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ABSTRACT

Extracting relevant information from a stream of high-dimensional observations is
a central challenge for deep reinforcement learning agents. Actor-critic algorithms
add further complexity to this challenge, as it is often unclear whether the same in-
formation will be relevant to both the actor and the critic. To this end, we here ex-
plore the principles that underlie effective representations for the actor and for the
critic in on-policy algorithms. We focus our study on understanding whether the
actor and critic will benefit from separate, rather than shared, representations. Our
primary finding is that when separated, the representations for the actor and critic
systematically specialise in extracting different types of information from the
environment—the actor’s representation tends to focus on action-relevant infor-
mation, while the critic’s representation specialises in encoding value and dynam-
ics information. We conduct a rigourous empirical study to understand how differ-
ent representation learning approaches affect the actor and critic’s specialisations
and their downstream performance, in terms of sample efficiency and generation
capabilities. Finally, we discover that a separated critic plays an important role in
exploration and data collection during training. Our code, trained models and data
are accessible at https://github.com/francelico/deac-rep.

1 INTRODUCTION

Figure 1: Models with shared
(left) and decoupled representa-
tions (right).

In recent years, auxiliary representation learning objectives
have become increasingly prominent in deep reinforcement
learning (RL) agents (Yarats et al., 2021a; Dunion et al., 2023a).
These objectives facilitate extracting relevant features from
high dimensional observations, and can help improve the sam-
ple efficiency and generalisation capabilities of both value-
based (Anand et al., 2019; Schwarzer et al., 2021) and actor-
critic methods (Yarats et al., 2021b; Zhang et al., 2021; McIn-
roe et al., 2023). However, knowing whether a particular repre-
sentation learning objective will work and understanding why it
works is often difficult due to the interplay between the different
components of modern RL algorithms.

Online actor-critic algorithms like PPO (Schulman et al., 2017) jointly optimise policy improve-
ment and value estimation objectives. When parametrised by deep neural networks, the actor (in
charge of improving the policy) and the critic (in charge of estimating the value of the current pol-
icy) often share the same learned representation ϕ, which maps observations to latent features z.
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Cobbe et al. (2021) and Raileanu & Fergus (2021) report that fully separating the actor and critic
networks, i.e. decoupling the two (Figure 1, right), improves sample efficiency and generalisation
over a shared architecture (Figure 1, left). We hypothesise that decoupling is effective because it en-
courages information specialisation in ϕA and ϕC , which in turn improves performance. To test our
hypothesis, we introduce metrics to quantify specialisation, and we conduct an extensive empirical
study of three on-policy actor-critic algorithms (Schulman et al., 2017; Cobbe et al., 2021; Moon
et al., 2022) across discrete and continuous control benchmarks, and under various representation
learning approaches (Raileanu & Fergus, 2021; Moon et al., 2022; Raileanu et al., 2021; Castro
et al., 2021) applied to the actor, to the critic, or to both. We supplement this empirical study by a
theoretical characterisation of the information extracted by the actor and critic’s respective optimal
representations.

Table 1: Once decoupled, the actor and critic representations ϕA and ϕC specialise in capturing
different information from the environment. Reported values correspond to a PPO agent trained in
Procgen (Cobbe et al., 2020). See §2 and §3 for formal definitions of the quantities quoted.

If ... is high, it is possible to ...
% change from using a
shared representation

ϕA ϕC

I(Z;L) overfit to training levels (environment instances). -20% +35%
I(Z;V ) use z to predict state values. +37% +41%

I((Z,Z ′);A)
use z and z′ obtained from consecutive timesteps t, t′
to identify the action taken at timestep t. +23% -48%

I(Z;Z ′)
differentiate between latent pairs obtained from
consecutive and non-consecutive timesteps. -96% +324%

Our main findings are summarised below.
• Decoupled actor and critic representations extract different information about the environ-

ment. This information specialisation, described and quantified in Table 1, systematically
occurs in the on-policy algorithms and benchmarks covered by our study, and is consistent
with the actor’s and critic’s respective optimal representations.

• The actor benefits from representation learning approaches that prioritise extracting level-
invariant information over level-specific information. This bias for level-invariant infor-
mation matters more than what specific information quantity is targeted by the repre-
sentation learning objective. Nevertheless, approaches antithetical to the actor’s inherent
information specialisation tend to perform poorly.

• Through its role as a baseline in the actor’s objective, a decoupled critic will tend to bias
policy updates to facilitate the optimisation of its own learning objective. The critic, there-
fore, plays an important role in exploration and data collection during training. Thus, we
find that care must be taken when selecting a representation learning objective for the
critic: certain objectives improve the critic’s value predictions but may prevent conver-
gence to the optimal policy because the objective induces significant bias.

2 BACKGROUND

RL framework. We follow the framework established by Kirk et al. (2023), which, given a fixed
timestep budget, lets us quantify the agent’s performance in its original training environment (i.e.
its sample efficiency) and its performance in held-out instances (i.e. its generalisation capabilities).
We consider the episodic setting, and model the environment as a Contextual-MDP (CMDP)M ≜
(S,A,O, T ,Ω, R,C, P (c),P0, γ) with state, action and observation spaces S, A and O and discount
factor γ. In a CMDP, the reward R : S × C × A → R, and observation functions Ω : S × C → O
as well as the transition T : S × C × A → P(S), and initial state P0 : C → P(S) kernels
can change with the context c ∈ C, with c ∼ P (c) at the start of each episode. The CMDP is
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therefore conceptually equivalent to an MDP with state space X : S× C. Each context c maps one-
to-one to a particular environment instance, or level, and thus represents the component of the state
x that cannot change during the episode. The agent’s policy π : O → P(A) maps observations
to action distributions and induce a value function V π : X → R mapping states to expected future
returns V π(x) = Eπ[

∑T
t γtrt], where {rt}0:T are possible sequences of rewards obtainable when

following policy π from x and until the episode terminates. We define the optimal policy π∗ as the
policy maximising expected returns Ec∼P (c),x0∼P0(c)[V

π(x0)]. During training, we assume access
to a limited set of training levels L ∼ P (c). We evaluate sample efficiency by measuring returns
over L and generalisation by evaluating on an held-out set Ltest ∼ P (c).

Actor-critic architectures. On-policy actor-critic models consist of a policy network πθA
and a

value network V̂θC
, with actor parameters θA and critic parameters θC (we use ·A/·C when referring

to the actor/critic in this work). When learning from high dimensional observations, such as pixels,
a representation ϕ : O → Z maps observations to latent features z ∈ Z. When coupled, the policy
and value networks share a representation and split into actor and critic heads f and v̂. That is, we
have πθA

≜ fω ◦ϕη and V̂θC
≜ v̂ξ ◦ϕη , with θA ≜ (ω,η) and θC ≜ (ξ,η). When decoupled, two

representation functions ϕA, ϕC with parameters (ηA,ηC) are learned.

