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A APPENDIX

A GLOVE REPRESENTATIONS

GloVe (Pennington et al., 2014) trains low-dimensional embeddings from co-occurrences counts Xij ,
by learning separate embeddings vi and ṽj , and minimizes the objective:

J =
N∑

i,j=1

f(Xij) ·
(
v→
i ṽj + bi + b̃j → logXij

)2
, (2)

with f(x) = min (1, (x/xmax)ω) is a weighting function that downweights extremely frequent pairs,
and bi and b̃j are learned biases.

However, visual co-occurrence is inherently symmetric. Unlike language, the joint appearance
of objects i and j is bidirectional and unordered. To reflect this difference, we follow Gupta
et al. (2019) and modify the GloVe objective by tying the embeddings and biases, resulting in
vi = ṽi and bi = b̃i.

For each dataset, we compute separate co-occurrence matrices for the training and test splits. We
validate the GloVe hyperparameters by correlating the dot products of the learned embeddings with
the log co-occurrence counts on the test set. The final configuration uses 128-dimensional symmetric
embeddings with xmax set to the 0.9 quantile of the observed counts and ω = 0.75. To estimate
representational variance, we train 100 GloVe models with different seeds for each dataset. Figure 6
illustrates GloVe vectors inferred from the COCO dataset, visualized with PaCMAP.

B DATASETS

In Table 3, we present the datasets and benchmarks used in our experiments. The provided training
splits are utilized for training the linear probe, and evaluations are conducted on the test splits. If a
test split is unavailable, we use the validation split instead. For Core50, following the approach of
Orhan & Lake (2024), we use 7 backgrounds for training and 5 backgrounds for testing. The task is
relatively simple in COIL100, so we train a linear probe on only one image per class.

Table 3: Overview of datasets, including the number of datapoints in each split, the splits used for
training a linear probe, and the splits used for evaluation.

Dataset Train Split Test Split Citation

Category recognition
ImgNet-1k 1,281,167 (train) 50,000 (test) (Russakovsky et al., 2015)
ImgNet-1k 10% 128,116 (train) 50,000 (test) (Chen et al., 2020)
ImgNet-1k 1% 12,811 (train) 50,000 (test) (Chen et al., 2020)
ImgNet-100 126,689 (train) 50,000 (test) (Tian et al., 2020)
CIFAR100 50,000 (train) 10,000 (test) (Krizhevsky et al., 2009)

Fine-Grained Recognition
DTD 1,880 (train) 1,880 (test) (Cimpoi et al., 2014)
FGVC-Aircraft 3,334 (train) 3,333 (test) (Maji et al., 2013)
Flowers102 1,020 (train) 6,149 (test) (Nilsback & Zisserman, 2008)
OxfordIIITPet 3,680 (trainval) 3,669 (test) (Parkhi et al., 2012)
StanfordCars 8,144 (train) 8,041 (test) (Krause et al., 2013)

Instance Recognition
ToyBox 36,540 (train) 15,660 (test) (Wang et al., 2017)
COIL100 100 (train) 7,100 (test) (Nene et al., 1996)
Core50 90,000 (train) 75,000(test) (Lomonaco & Maltoni, 2017)

Scene Recognition
Places365 1,803,460 (train) 36,500 (test) (Zhou et al., 2017a)
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Figure 6: PaCMAP projection of GloVe embeddings learned from object co-occurrence statistics
in the COCO dataset. Each point represents an object category. The marker shapes indicate COCO
supercategories and colors reflect groupings obtained via a hierarchical clustering. Two broad clusters
emerge, separating indoor (left) and outdoor objects (right). Within these clusters, the embeddings
capture fine-grained spatial co-occurrence structures. For instance, a cat appears near a couch despite
belonging to different supercategories (animal vs. furniture), reflecting their frequent co-occurrence
in indoor scenes.

C IMPLEMENTATION DETAILS

We use different optimization strategies tailored to their architectures. For ResNet50, we employ the
LARS optimizer (You et al., 2017) with a cosine decay learning rate schedule, without restarts, and a
warm-up period set to 1% of the total training steps. The learning rate follows the linear scaling rule
(Goyal et al., 2017), computed as lrbase↑B/256, with lrbase = 1.6 and a total batch size of B = 512.
We apply a weight decay of 1e→ 6, maintain an exponential moving average (EMA) parameter of
m = 0.996, and set the InfoNCE loss temperature to ε = 0.1. Training runs in full precision across
8 GPUs, with a batch size of 64 per GPU. For ViT, we switch to the AdamW optimizer and adjust
hyperparameters accordingly. ViT uses a base learning rate of 1.5e→ 4, weight decay of 0.1, a batch
size of 128 per device, and a warm-up period of 40% of training steps, with EMA increasing from
ε = 0.99 to 1.0. Training one ViT model takes around 18h on 8 GPUs.
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D ADDITIONAL RESULTS

