.3 (Init). The procedure INIT (Algorithm 1) takes Tmat(n, d, n) time.

Proof. It is trivially from applying fast matrix multiplication.

B.2 UPDATE

Next, we give the running time of updating K.
Lemma B.4 (Running time of UPDATEK). The procedure UPDATEK (Algorithm 2) takes

• Part 1. Tmat(n, n, n
a) time in the worst case

17



Under review as a conference paper at ICLR 2024

Algorithm 4 Algorithm that query the {i, j}-th element in the target matrix

1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: procedure QUERY(i ∈ [n], j ∈ [d]) ▷ Lemma B.7, B.6
3: Let ∆V,1 and ∆V,2 be rectangular matrix obtained from list from V

4: Let (Dtmp)
−1
i denote the list of diagonal matrices obtained from ListD[ctK ].GETB ▷ This

takes O(1) time
5: /*Below is the target*/
6: answer← ((D−1

tmp) · (A) · (V +∆V,1∆V,2))i,j
7: /*The actual computation*/
8: /*Part 1. Answer, This is fast because we store C = AV */
9: answer1 ← (Dtmp)

−1
i (Ci,j + (∆C,1∆C,2)i,j) ▷ O(na) time

10: /*Part 2. Answer, this is fast because each column of ∆V,1 and row of ∆V,2 is 1-sparse*/
11: answer2 ← (Dtmp)

−1
i Ai,∗∆V,1(∆V,2)∗,j ▷ O(na) time

12: answer←∑2
j=1 answerj

13: return answer
14: end procedure
15: end data structure

Algorithm 5 Algorithm that re-compute evreything

1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: procedure RECOMPUTE() ▷ Lemma B.9, Lemma B.8
3: Let ∆C,1 and ∆C,2 be rectangular matrix obtained from ListC
4: Let ∆V,1 and ∆V,2 be rectangular matrix obtained from ListV
5: Let ∆D(i) denote the list of diagonal matrices obtained from ListD[i].GETA

6: C̃ ← C +∆C,1 ·∆C,2+A∆V,1 ·∆V,2 ▷ It takes Tmat(n, n
a, d) time

7: Ṽ ← V +∆V,1 ·∆V,2 ▷ It takes Tmat(n, n
a, d) time

8: ∆D ←
∑ctK

i=1 ∆D(i) ▷ It takes n1+a time
9: D̃−1 ← D−1 +∆D ▷ It takes n time

10: B̃ ← D̃−1 · C̃ ▷ This takes nd
11: /*Refresh the memory*/
12: D ← D̃, C ← C̃, B ← B̃, V ← Ṽ
13: /*Reset the counter*/
14: ctK ← 0, ctV ← 0
15: end procedure
16: end data structure

• Part 2. Tmat(n, n, n
a)/na time in the amortized case

Proof. Part 1. It trivially from Lemma B.9

Part 2. If the ctK < na, we pay O(n) time. If ctK = na, we pay nω(1,1,a). So the amortized time is

n(na − 1) + nω(1,1,a)

na
= O(nω(1,1,a)−a)

Note that, by using fast matrix multiplication and the fact that d = O(n), we have nω(1,1,a) =
Tmat(n, n

a, d). Thus we complete the proof.

Now, we give the running time of updating V .
Lemma B.5 (Running time of UPDATEV). The procedure UPDATEV (Algorithm 3) takes

• Part 1. Tmat(n, n, n
a) time in the worst case.

• Part 2. Tmat(n, n, n
a)/na time in the amortized case.

Proof. Part 1. It trivially from Lemma B.9.

18



Under review as a conference paper at ICLR 2024

Part 2. If the ctK < na, we pay O(n) time. If ctK = na, we pay nω(1,1,a). So the amortized time is

n(na − 1) + nω(1,1,a)

na
= O(nω(1,1,a)−a)

Note that, by using fast matrix multiplication and the fact that d = O(n), we have nω(1,1,a) =
Tmat(n, n

a, d). Thus we complete the proof.

B.3 QUERY

We show the correctness of our QUERY that queries only one element in the target matrix.
Lemma B.6 (Correctness of QUERY). The procedure QUERY (Algorithm 4) outputs

B̃i,j = (D−1 ·A · (V +∆V ))i,j

= (D−1AV +D−1A∆V )i,j

Proof. Let ∆V,1 denote the vector obtained from ListD[ctK ].GETA.