PPO and PPG. In this work, we investigate the representation properties of PPO (Schulman et al.,
2017) and Phasic Policy Gradient (PPG) (Cobbe et al., 2021), two actor-critic algorithms that have
been reported to benefit from improved sample efficiency and transfer upon decoupling (Raileanu &
Fergus, 2021; Cobbe et al., 2021). In PPO, the actor maximises

Jπ(θA) = EB

[
min(

πθA
(at|ot)

πθAold
(at|ot)

Ât, clip(
πθA

(at|ot)
πθAold

(at|ot)
, 1− ϵ, 1 + ϵ)Ât) + βHH(πθA

(at|ot))
]
,

(1)
where θAold are the actor weights before starting a round of policy updates, B is a batch of trajecto-
ries collected with πθAold

, Ât is an estimator for the advantage function at timestep t, H(·) denotes
the entropy and ϵ and βH are hyperparameters controlling clipping and the entropy bonus. The critic
minimises

ℓV (θC) =
1

|B|
∑
ot∈B

(V̂θC
(ot)− V̂t)

2, (2)

where V̂t are value targets. Both Â and V̂ are computed using GAE (Schulman et al., 2016). PPG
performs an auxiliary phase after conducting PPO updates over Nπ policy phases. To prevent over-
fitting, the auxiliary phase fine-tunes the critic and distills value information into the representation
from much larger trajectory batches Baux =

⋃
i∈1,...,Nπ

Bi, using the loss ℓjoint = ℓV + ℓaux, with

ℓaux(θA) =
1

|Baux|
∑

(at,ot)∈Baux

(V̂ aux
θA

(ot)− V̂t)
2 + βcDKL(πθAold

(at|ot)∥πθA
(at|ot)), (3)

where βc controls the distortion of the policy. When decoupled, V̂ aux ≜ vaux ◦ ϕA distills value
information into representation parameters ηA through an additional head vaux. When coupled,
vaux ≡ v̂, and a stop-gradient operation on ℓV ensures η is updated by the critic during the auxiliary
phase only.

Mutual information. We study the information embedded in features z outputted by ϕ. To do so,
we propose metrics based on the mutual information I(X;Y ), measuring the information shared
between sets of random variables X and Y , defined as

I(X;Y ) = H(X) +H(Y )−H(X,Y ) =
∑
X

∑
Y

p(x, y) log
p(x, y)

p(x)p(y)
, (4)

where integrals replace sums for continuous quantities. I(X;Y ) is symmetric, and quantifies how
much information about Y is obtained by observing X , and vice versa. Similarly, the conditional
mutual information I(X;Y |Z) measures the information shared between X and Y that does not
depend on Z. We measure mutual information using the k-nearest neighbors entropy estimator
proposed by Kraskov et al. (2004) and extended to pairings of continuous and discrete variables
by Ross (2014). We briefly introduce notation for random variables used in following sections.
L ∼ P (c) denotes the set of training levels drawn from the CMDP context distribution. A, R, O,
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O′, X and X ′ are sets constructed from n transitions (at, rt, ot, ot+1, xt, xt+1) uniformly sampled
from a batch of trajectories collected in L using policy π. Z and Z ′ are latents features, with
z = ϕ(o), z′ = ϕ(o′). We construct V using the rewards obtained from t until episode termination,
with vt =

∑T
t̄=t γ

t̄−trt̄.

3 CATEGORISING AND QUANTIFYING THE INFORMATION EXTRACTED BY
LEARNED REPRESENTATIONS

To conduct our analysis of the respective functions of the actor and critic representations, we analyse
the information being extracted from observations at agent convergence. We propose four mutual
information metrics to measure information extracted about the identity of the current training level,
the value function, and the inverse and forward dynamics of the environment. Each metric relates to
quantities relevant to the actor and critic’s respective learning objectives, and to the agent’s general-
isation performance. They are introduced in turn below.

Overfitting. Our first metric, I(Z;L), quantifies overfitting of the actor and critic representations to
the set of training levels, as it measures how easy it is to infer the identity of the current level from Z.
We follow a similar reasoning as Garcin et al. (2024) to derive an upper bound for the generalisation
error that is proportional to I(ZA;L).1

Theorem 3.1. The difference in returns achieved in train levels and under the full distribution, or
generalisation error, has an upper bound that depends on I(ZA;L), with

Ec∼U(L),x0∼P0(c)[V
π(x0)]− Ec∼P (c),x0∼P0(c)[V

π(x0)] ≤

√
2D2

|L|
× I(ZA;L), (5)

where c ∼ U(L) indicates c is sampled uniformly over levels in L, D is a constant such that
|V π(x)| ≤ D/2,∀x, π and ZA is the output space of the actor’s learned representation.

Value information. The second metric quantifies I(Z;V ), the mutual information between Z and
state values. While a high I(ZC ;V ) facilitates the minimisation of ℓV (Equation (2)), we wish to un-
derstand whether increasing I(ZA;V ) is always desirable. In fact, we find an apparent contradiction
on this matter in prior work: Cobbe et al. (2021) and Wang et al. (2023) report that value distillation
into the actor’s representation (which implies a high I(ZA;V )) improves sample efficiency and gen-
eralisation of coupled and decoupled PPG agents, whereas Raileanu & Fergus (2021) and Garcin
et al. (2024) report a positive correlation between generalisation and a high ℓV for coupled PPO
agents (which implies a low I(ZA;V )).

Dynamics in the latent space. The remaining two metrics investigate the transition dynamics
Tz : Z × A → P(Z) within the latent state space Z spanned by the representation. We will
see in later sections that the reduced MDP (Z,A, Tz, Rz, γ) spanned by the actor or critic’s repre-
sentation tend to have distinct Tz , which often markedly differ from the transition dynamics T in
the original environment. I(Z;Z ′) measures how easy it is to differentiate a latent pair (ϕ(o), ϕ(o′))
obtained from consecutive observations from a latent pair obtained from non-consecutive observa-
tions. I((Z,Z ′);A) quantifies how easy it is to predict the action taken during transition ⟨o, a, o′⟩
given the pair (ϕ(o), ϕ(o′)). In Theorem 3.2, we establish that Tz maintains the Markov property of
the original MDP when both of these metrics attain their theoretical maximum.2

Theorem 3.2. if T : X× A→P(X) satisfies the Markov property, and we have I((X,X ′);A) =
I((Z,Z ′);A) and I(X;X ′) = I(Z;Z ′) for any X,X ′, A, Z, Z ′ collected using policy π, then Tz :
Z × A → P(Z) satisfies the Markov property when following π. Tz always satisfies the Markov
property if the above conditions hold for any π.