D.1 ADDITIONAL MODELS VALIDATE THE IMPORTANCE OF BIO-INSPIRED LEARNING

We ran our evaluation against HMAX (Riesenhuber & Poggio, 1999), a classic non-learnable vision
model widely used in computational neuroscience. We observed that HMAX does not form object
representations that are similarly “semantic” as our bio-inspired SSL models. On the ImageNet-100
linear probe, HMAX achieves 13.7% accuracy, a drop of 56.6% compared to our bio-inspired ResNet.
Likewise, the semantic alignment to co-occurrences drops by 0.08 as measured by the CKA similarity
score.

To further test the generality of our findings, we ran additional experiments with ConvNeXt-B, a
modern convolutional architecture that combines the design principles of CNNs and Transformers. In
Table 4, the results show that our approach yields even larger improvements than those observed with
ResNet50 and ViT-B/16 for object recognition.

Table 4: Linear probe accuracy on various datasets across two architectures, grouped by semantic
category. For each semantic group, we report the average recognition accuracy. For bio-inspired
vision, we use !T = 3. For Frames Learning, we use !T = 0

MocoV3 / ConvNeXt-B

Semantic Group Frames Learning Center Crop Bio-inspired Learning

Category recognition 34.30 41.24 42.96
Fine-grained recognition 28.39 46.03 46.09
Instance recognition 50.19 60.04 64.04
Scene recognition 39.64 35.42 41.26

D.2 ARCHITECTURAL BIASES SHAPE THE CONTEXT-WISE ORGANIZATION OF OBJECT
REPRESENTATIONS

In Section 4.1, we found that Transformer-based models (ViTs) outperform convolutional archi-
tectures (ResNets) across all spatial and temporal configurations. This difference may be due to
fundamental architectural differences. ViTs use global self-attention to integrate spatial information
throughout the input crop. In contrast, CNNs rely on localized receptive fields and hierarchical
convolution, which may limit their ability to fully exploit the distributed context.

To further investigate these differences, we perform a layer-wise CKA analysis (see Figure 7), which
compares the internal representations at each stage of the network with the co-occurrence embeddings.
We observed that, semantic alignment increases progressively across layers in ViT, peaking in the
penultimate transformer block. In contrast, ResNet exhibits lower overall alignment, though we
observe increasing alignment throughout its stages. Notably, ViT shows strong alignment in the mid-
layers (layers 6–8), whereas ResNet requires deeper layers to reach a comparable level of alignment.
This results is consistent with previous work showing that Transformers excel in capturing long-range
dependencies more efficiently and benefit more from distributed contextual signals (Raghu et al.,
2021).

In the Figure 8 we provide extended results using co-occurrence matrices derived from ADE (Zhou
et al., 2017b) and Visual Genome (Krishna et al., 2017) datasets. These results replicate the pat-
terns observed on COCO, which further validates the reported patterns across diverse semantic
environments.

D.3 10-CLASSES OBJECT CATEGORIZATION IS IRRELEVANT FOR ASSESSING OBJECT
RECOGNITION

We also evaluate in Table 5 the models on easier categorization tasks that contain only 10 classes,
namely STL10 (Coates et al., 2011) and CIFAR10 (Krizhevsky et al., 2009). We do not apply center
crop on CIFAR10 and STL10. Interestingly, we observe inconsistent results between different visual
backbones. Previous works found that models achieve high CIFAR10 accuracy by solely relying
on background colors (Chiu et al., 2023). To further investigate this hypothesis, we visualize with
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Figure 7: CKA similarity between representations from our trained model across the network
hierarchy and GloVe-based object co-occurrence embeddings for the COCO, ADE, and Visual
Genome (VG) datasets. Higher values indicate stronger semantic alignment. For ResNet, we evaluate
the output after each residual block; for the Vision Transformer, after each transformer layer. Standard
deviations, which are very small, are indicated in the plot.

STL10/ImgNet-1K (Figure 9) how the number of classes (10/1000) impact the features attended by a
linear probe. Spurious features (grass, sky) often suffice to classify objects in natural images (car,
airplane) among ten classes (STL10). In contrast, more relevant object features (wheels, airplane
wing) are necessary for 1000-ways (Imgnet) classification. Thus, the low number of classes in
STL10/CIFAR10 make them inadequate datasets for evaluating object representations.