Let ∆V,2 denote the vector obtained from ListD[ctK ].GETB

Let (Dtmp)
−1
i denote the list of diagonal matrices obtained from ListD[ctK ].GETB

We know

B̃ = ((D−1
tmp) · (A) · (V +∆V,1∆V,2))

= (Dtmp)
−1(AV ) + (Dtmp)

−1(A∆V,1∆V,2)

For the {i, j}-th element, by using simple algebra, we have

B̃i,j = (Dtmp)
−1
i (AV )i,j + (Dtmp)

−1
i (A∆V,1∆V,2)

= (Dtmp)
−1
i (C +∆C,1 ·∆C,2)i,j + (Dtmp)

−1
i (A∆V,1∆V,2)i,j

= (Dtmp)
−1
i (C +∆C,1 ·∆C,2)i,j + (Dtmp)

−1
i Ai,∗∆V,1(∆V,2)∗,j

We know

answer1 = (Dtmp)
−1
i (C +∆C,1 ·∆C,2)i,j

and

answer2 = (Dtmp)
−1
i Ai,∗∆V,1(∆V,2)∗,j

By summing up answer1 and answer2, we have

B̃i,j = (D−1AV +D−1A∆V )i,j .

Now, we complete the proof.

Next, we give the running time of it.
Lemma B.7 (Running time of QUERY). The running time of procedure QUERY (Algorithm 4) is
O(na).

Proof. We first stack all the vectors in ListV to ∆V,1 ∈ Rn×na

and ∆V,2 ∈ Rna×d, which takes
O(1) time.

• Computing (Dtmp)
−1
i (C +∆C,1 ·∆C,2)i,j takes O(na) time.

• Computing (∆V,1∆V,2) takes O(na) time as ∆V,1 is 1-sparse in columns and (∆V,2) is
1-sparse in rows.

• Computing (Dtmp)
−1
i Ai,∗(∆V,1∆V,2)∗,j takes O(na) time as nnz((∆V,1∆V,2)∗,j) ≤ na.

Hence, the total running time needed is O(na)

19



Under review as a conference paper at ICLR 2024

B.4 RE-COMPUTE

We show the correctness of our re-compute function.

Lemma B.8 (Correctness of RECOMPUTE). The procedure RECOMPUTE (Algorithm 5) correctly
re-compute D,C,B, V .

Proof. Part 1. Re-compute D

Let ∆D(i) denote the list of diagonal matrices obtained from ListD[i].GETA. Then, the total
difference between the updated D̃ and D is

∑ctK
i=1 ∆D(i).

By computing D̃−1 ← D−1 +∆D, we correctly get the updated D̃−1. By computing the inverse of
a diagonal matrix we get D̃.

Part 2. Re-compute V

We first stack all the vectors in ListV to ∆V,1 ∈ Rn×na

and ∆V,2 ∈ Rna×d.

By using Fact A.1, we have Ṽ = V +∆V,1 ·∆V,2.

Part 3. Re-compute C

Similar to the proof of re-computing V .

We first stack all the vectors in ListC to ∆C,1 ∈ Rn×na

and ∆C,2 ∈ Rna×d.

By using Fact A.1, we have C̃ = C +∆C,1 ·∆C,2+A∆V,1 ·∆V,2.

Part 4. Re-compute B

By using the definition of B = D−1C, we can update B by using B̃ = D̃−1 · C̃.

Now, we complete the proof.

Next, we give the running time of it.

Lemma B.9 (Running time of RECOMPUTE). The running time of procedure RECOMPUTE (Algo-
rithm 5) is Tmat(n, n

a, d).

Proof. We first stack all the vectors in ListV to ∆V,1 ∈ Rn×na

and ∆V,2 ∈ Rna×d, which takes
O(1) time.

We stack all the vectors in ListC to ∆C,1 ∈ Rn×na

and ∆C,2 ∈ Rna×d, which takes O(1) time.

• Computing C +∆C,1 ·∆C,2+A∆V,1 ·∆V,2 takes Tmat(n, n
a, d) time.

• Computing V +∆V,1 ·∆V,2 takes Tmat(n, n
a, d) time.

• Computing
∑ctK

i=1 ∆D(i) takes O(na+1) time as nnz(∆D(i)) = O(n) and ctK = O(na).

• Computing D−1 +∆D takes O(n) time as nnz(∆D) = O(n).