Given that ϕ only induces Tz for the current π in the on-policy setting, we make the distinction
between Tz being Markov when following π and the more general notion of Tz being Markov when
following any policy. Crucially, Theorem 3.2 generalises the equivalence relations obtained by Allen

1Proofs for the theoretical results presented in this work are provided in Appendix A.
2The Markov property is satisfied for a MDP (Z,A, Tz, Rz, γ) if and only if T (k)

z (zt+1|{at−i, zt−i}ki=0) =

Tz(zt+1|at, zt) and R
(k)
z (zt+1|{at−i, zt−i}ki=0) = Rz(zt+1|at, zt), ∀a ∈ A, z ∈ Z, k ≥ 1.
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Figure 2: (Top) the initial observations and state spaces of three levels from the assembly line
environment in §4. (Bottom) the reduced MDPs spanned by ϕ∗

A and ϕ∗
C .

et al. (2021) to continuous metrics. As such, I((Z,Z ′);A) and I(Z;Z ′) quantify how close any ϕ
comes to have Tz satisfy the Markov property. They remain applicable in settings in which it isn’t
practical (or even possible) for Tz to satisfy the Markov property, e.g. when ϕ has finite capacity and
bottlenecks how much information can be extracted from raw observations, or when observations
are not Markov.3

4 INFORMATION SPECIALISATION IN ACTOR AND CRITIC REPRESENTATIONS

Raileanu & Fergus (2021); Cobbe et al. (2021) have attributed the performance improvements ob-
tained from decoupled architectures to the disappearance of gradient interference between the actor
and critic, and to the critic tolerating a higher degree of sample reuse than the actor before overfit-
ting. We propose a different interpretation: given their different learning objectives, the actor’s and
critic’s optimal representations (defined below) prioritise different types of information from the
environment. While not incompatible with prior interpretations, our claim is stronger. We posit that
an optimal (or near-optimal) representation for both the actor and critic will generally be impossible
under a shared architecture.

Definition 4.1. Given the model m ≜ fω ◦ ϕ and associated loss ℓm(ω, ϕ), an optimal representa-
tion ϕ∗ : O→ Z∗ satisfies the conditions:

1. Optimality conservation. minω ℓm(ω, ϕ∗) = minω,ϕ ℓm(ω, ϕ)

2. Maximal compression. ϕ∗ ∈ argminΦ̃ |Z∗|, with Φ̃ the set of all ϕ satisfying condition 1.

We will provide theoretical insights on the respective specialisations and mutual incompatibility of
ϕ∗
A and ϕ∗

C , which we further highlight through a motivating example. In our example, depicted in
Figure 2, the agent inspects parts for defects on an assembly line. The agent is trained on a set L of
levels drawn from P (c). A level is characterised by a particular combination of part specifications,
number and ordering, each part having a probability PF of being defective. At each timestep, the
agent observes the part specifications for the current level, which parts are on the assembly line and
which part is up for inspection. The agent picks action a ∈ A = {a0 = accept, a1 = reject}
and moves to the next part. It receives a reward R = r+ when correctly accepting/rejecting a
good/defective part and R = r9 when it makes a mistake, with r+ > r9. The episode terminates
early when the agent accepts a defective part, otherwise it terminates after Nc timesteps, where Nc

is the number of parts in level c ∈ L.

3In contrast, Allen et al. (2021) assume observations are always Markov.
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4.1 THE ACTOR’S OPTIMAL REPRESENTATION

The combinatorial explosion of possible specifications and part assortments means ϕ∗
A should ide-

ally map observations to a reduced MDP spanning a much smaller state space that in the original
environment. However, ϕ∗

A should still provide the information necessary to select the optimal ac-
tion at each timestep of each level, including those not in the training set.

Dynamics of the reduced MDP. Under our definition, the mapping

ϕ∗
A(o) =

{
z∗A0, if a∗ = a0
z∗A1, if a∗ = a1.

(6)

satisfies the conditions for being an optimal representation, and spans the reduced MDP in Figure 2
(bottom left). This reduced MDP describes the perceived environment dynamics when only observ-
ing the latent states in Z∗

A. By construction, I((Z∗
A, Z

∗
A
′);A) is guaranteed to be maximised when

following the optimal policy. We note that, even if I(X;X ′) is maximised under π∗ in the original
environment, we have I(Z∗

A;Z
∗
A
′) = 0 in the reduced MDP. In other words, the current reduced state

yields no information about the next reduced state, and vice versa.

Overfitting to training levels. In our assembly line example, an overfit ϕA with high I(ZA;L)
may leverage this information to first identify, and then solve certain levels. This overfit ϕA may be
optimal over L, but would be heavily biased to the training set, and fail to generalise to unseen levels
that do not satisfy certain spurious correlations. For example: “if there are three objects on the line
then I must be in level 1, and, in level 1, I should reject the triangle”. In contrast, a representation that
is invariant to individual levels, i.e. with I(ZA;L) = 0, guarantees zero generalisation error under
Theorem 3.1. Nevertheless, achieving I(ZA;L) = 0 is not achievable under certain conditions,
stated in Lemma 4.1.
Lemma 4.1. I(Z;L) > 0 if I(O;L) > 0 and ∃zk, cj ∈ Z × L such that µ(zk|cj) ̸= µ(zk).

In our example, I(O;L) > 0, since a level can be identified from its observations. We can verify
that the second condition holds for ϕ∗

A by inspecting the stationary distributions in a particular level
c and over all levels,

µ(z) =

{
P̄F , if z = z∗A0

PF , if z = z∗A1

µ(z|c) =
{
P̄F
c , if z = z∗A0

PF
c , if z = z∗A1,

(7)

where P̄F = 1 − PF and PF
c is the defect probability when in level c. We may have PF ̸= PF

c ,
since individual levels do not all have the same distribution of defective parts. In other words, while
it is useful to reduce I(ZA;L) to guard against overfitting, the optimal representation ϕ∗

A may carry
some irreducible information about level identities.

Value and dynamics distillation can induce overfitting. we can employ the chain rule of mutual
information to decompose the information ϕ captures about some arbitrary quantity Y as

I(Z;Y ) = I(Z;Y |L) + I(Z;L)− I(Z;L|Y ), (8)
where I(Z;Y |L) is the level-invariant information encoded about Y , and I(Z;L) − I(Z;L|Y ) is
the level-specific information being encoded about Y . Thus, encouraging ϕA to capture extraneous
information about state values or transition dynamics can cause I(ZA;L) to increase and promote
overfitting. In Lemma 4.2, we show that increasing I(ZA;V ) or I(ZA;Z

′
A) (which is not necessary

for obtaining an optimal ϕ∗
A, as discussed above) can cause I(ZA;L) to increase as well.