D.4 GAZE MODEL HAS SIMILAR STATISTICS TO HUMANS

Here, we further analyze the gaze patterns. We present in Figure 10 (Left) the distribution of gaze
centers across the entire training dataset of Ego4D. The gaze prediction model is biased toward the
center, which may be a consequence of the head often following the eye movements in humans
(Nakashima & Shioiri, 2014). However, we also find that the distribution has a non-null standard
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Figure 8: Further results for CKA similarity between learned model representations and GloVe-based
object co-occurrence embeddings, computed on the COCO (also see table 2), ADE and Visual
Genome (VG) dataset. Higher values indicate stronger semantic alignment. Each bar reflects the
mean across multiple GloVe seeds; error bars denote standard deviation. Statistical significance
between model configurations is indicated by asterisks (↓ ↓ ↓ : p < 0.001). The dotted bar represents
bio-inspired, and the dashed bar frames learning.

Table 5: Linear probe accuracy on categorization datasets with only 10 classes
Model Dataset Full Frame Central vision

ResNet50 STL10 71.69 71.19
CIFAR10 79.57 79.32
Average 75.63 75.26

ViT-B/16 STL10 78.39 79.19
CIFAR10 81.56 81.94
Average 79.97 80.56

deviation, scattering around its mean location. This suggests that the gaze model may also capture
subtle semantic information in the image. To further analyze eye movement statistics, we show the
probability distribution of eye movements in Figure 10 (Right). We observe that the probability
distribution follows a classical exponential distribution, as found in humans (Schütt et al., 2019).
Overall, these statistics further validate the gaze estimation model.
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Figure 9: GradCam applied on a “Full frame” model (!T = 15, N = 224) with two linear probes
trained on STL10 and ImageNet-1k (100%). We use STL10 images. We also display models’ class
predictions, which we also used to apply GradCam.

Figure 10: Left: Distribution of the gaze center location over the Ego4D dataset. The red dot
symbolizes the center of the frame. Right: Probabiblity distribution of the size of gaze movements.

D.5 THE MODELS CAPTURE THE OBJECT CO-OCCURRENCES IN EGO4D

Here, we first verify that co-occurrences of object in Ego4D reflect their context of occurrence. We
select a set of concepts by computing the synsets of object concepts present in both COCO and
Things datasets. We remove concepts that do not clearly belong to a context (“background”, “person”,
“backpack”, “cat”), leading to a set of concepts that belong to 10 contexts: “Urban streets” (bicycle,
car, stop sign etc.), “Campaign” (horse, sheep, cow), “Savanna” (elephant, zebra, giraffe), “Sea”
(kite, surfboard,boat), “Snow mountain” (skis, snowboard), “Sport field” (sports ball, baseball ball,
baseball glove), “kitchen” (oven, wine glass, carrot etc.), “living room” (couch, television, potted
plant), “bedroom” (teddy bear, bed, book etc.) and “bathrooms” (sink, toilet, hair drier etc.).

To analyze the object co-occurrences in Ego4D, we utilize dense narrations that accompany short
video clips. These narrations are human-annotated and provide written descriptions summarizing
actions (e.g. “picks a green sponge from the sink”). From those, we extracted the co-occurrence
matrix of selected synsets of nouns as a proxy for object co-occurrences within each short clip. In
Figure 11A), we observe coherent clusters such as kitchen contexts (cup, fork) and street scenes (car,
motorcycle), indicating that Ego4D provides meaningful contextual statistics.

Thereafter, we want to verify whether our bio-inspired model captures the co-occurrences of Ego4D.
In Figure 11B), we compute the cosine similarity matrix between representations of Things images
that belong to the selected concepts. In practice, we randomly sample 10 images per concept and
average the pairwise similarity for each pair of concepts. As a representation, we choose the first
ReLU activation of the MoCoV3 (ViT-B/16) projection layer. A qualitative analysis of Figure 11

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: A) Logarithmic number of co-occurrences extracted from Ego4D for pairs of
COCO/Things concepts. We clip the maximum values to 8 for visibility. B) Cosine similarity
matrix between concepts with MoCoV3 and ViT-B/16. We use the first ReLU activation of the
projection head. We mask the diagonal (intra-category images similarity) for visualization purpose.

shows that the model captures some key context-wise co-occurrences (e.g. pizza and refrigerator, or
truck and motorcycle) but fails to capture important ones (e.g. cup, fork, banana). Although many
semantic and perceptual dimensions also drive human similarity judgments (Mahner et al., 2025),
this indicates that there is a margin for improvement.

E COMPLETE RESULTS DATA

We show in Table 6 and Table 7 the detailed results of Figure 2 and Figure 4, respectively. Our results
are overall consistent in our semantic groups.

Table 6: Detailed results of Figure 2. Top-1 accuracy on different datasets for various gaze sizes N
for a fixed time window !T = 3s.