• Computing D̃−1 · C̃ takes O(nd) time as D̃−1 is a diagonal matrix. Hence, the total running
time is Tmat(n, n

a, d).

C MAIN LOWER BOUND

In Section C.1, we give the definition of Online Matrix Vector (OMV) problem. In Section C.2, we
introduce the definition of Hinted MV and its conjecture (from previous work Brand et al. (2019)). In
Section C.3, we show the hardness of computing the target matrix with the normalization factor.

20



Under review as a conference paper at ICLR 2024

C.1 ONLINE MATRIX VECTOR MULTIPLICATION

Before studying the hardness of our problem, we first review a famous problem in theoretical computer
science which is called online matrix vector multiplication problem. Here is the definition of online
matrix vector multiplication, which has been a crucial task in many fundamental optimization
problems.

Definition C.1 (Online Matrix Vector (OMV) Henzinger et al. (2015); Larsen & Williams (2017);
Chakraborty et al. (2018)). Given a matrix A ∈ {0, 1}n×n, let T = O(n), there is an online sequence
of vectors u1, · · · , uT ∈ {0, 1}n. The goal is to design a structure that whenever receives a new
vector ut and output Aut.

Such a problem is widely believed in the community that there is no algorithm to solve it in truly
subquadratic time per vector and there is no algorithm to solve it in truly subcubic time over all
vectors.

C.2 HARDNESS FROM PREVIOUS WORK

We define the hinted Mv problem from previous work Brand et al. (2019).

Definition C.2 (Hinted MV (HMV) (Brand et al., 2019, Definition 5.6)). Let the computations be
performed over the boolean semi-ring and let m = nτ , 0 < τ ≤ 1. The hinted Mv problem consists
of the following phases:

1. Input two n× n matrices M and V

2. Input an n× n matrix P with at most nτ non-zero entries

3. Input a single index i ∈ [n]

• We need to answer MPV∗,i
• Here V∗,i ∈ Rn is the i-th column of matrix V

We give the hinted Mv conjecture which is from prior work Brand et al. (2019).

Conjecture C.3 (HMV conjecture (Brand et al., 2019, Conjecture 5.2), restatement of Conjecture 3.1).
For every constant 0 < τ ≤ 1 no algorithm for the hinted Mv problem (Definition C.2) can
simultaneously satisfy

• polynomial time in phase 1

• O(nω(1,1,τ)−ϵ) time complexity in phase 2 and

• O(n1+τ−ϵ) in phase 3

for some constant ϵ > 0.

C.3 ONLINE DIAGONAL-NORMALIZED ATTENTION MATRIX VECTOR MULTIPLICATION

Next, we consider the normalization factor and defined the problem as the following.

Definition C.4 (ODAMV(n, d), restatement of Definition 1.2). The goal of Online Diagonal-based
normalized Attention Matrix Vector Multiplication problem ODAMV(n, d) is to design a data
structure that satisfies the following operations:

1. INIT: Initialize on n× d matrices Q, K, V .

2. UPDATE: Change any entry of Q, K, or V .

3. QUERY: For any given i ∈ [n], j ∈ [d], return (D−1 exp(QK⊤)V )i,j , where D =
diag(exp(QK⊤)1n).

Next, we present our lower bound result with the normalization factor.

21



Under review as a conference paper at ICLR 2024

Lemma C.5. Assuming the hinted Mv conjecture (Conjecture C.3): For every constant 0 < τ ≤ 1,
there is no algorithm that solve ODAMV(n, d) problem (Definition C.4) with

• polynomial initialization time, and

• amortized update time O(Tmat(n, n
τ , d)/nτ+Ω(1)), and

• worst query time O(nτ−Ω(1)).

Proof. Assume there was a dynamic algorithm faster than what is stated in Lemma C.5 for some
parameter τ , i.e. update time O(Tmat(n, n

τ , d)/nτ+ϵ) and query time O(nτ−ϵ) for some constant
ϵ > 0. We show that this would contradict the hinted Mv conjecture (Conjecture C.3).

Let us take an instance for the v-hinted Mv problem (Definition C.2) with M ∈ {0, 1}n×n, V ∈
{0, 1}n×n.

We can construct matrix M ∈ {0, 1}n×2n and V ∈ {0, 1}2n×n as follows

M :=
[
M M

]
and V :=

[
V

0n×n

]
where M is a matrix that M i,j = 1−Mi,j .

Note that ∥Mi,∗∥1 = n, for each i ∈ [n].