Lemma 4.2. I(Z;L) monotonically increases with a) I(Z;V ) − I(Z;V |L) and b) I(Z;Z ′) −
I(Z;Z ′|L).

In fact, I(Z;L) will increase when I(Z;V ) > I(Z;V |L) (or when I(Z;Z ′) > I(Z;Z ′|L)), that is
when the information encoded carries a level-specific component. In our example, the higher state
values only occur in a subset of levels, since the optimal value for any given state depends on how
many parts are left to inspect. State values therefore inherently contain level-specific information,
and may induce overfitting if this information is captured by ϕA. This challenges the notion that
value distillation would systematically improve the actor’s representation.

The key implications of the above are 1) While achieving zero I(ZA;L) is not always possible,
a high I(ZA;L) implies ϕA is overfit; 2) Increasing I(ZA;Z

′
A) or I(ZA;V ) is not necessary for

obtaining ϕ∗
A, and will increase I(ZA;L) if the information captured is level-specific.
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2.0 2.5 3.0 3.5

DCPG

PPG

PPO

I(Z;L)

0.30 0.45 0.60 0.75

I(Z;V)

0.0 0.2 0.4 0.6

I(Z;Z')

0.16 0.24 0.32

I((Z,Z');A)

I(O;L)
DCPG

PPG

PPO

I(O;V) I(O;O') I((O,O');A)

Figure 3: Mean and 95% confidence interval aggregates of I(Z; ·)/I(O; ·) (top/bottom rows) in
Procgen. Gray bars indicate I(Z; ·)/I(O; ·) for a shared ϕ. Blue and orange bars indicate I(Z; ·)
measured for ϕA and ϕC when employing a decoupled architecture. Pink bars indicate I(O; ·)
measured when using a decoupled architecture. X-axes are shared across top and bottom. For all
algorithms, decoupling induces specialisation consistent with §4.

4.2 THE CRITIC’S OPTIMAL REPRESENTATION

ϕ∗
C has higher I(Z;L) than ϕ∗

A. The reduced MDP spanned by ϕ∗
C is depicted in Figure 2 (bottom

right). In order to ensure perfect value prediction, ϕ∗
C maps each possible optimal state value to a

different element in Z∗
C , and it maximises I(Z∗

C ;V ) by construction. I(Z∗
C ;Z

∗
C
′) is also high due

to the recurrence V π(x) = Ea∼π[R(x, a) + γEx′∼Pπ(x′|x)[V
π(x′)]]. This points to V π being a

quantity inherently more level specific than the optimal action for the current state, because V π

encodes information pertaining to all possible future states of the current level. We should then
expect that, in general, I(Z∗

C ;L) > I(Z∗
A;L), implying that decoupling the actor and critic helps

with I(ZA;L) regularisation.

ϕ∗
C is not compatible with π∗. Paradoxically, while ϕ∗

C would necessitate trajectories collected
using the optimal policy in order to be learnt, in our example it is not possible to have an optimal
policy that only depends on z∗C . The information contained in z∗C is not sufficient for picking the
optimal action in any given timestep, and therefore the best response is to always pick a1 in order
to prevent early termination. Therefore, in addition to the information prioritised by ϕ∗

C being in
general irrelevant to π∗, employing a shared ϕ with a finite capacity may prevent extracting the
necessary information to execute the optimal policy.

4.3 CONFIRMING SPECIALISATION EMPIRICALLY

0.6 1.2 2.4 4.8
Number of Parameters (M)

1.0

1.2

1.4

1.6

1.8
PPO[sh] Normalized Returns

PPO (Test)
PPO (Train)
PPO[sh] (Test)
PPO[sh] (Train)

Figure 4: Effect of parame-
ter scaling in coupled (blue)
and decoupled (orange) PPO.
Scores normalized by model per-
formance at 0.6M parameters.

We conclude this section by studying the representations
learned by PPO (Schulman et al., 2017), PPG (Cobbe et al.,
2021) and DCPG (Moon et al., 2022), a close variant of PPG
that employs delayed value targets to train the critic and for
value distillation. We evaluate all algorithms with and without
decoupling their representation. We conduct our experiments
in Procgen (Cobbe et al., 2020), a benchmark of 16 games de-
signed to measure generalisation in RL. We report our main
observations in below, with extended results and details on our
methodology included in Appendix C.2.

Specialisation is consistent with ϕ∗
A and ϕ∗

C . As no algorithm
achieves optimal scores in all games, we now consider the sub-
optimal representations ϕA and ϕC realistically obtainable by the end of training. In Figure 3, we
observe clear specialization upon decoupling consistent with the properties we expect for ϕ∗

A and
ϕ∗
C . ϕC has high I(Z;V ), I(Z;Z ′) and I(Z;L), while ϕA specializes in I((Z,Z ′);A) .

Decoupling is more parameter efficient. Since decoupled representations fit twice as many param-
eters, it is fair to wonder whether the performance improvements are mainly caused by the increased
model capacity. To test this, we measure performance as we scale model size in a shared and a de-
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coupled architecture in Figure 4. Surprisingly, the decoupled model turns out to be more parameter
efficient, and still outperforms a shared model with four times its parameter count.

On Markov representations. According to Theorem 3.2, a representation is considered Markov
when both I((Z,Z ′);A) and I(Z;Z ′) are maximized. However, our observations reveal an inter-
esting pattern during decoupling: the actor representation shows an increase in I((ZA, Z

′
A);A) but

a decrease in I(ZA;Z
′
A), while the critic representation shows the opposite effect - a decrease in

I((ZC , Z
′
C);A) and an increase in I(ZC ;Z

′
C). This divergent behavior suggests that neither the

actor nor the critic networks inherently benefit from maintaining a Markov representation. This
finding aligns with theoretical expectations, as neither ϕA nor ϕC need be Markov to be optimal.
Furthermore, we found no significant correlation between the sum of these mutual information terms
(I((Z,Z ′);A) + I(Z;Z ′)) and agent performance, as shown by comparing Figure 7 and Figure 13.