ResNet50 ViT-B/16

Dataset N=112 N=224 N=336 N=448 N=540 N=112 N=224 N=336 N=448 N=540

Category recognition
ImgNet 43.52 49.58 50.57 49.68 48.98 43.16 48.07 48.48 48.37 47.61
ImgNet 10% 29.44 35.34 36.28 35.65 35.27 31.47 36.10 36.22 35.69 34.56
ImgNet 1% 15.77 20.25 20.66 20.40 20.11 15.73 19.07 18.87 18.62 17.91
ImgNet-100 63.45 70.34 71.46 71.48 70.90 63.50 69.06 68.72 69.04 68.42
CIFAR100 58.44 59.21 56.76 56.83 55.99 59.53 61.51 61.76 60.79 62.00

Average 42.12 46.94 47.15 46.81 46.25 42.68 46.76 46.81 46.50 46.10

Fine-grained recognition
DTD 50.69 57.06 54.56 53.93 52.18 58.30 62.18 61.76 60.21 60.59
FGVCAircraft 9.89 15.77 14.81 14.63 14.42 21.58 27.61 26.74 26.83 25.09
Flowers102 45.41 49.01 48.21 43.25 46.16 69.83 74.84 74.35 73.50 72.90
OxfordIIITPet 26.39 47.03 47.58 45.48 34.86 47.71 55.75 54.71 54.08 52.26
StanfordCars 17.86 23.25 24.11 22.82 21.19 24.11 31.39 32.42 31.87 30.19
Average 30.05 38.42 37.85 36.02 33.76 44.31 50.35 49.99 49.30 48.21

Instance recognition
ToyBox 89.78 92.61 92.74 92.15 92.59 94.22 95.14 95.14 95.04 94.79
COIL100 76.53 80.12 79.49 79.35 75.56 86.44 87.46 86.35 85.66 84.76
Core50 17.82 28.26 30.44 30.14 25.92 19.49 24.48 21.97 19.35 18.77
Average 61.38 67.00 67.56 67.21 64.69 66.71 69.03 67.82 66.68 66.11

Scene recognition
Places365 38.60 42.95 43.48 43.77 44.27 34.63 41.45 42.83 43.24 43.43
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Table 7: Detailed results of Figure 4. Top-1 accuracy on different datasets when training from
different time windows !T and fixed crop size N = 224.

ResNet50 ViT-B/16

!T
Dataset 0 1 2 3 4 5 0 1 2 3 4 5

Category recognition
ImgNet 48.64 50.18 49.60 49.58 49.12 48.90 50.40 49.86 48.90 48.07 47.71 47.94
ImgNet 10% 34.53 35.98 35.62 35.34 35.12 34.77 38.93 38.10 36.67 36.10 35.91 35.65
ImgNet 1% 18.52 20.37 20.29 20.25 19.74 19.85 20.08 20.10 19.23 19.07 18.69 18.64
ImgNet-100 69.08 71.26 70.94 70.34 70.90 70.86 70.54 70.12 69.44 69.06 69.08 67.98
CIFAR100 59.02 60.20 59.94 59.21 60.21 56.89 62.64 62.67 60.89 61.51 61.33 61.06
Average 45.96 47.60 47.28 46.94 47.02 46.25 48.52 48.17 47.03 46.76 46.54 46.25

Fine-grained recognition
DTD 46.39 54.78 55.52 57.06 56.58 55.41 59.52 62.23 61.70 62.18 61.28 61.97
FGVCAircraft 14.75 14.21 14.93 15.77 14.84 13.64 27.82 28.60 26.95 27.61 26.68 27.01
Flowers102 46.50 48.89 47.74 49.01 49.04 47.32 76.63 77.05 75.70 74.84 75.15 74.37
OxfordIIITPet 46.35 48.20 48.34 47.03 45.86 44.50 53.40 56.26 54.87 55.75 54.49 55.23
StanfordCars 20.71 22.41 23.08 23.25 23.02 22.68 32.89 33.26 33.08 31.39 30.90 31.47
Average 34.94 37.70 37.92 38.42 37.87 36.71 50.05 51.48 50.46 50.35 49.70 50.01

Instance recognition
ToyBox 86.99 90.99 92.29 92.61 92.56 92.52 92.08 95.03 95.22 95.14 95.17 95.44

COIL100 69.67 78.36 80.05 80.12 82.43 79.79 78.83 86.94 87.59 87.46 88.90 86.56
Core50 16.98 23.84 24.12 28.26 24.12 28.04 22.95 23.77 27.34 24.48 24.69 22.59
Average 57.88 64.40 65.49 67.00 66.37 66.78 64.62 68.58 70.05 69.03 69.59 68.20

Scene recognition
Places365 40.26 43.06 43.76 42.95 42.77 42.47 36.53 39.84 41.46 41.87 41.44 41.54
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