Based on the above construction, we will create a new instance ODAMV(ñ = 2n, d̃ = 2n), where

Q̃ =

[
M

0n×2n

]
, K̃ = 02n×2n, Ṽ = [V 02n×n]

During phase 1, we give this input to the dynamic algorithm for the ODAMV problem (Definition C.4).

Let D ∈ {0, 1}n×n denote a diagonal matrix, where nnz(D) = nτ

During phase 2, we receive the 2n× 2n diagonal matrix P, where

P =

[
P 0
0 P

]
and nnz(P) = 2nτ .

We perform 2nτ updates to the data structure to set K̃⊤ = P. This takes

O(ñτ · (Tmat(ñ, ñ
τ , d̃)/ñτ+ϵ)) = O(nω(1,1,τ)−ϵ)

time.

Note that

• ∥Q̃i,∗∥1 = n, for each i ∈ [n].

• ∥Q̃i,∗∥1 = 0, for each i ∈ [n+ 1, 2n].

By using the definition of P, we know that, for each i ∈ [n]

D̃i,i = nτ exp(1) + nτ exp(0) = nτ (e+ 1).

For each i ∈ [n+ 1, 2n]

D̃i,i = nτ exp(0) = nτ . (2)

Hence, we don’t need to update D̃.

At last, in phase 3, we perform ñ queries to obtain the column exp(Q̃K̃⊤)Ṽ∗,i in O(ñ · ñτ−ϵ) =
O(n1+τ−ϵ) time.

22



Under review as a conference paper at ICLR 2024

Using Claim C.7 and Claim C.6, we know that, for any i ∈ [n] and for any j ∈ [n], if there is an
algorithm that can find (D̃−1 exp(Q̃K̃⊤)Ṽ )j,i , then using (D̃−1 exp(Q̃K̃⊤)Ṽ )j,i − (D̃−1Ṽ )j,i is
enough to reconstruct (MPV)j,i. Here D̃−1Ṽ can be computed in just O(1) time via Eq. (2). Thus,
we can know the (MDV )j,i for the hinted Mv problem in O(n1+τϵ) time, contradicting the hinted
Mv conjecture.

Claim C.6. For each i ∈ [n] and j ∈ [n], if (D̃−1(exp(Q̃K̃⊤) − 1ñ×ñ)Ṽ )j,i is > 0, then
(MPV)j,i = 1,

Proof. By using the fact that nτ (e+ 1) > 0 and nτ > 0, we have

D̃−1(exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i > 0

((exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i > 0

We know

Q̃ =

[
M

0n×2n

]
, K̃⊤ =

[
P 0
0 P

]
, Ṽ = [V 02n×n] ,

so we have
((exp(MP)− 1n×2n)V)j,i > 0.

For k ∈ [n+ 1, 2n], as V =

[
V

0n×n

]
, we know (exp(MP)− 1n×2n)j,k(V)k,i = 0.

Using the definition of matrix multiplication, and the fact that exp(x) > 1 for all x > 0, we have
some k ∈ [n] with

(exp(MP)− 1n×2n)j,k(V)k,i > 0

(exp(MP)j,k − 1)(V)k,i > 0

We can conclude that for each i ∈ [n], j ∈ [n], there is at least one k ∈ [n] such that

• Vk,i > 0

• (MP)j,k > 0

Therefore, by using the definition of boolean semi-ring, we can conclude that (MPV)j,i = 1

Claim C.7. For each i ∈ [n] and j ∈ [n], if (D̃−1(exp(Q̃K̃⊤)−1ñ×ñ)Ṽ )j,i is 0 then (MPV)j,i = 0.

Proof. By using the fact that nτ (e+ 1) > 0 and nτ > 0, we have

D̃−1(exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i = 0

((exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i = 0

We know

Q̃ =

[
M

0n×2n

]
, K̃⊤ =

[
P 0
0 P

]
, Ṽ = [V 02n×n] ,

so we have
((exp(MP)− 1n×2n)V)j,i = 0.

For k ∈ [n+ 1, 2n], as V =

[
V

0n×n

]
, we know (exp(MP)− 1n×2n)j,k(V)k,i = 0.

For all k ∈ [n] such that Vk,i = 1 , we have (exp(MP)− 1n×2n)j,k = 0 , which also implies that
(MP)j,k = 0.

Now, we can conclude that (MPV)j,i = 0 for each i ∈ [n] and j ∈ [n].

23