5 REPRESENTATION LEARNING FOR THE ACTOR

In this section, we study how different representation learning objectives affect ϕA in PPO, PPG
and DCPG. We consider advantage (Raileanu & Fergus, 2021) and dynamics (Moon et al., 2022)
prediction, data augmentation (Raileanu et al., 2021) and MICo (Castro et al., 2021), an objective
explicitly shaping the latent space to embed differences in state values. We study these objectives in
Procgen (Figure 5), and in four continuous control environments with video distractors (McInroe &
Garcin, 2025)(Figure 11).

Representation learning impacts information specialisation. As expected, applying auxiliary
tasks alters what information is extracted by the representation. Dynamics prediction generally
enhances the specialization of ϕA by increasing I((Z,Z ′);A) while reducing the three other quanti-
ties. Conversely, MICo produces the opposite effect - in most cases, it increases I(Z;Z ′), I(Z;V ),
and I(Z;L) at the expense of I((Z,Z ′);A). The effects of the last two objectives are not as clear-
cut. Data augmentation produces little change in each quantity, while advantage prediction tends to
reduce the measured mutual information, but is inconsistent in the quantities it affects. Performance-
wise, data augmentation improves train and test scores for all algorithms; dynamics prediction tends
to improve performance for PPG and DCPG; MICo generally decreases performance, and advan-
tage prediction makes no noticeable impact. Based on these findings, we find advisable to not use
objectives increasing I(ZA;L) or playing directly against the specialisation of ϕA.

On the importance of the batch size and data diversity. We now turn our attention to an apparent
contradiction in the relationship between value distillation and performance. Decoupling PPO, and
thus completely forgoing value distillation, leads to improved train and test scores (Figure 13). How-
ever, PPG and DCPG perform extensive value distillation (four times as many distillation updates
as coupled PPO in our experiments), and achieve significant performance improvements. Crucially,
conducting value distillation every Nπ policy phases ensures the batch size Baux is Nπ times larger
than the PPO batch size, greatly increasing its data diversity. Wang et al. (2023) report that increas-
ing diversity is a key driver of performance improvement at equal number of gradient updates. We
reproduce their experiment in Figure 12, while also tracking the evolution of I(ZA;L) and I(ZA;V )
as Baux increases. We find that the increase in I(ZA;L) in PPG is mainly caused by these addi-
tional gradient updates, whereas agent performance and I(ZA;V ) only increase when performing
value distillation over large, diverse training batches. Increasing data diversity should promote level-
invariant state value information to be distilled into ϕA, and we conclude that it is this level invariant
information plays a key role in improving agent performance in PPG and DCPG.

Our experiments further reveal that dynamics prediction yields significant performance improve-
ments, but only when applied to algorithms with large batch sizes (specifically in PPG and DCPG,
not in PPO). In comparison, data augmentation, which increases data diversity, demonstrates per-
formance benefits across all three algorithms. These findings suggest an important hypothesis: the
actor benefits more from encouraging ϕA to extract level-invariant information about any arbitrary
quantity Y , rather than from specifically choosing what that quantity Y should be (such as state
values or dynamics).
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Figure 5: Mean and 95% confidence intervals of I(Z; ·)/I(O; ·) (top/bottom) for actor (blue) and
critic (orange) representations in Procgen. Information measured from agent observations shown
in pink. X-axes are shared across top and bottom. Auxiliary tasks shown are MICo, dynamics
prediction (D), and data augmentation (Dr) applied to the actor (A).

6 THE CRITIC’S OBJECTIVE INFLUENCES DATA COLLECTION

We now consider how the same set of representation learning objectives affect the critic’s represen-
tation and present our results in Figures 8 and 11. The effect of a given objective on the information
extracted by ϕC is consistent with how they would have affected ϕA in the previous section. How-
ever, we report two surprising findings: a) Without conducting any value distillation, decoupled
PPO has a 37% higher I(ZA;V ) than shared PPO (Table 1), and b) the information specialisation of
ϕC incurred by applying an objective on the critic is often observed in ϕA, albeit to a lesser extent.
Given that the two representations are decoupled, how can an objective applied to ϕC affect ϕA?

As we maintain different optimisers for the actor and critic, their only remaining interaction in
decoupled PPO is through Jπ (Equation (1)): Ât being computed from the critic’s value estimates.
Therefore, at least one of the following hypothesis must hold:

1. Data collection bias. Through Jπ updates, the critic biases π to collect trajectories containing
information relevant to its own learning objective. This information could then leak through ϕA

because more of this information is contained in its input. In this scenario, it is not necessary for
ϕA to become more proficient at extracting critic-relevant information.

2. Implicit knowledge transfer. The advantage targets in Jπ induce information transfer between
ϕC and ϕA when applying the gradients ∇θA

Jπ . Here, ϕA becomes proficient at extracting the
same information ϕC extracts.

The first hypothesis broadly holds in our experiments: in most cases, applying MICo to the critic
increases I(O;V ) and I(O;O′), and applying dynamics prediction increases I((O,O′);A)4. Fur-
thermore, I(O;V ) increases when PPO is decoupled (Figure 3). Without the critic’s influence, there
would be no direct incentive for the actor to collect data that contains value information, since no
value distillation is taking place.

To test the second hypothesis, we measure the compression efficiency, applicable whenever I(O; ·) >
0, and defined as

C(Z; ·) = min

(
I(Z; ·)
I(O; ·)

, 1

)
. (9)

4In contrast, I(O;L) does not vary significantly, given that the policy does not control which level is played
in an episode.
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For example, C(ZA;V ) measures the fraction of available information in I(O;V ) that is extracted
by ϕA.5 In Tables 2 and 3, we report that C(ZA;V ) does not signficantly change between PPO[sh]
and decoupled PPO, or when MICo is applied to the critic in decoupled PPO. This result appears to
disprove the second hypothesis, at least in PPO. We cannot formally confirm whether implicit knowl-
edge transfer occurs for PPG and DCPG, as explicit knowledge transfer already occurs through value
distillation.

Finally, we highlight that this data collection bias generally leads to worse performance (Figure 13).
Interestingly, employing different representation learning objectives for the actor and the critic
results in surprising interactions. Consider PPO in the Procgen setup: when applied separately,
Adv(A) and MICo(C) have respectively a neutral and adverse effect on performance, the latter be-
ing caused by the data collection bias caused by the critic. When applied together, they exhibit a
sharp performance gain, and bring I(O;V ) down (Figure 10). This suggests that certain actor rep-
resentation objectives could improve performance by cancelling the bias in data collection induced
by the critic.

7 RELATED WORK

Representation learning in RL. Representation learning objectives have been used in RL for a
variety of reasons such as sample efficiency (Jaderberg et al., 2017; Gelada et al., 2019; Laskin et al.,
2020a; Lee et al., 2020; Laskin et al., 2020b), planning (Sekar et al., 2020; McInroe et al., 2024),
disentanglement (Dunion et al., 2023b), and generalisation (Higgins et al., 2017; Li et al., 2021).
Some works focus on designing metrics motivated by theoretical properties such as bisimulation
metrics, pseudometrics, decompositions of MDP components, or successor features (Ferns et al.,
2004; Mahadevan & Maggioni, 2007; Dayan, 1993; Castro, 2020; Agarwal et al., 2021; Castro
et al., 2021; 2023).

Analysing representations in RL. Despite the large body of research into representation learn-
ing objectives in RL, relatively little work has gone into understanding the learned representations
themselves (Wang et al., 2024). Several works use linear probing to determine how well learned
representations relate to environment or agent properties (Racah & Pal, 2019; Guo et al., 2018;
Anand et al., 2019; Zhang et al., 2024). Other works analyse the learned representation functions
via saliency maps which help visualise where an agent is “paying attention” (Rosynski et al., 2020;
Atrey et al., 2020; Dunion et al., 2023a).

8 CONCLUSION

In this work, we conducted an in-depth analysis of the representations learned by actor and critic
networks in on-policy deep reinforcement learning. Our key findings revealed that when decoupled,
actor and critic representations specialise in extracting different types of information from the en-
vironment. We found that the actor benefits from representation learning objectives that promote
extracting level-invariant information. Finally, we discovered that the critic influences policy up-
dates to collect data that is informative for its own learning objective.

We identify three important research directions to be tackled in future work: 1) Broadening this
study’s scope to cover different network architectures, representation learning objectives, or RL al-
gorithms (such as off-policy RL (Haarnoja et al., 2018)); 2) Employing these findings to design new
representation learning objectives for the actor that target level-invariant information; 3) Leveraging
the critic’s influence on data collection to devise new exploration strategies in online RL.

REPRODUCIBILITY STATEMENT

Reproducibility can be challenging without access to the data generated during experiments. To
assist with this, we will make all of our experimental data, including model checkpoints, logged

5By the data processing inequality we must have I(O; ·) ≥ I(Z; ·), and C(Z; ·) cannot be larger than 1. We
enforce this upper bound as our estimator sometimes underestimates I(O; ·) for high dimensional observations.

10



Published as a conference paper at ICLR 2025

data and the code for reproducing the figures in this paper openly available at https://github.
com/francelico/deac-rep.
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von Hjelm. Unsupervised state representation learning in atari. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
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A THEORETICAL RESULTS

Theorem 3.1. The difference in returns achieved in train levels and under the full distribution, or
generalisation error, has an upper bound that depends on I(ZA;L), with

Ec∼U(L),x0∼P0(c)[V
π(x0)]− Ec∼P (c),x0∼P0(c)[V

π(x0)] ≤

√
2D2

|L|
× I(ZA;L), (5)

where c ∼ U(L) indicates c is sampled uniformly over levels in L, D is a constant such that
|V π(x)| ≤ D/2,∀x, π and ZA is the output space of the actor’s learned representation.

Proof. This result directly follows from a result obtained by Bertrán et al. (2020) and reproduced
below.

Theorem A.1. For any CMDP such that |V π(x)| ≤ D/2,∀x, π, with D being a constant, then for
any set of training levels L, and policy π

Ec∼U(L),x0∼P0(c)[V
π(x0)]− Ec∼P (c),x0∼P0(c)[V

π(x0)] ≤

√
2D2

|L|
× I(π;L), (10)
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Then, as π ≜ f ◦ ϕA, by the data processing inequality we always have I(π;L) ≤ I(ZA;L), and
therefore,

Ec∼U(L),x0∼P0(c)[V
π(x0)]− Ec∼P (c),x0∼P0(c)[V

π(x0)] ≤

√
2D2

|L|
× I(π;L)

≤

√
2D2

|L|
× I(ZA;L)

.

Garcin et al. (2024) follow the same reasoning and obtain an equivalent result, without restating the
bound.

Theorem 3.2. if T : X× A→P(X) satisfies the Markov property, and we have I((X,X ′);A) =
I((Z,Z ′);A) and I(X;X ′) = I(Z;Z ′) for any X,X ′, A, Z, Z ′ collected using policy π, then Tz :
Z × A → P(Z) satisfies the Markov property when following π. Tz always satisfies the Markov
property if the above conditions hold for any π.

Proof. This proof has two part. We first demonstrate that the Inverse Model condition of Theo-
rem A.2 from Allen et al. (2021) (reproduced below) is satisfied if and only if I((Z,Z ′);A) =
I((X,X ′);A). We then show that if I(Z;Z ′) = I(X;X ′) then the Density Ratio condition is also
satisfied.

Theorem A.2. ϕ is a Markov representation if the following conditions hold for every timestep t
and any policy π:

1. Inverse Model. The inverse dynamic model, defined as I(a|s′, s) := T (s′|a,s)π(a|s)
Pπ(s′|s) , where

Pπ(s′|s) =
∑

ā∈A T (s′|ā, s)π(a|s), should be equal in the original and reduced MDPs.
That is we have Pπ(a|z′, z) = Pπ(a|s, s′),∀a ∈ A, s, s′ ∈ S.

2. Density Ratio. The original and abstract next-state density ratios are equal when con-
ditioned on the same abstract state: Pπ(z′|z)

Pπ(z′) = Pπ(s′|z)
Pπ(s′) ,∀x′ ∈ S, where Pπ(s′|z) =∑

s̄∈S P
π(s′|s̄)µ(s̄|z) and µ(s|z) =

1ϕ(s)=zP
π(s)∑

s̄∈S P
π(s|s̄) . Pπ(s′|z) is the probability of transi-

tioning to state s′ and µ(s|z) is the probability of currently being in state s when in latent
state z.

We begin with two observations that are useful for our derivation.

Observation A: Given that any z ∈ Z is obtained from the mapping x
Ω→ o

ϕ→ z, and that h ≜ ϕ ◦Ω
is a deterministic (but not necessarily invertible) function, each element x ∈ X maps to a single
element z ∈ Z. It directly follows that ∀a, z1, z2 ∈ A× Z× Z, we have

p(a, z1, z2) =
∑

x1,x2∈X2

p(a, x1, x2)1[z1, z2 = h(x1), h(x2)]

and
p(z1, z2) =

∑
x1,x2∈X2

p(x1, x2)1[z1, z2 = h(x1), h(x2)]

Observation B: Let Pπ(a, x, x′) be the joint distribution of elements in (A,X,X ′) collected under
policy π, we have Pπ(a, x1, x2) > 0 if and only if a, x1, x2 ∈ (A,X,X ′).

Observation C: Similarly to obs. B, we have Pπ(x1, x2) > 0 if and only if x1, x2 ∈ (X,X ′).

1) Proving that the Inverse Model condition is satisfied if and only if I((Z,Z ′);A) = I((X,X ′);A).
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The above is equivalent to showing that the Inverse Model condition is satisfied if and only if
H(A|Z,Z ′) = H(A|X,X ′). For H(A|Z,Z ′), we have

H(A|Z,Z ′) = −
∑

A,Z,Z′

Pπ(a, z, z′) logPπ(a|z, z′)

(from obs. A) = −
∑

A×Z×Z

∑
x1,x2∈X2

Pπ(a, x1, x2)1[z, z
′ = h(x1), h(x2)] logP

π(a|z, z′)

(from obs. B) = −
∑

A×X×X
Pπ(a, x, x′)

∑
Z2

1[z, z′ = h(x), h(x′)] logPπ(a|z, z′)

= −
∑

A×X×X
Pπ(a, x, x′) log

∏
Z2

Pπ(a|z, z′)1[z,z
′=h(x),h(x′)]

= −
∑

A×X×X
Pπ(x, x′)Pπ(a|x, x′) log

∏
Z2

Pπ(a|z, z′)1[z,z
′=h(x),h(x′)]

= −EX,X′ [
∑
A

Pπ(a|x, x′) log
∏
Z2

Pπ(a|z, z′)1[z,z
′=h(x),h(x′)]]

It follows that

H(A|Z,Z ′)−H(A|X,X ′) = EX,X′

[∑
A

Pπ(a|x, x′) log
Pπ(a|x, x′)∏

Z2 Pπ(a|z, z′)1[z,z′=h(x),h(x′)]

]
= EX,X′ [DKL(P∥Q)],

with P = Pπ(a|x, x′) and Q =
∏

z,z′∈Z,Z′ Pπ(a|z, z′)1[z,z′=h(x),h(x′)]. From Gibbs inequality we
always have DKL(p∥q) ≥ 0, therefore I((Z,Z ′);A) = I((X,X ′);A) if and only if DKL(P∥Q) = 0
∀x, x′ ∈ X,X ′, which is the case if and only if P = Q almost µ-everywhere.

From observation A, any x1, x2 ∈ X2 maps to exactly one pair z1, z2 ∈ Z2, and
by construction of X,X ′, Z, Z ′, for any pair x, x′ ∈ X,X ′, we must have Q =∏

z̄,z̄′∈Z2 Pπ(a|z̄, z̄′)1[z̄,z̄′=h(x),h(x′)] = Pπ(a|z, z′), with z, z′ being the corresponding pair in
Z,Z ′.

Therefore I((Z,Z ′);A) = I((X,X ′);A) if and only if Pπ(a|x, x′) = Pπ(a|z, z′)∀x, x′, z, z′ ∈
X,X ′, Z, Z ′, and we recover the Inverse Model condition.

Conversely, if the Inverse Model condition is not satisfied, then ∃x, x′, z, z′, a ∈ X,X ′, Z, Z ′, A for
which P ̸= Q. Then DKL(P∥Q) > 0 at x, x′ and I((Z,Z ′);A) < I((X,X ′);A).

2) Proving that the Density Ratio condition is satisfied if I(Z;Z ′) = I(X;X ′).

We first show that satisfying

Pπ(x′|x)
Pπ(x′)

=
Pπ(z′|z)
Pπ(z′)

∀x, x′, z, z′ ∈ X,X ′, Z, Z ′ (11)

is sufficient for satisfying the Density Ratio condition Pπ(x′|z)
Pπ(x′) = Pπ(z′|z)

Pπ(z′) . We then show that the
condition in Equation (11) holds if and only if I(Z;Z ′) = I(X;X ′).

i) Showing the Density Ratio condition holds when Equation (11) is satisfied. First we notice that,
∀x′, z ∈ X ′, Z, we have

Pπ(x′|z) =
∑
x̄∈X

1[z = h(x̄)]Pπ(x′|x̄) = EX [Pπ(x′|x)].

Then, supposing Equation (11) holds, we must have

Pπ(x′|z) = EX [Pπ(x′|x)] = Pπ(x′)
Pπ(z′|z)
Pπ(z′)

∀x′, z, z′ ∈ X ′, Z, Z ′,

and the Density Ratio condition holds.

ii) Proving Equation (11) holds if and only if I(Z;Z ′) = I(X;X ′).
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We have

I(Z;Z ′) =
∑
Z2

Pπ(z, z′) log
Pπ(z′|z)
Pπ(z′)

(from obs. A) =
∑
Z2

∑
x1,x2∈X2

Pπ(x1, x2)1[z, z
′ = h(x1), h(x2)] log

Pπ(z′|z)
Pπ(z′)

(from obs. C) =
∑
X2

Pπ(x, x′)
∑
Z2

1[z, z′ = h(x), h(x′)] log
Pπ(z′|z)
Pπ(z′)

= EX,X′

[
log

∏
Z2

(
Pπ(z′|z)
Pπ(z′)

)1[z,z′=h(x),h(x′)]]
.

Then,
I(X;X ′)− I(Z;Z ′) = EX,X′ [DKL(P

′∥Q′)],

with

P ′ =
Pπ(x′|x)
Pπ(x′)

and Q =
∏
Z2

(
Pπ(z′|z)
Pπ(z′)

)1[z,z′=h(x),h(x′)]

The remainder of this part follows the same structure as for the first part of the proof.

I(X;X ′) = I(Z;Z ′) if and only if ∀x, x′ ∈ X,X ′, P = Q almost µ-everywhere. Any x1, x2 ∈ X2

maps to exactly one pair z1, z2 ∈ Z2, and by construction of X,X ′, Z, Z ′, for any pair x, x′ ∈
X,X ′, we must have

Q =
∏

z̄,z̄′∈Z2

(
Pπ(z̄′|z̄)
Pπ(z̄′)

)1[z̄,z̄′=h(x),h(x′)]

=
Pπ(z′|z)
Pπ(z′)

,

with z, z′ being the corresponding pair in Z,Z ′.

Therefore I(X;X ′) = I(Z;Z ′) if and only if ∀x, x′, z, z′ ∈ X,X ′, Z, Z ′ we have Pπ(x′|x)
Pπ(x′) =

Pπ(z′|z)
Pπ(z′) . Finally, from i) being true, the Density ratio condition must hold.

Lemma 4.1. I(Z;L) > 0 if I(O;L) > 0 and ∃zk, cj ∈ Z × L such that µ(zk|cj) ̸= µ(zk).

Proof. Given π is fixed while the batch O is collected, for a single batch the causal interaction
between L, O and Z is described by the Markov chain X → O → Z, where x = (s, c) ∈ S × L
and isn’t directly observed. By the data processing inequality, I(L;Z) ≤ I(L;O), and as such
I(L;O) > 0 is a necessary condition for I(L;Z) to be positive.

Note that

I(L;Z) = H(L) +H(Z)−H(L,Z) = 0⇔ H(L,Z) = H(L) +H(Z),

that is, if and only if Z and L are independently distributed. Given the causal relationship between
L and Z, µ(z|c) is well defined ∀z, c ∈ Z ×L. If ∃zk, cj ∈ Z ×L such that µ(zk|cj) ̸= µ(zk) then
Z and L cannot be independently distributed, and I(L;Z) > 0.

Lemma 4.2. I(Z;L) monotonically increases with a) I(Z;V ) − I(Z;V |L) and b) I(Z;Z ′) −
I(Z;Z ′|L).

Proof. Proof for condition a) : By the causal structure V ← X → O → Z and the chain rule of
mutual information, we have

I(Z;L) = I(Z;V )− I(Z;V |L) + I(Z;L|V ),

I(Z;L|V ) is the information encoded in Z about the training levels that does not depend on V .
I(Z;V )−I(Z;V |L) represents the information encoded in Z about state values that is level-specific.
If this term increases then I(Z;L) will also increase.
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Figure 6: In the top row, left, we depict the causal graph of states, observation and latents obtained
over an episode. On the same row we draw a simplified graph that focuses on the relationship
between c and Z0:N , and utilises the notion that the context remains the same throughout the episode.
In the bottom row we draw the resulting causal relationship between L, Z and Z ′.

Proof for condition b) : Consider an episode of arbitrary length N collected with policy π. We
depict the causal structure that exists between elements in the top row of Figure 6 (elements may be
repeated within each sequence). It naturally follows that we have the causal structure depicted in the
bottom row when considering all levels in L. By the chain rule of mutual information, we have

I(Z;L) = I(Z; (Z ′, L))− I(Z;Z ′|L) = I(Z;L|Z ′) + I(Z;Z ′)− I(Z;Z ′|L),

and it follows that I(Z;L) increases with I(Z;Z ′)− I(Z;Z ′|L).

B ADDITIONAL FIGURES AND TABLES

0.2 0.4 0.6 0.8

DCPG

PPG

PPO

I((Z,Z');A) + I(Z;Z')

Figure 7: I((Z,Z ′);A) + I(Z;Z ′) for shared (gray), actor (blue) and critic (orange) for PPO, PPG,
and DCPG in Procgen.

C IMPLEMENTATION DETAILS

C.1 MUTUAL INFORMATION ESTIMATION

We measure mutual information using the estimator proposed by Kraskov et al. (2004) and later
extended to pairings of continuous and discrete variables by Ross (2014). These methods are based
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Figure 8: Mutual information measurements for the actor (blue) and critic (orange) for auxiliary
losses applied to the critic for PPO, PPG, and DCPG in Procgen. Top/bottom rows are I(Z; ·)/I(O; ·)
with a shared x-axis.
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Figure 9: I(Z; ·) measurements for the actor (blue) and critic (orange) for auxiliary losses for PPO,
PPG, and DCPG in Procgen.

on performing entropy estimation using k-nearest neighbors distances. We use k = 3 and determine
nearest neighbors by measuring the Euclidian (L2) distance between points. We checked measure-
ments obtained when using different k and under different metric spaces, and we found that our
measurements are broadly invariant to the choice of estimator parameters.

At the end of training we collect a batch of trajectories consisting of 216 timesteps (215 timesteps
in Brax) from L. We construct (A,O,O′, Z, Z ′, V, L) from n = 4096 timesteps yielding
(at, ot, ot+1, zt, zt+1, vt, ct). Subsampling is necessary to compute mutual information estimates
in a reasonable time, while ensuring we sample states from most levels in L and at various point of
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Figure 10: I(O; ·) measurements for the actor (blue) and critic (orange) for auxiliary losses for PPO,
PPG, and DCPG in Procgen.
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Figure 11: Mutual information measurements for the actor (blue) and critic (orange) for auxiliary
losses for PPO, PPG, and DCPG in Brax.

the trajectories followed by the agent in each level. Timesteps are sampled uniformly and without
replacement from the batch, after having excluded:

1. Odd timesteps, to ensure O and O′ will not overlap (i.e. O contains only even timesteps,
and O′, being sampled at t+ 1, contains only odd timesteps).
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Figure 12: Procgen PPG returns (left) normalized by PPO[sh] performance and mutual information
quantities I(ZA;L)/I(ZA;V ) (right) for varying auxiliary batch size levels.
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Figure 13: Returns in Procgen (left) and Brax (right).

2. Timesteps corresponding to episode terminations, to ensure the pair ot, ot + 1 cannot orig-
inate from different levels.

3. Timesteps from episodes that have not terminated, to ensure we can always compute vt.
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Table 2: Measurements of compression efficiency C(ZA|O;V ) (Equation (9)) with standard error
in Procgen. Statistical significance bolded, determined by Welch’s t-test. Results highlighted in
red when decoupling decreases C(ZA|O;V ), and highlighted in green when decoupling increases
C(ZA|O;V ), otherwise yellow. Coupled architectures are denoted with algorithm name plus “[sh]”.

Algorithm C(ZA|O;V ) C(ZA|O;L)
PPO[sh] 89.3 ± 2 65.2 ± 3
PPO 90.1 ± 4 52.3 ± 3
PPG[sh] 85.9 ± 4 70.0 ± 2
PPG 94.1 ± 2 75.5 ± 2
DCPG[sh] 95.4 ± 2 77.6 ± 2
DCPG 92.3 ± 7 76.4 ± 2

Table 3: Measurements of compression efficiency C(ZA|O; ·) (Equation (9)) of the actor’s repre-
sentation ϕA in Procgen. Results highlighted in red when the auxiliary loss decreases the metric
relative to the base algorithm, and highlighted in green when the auxiliary loss increases the metric
relative to the base algorithm. Auxiliary losses are applied to the actor (A) and critic (C) in the form
of dynamics prediction (D), MICo, and advantage distillation (Adv).

Algorithm C(ZA|O;V ) C(ZA|O;L) C((ZA|O,Z ′
A|O′);A)

PPO 90.1 ± 4 52.3 ± 3 99.9 ± 0
PPO+MICo(C) 93.9 ± 2 60.4 ± 3 99.4 ± 0
PPO+MICo(A) 98.6 ± 1 84.7 ± 2 87.5 ± 5
PPO+D(A) 62.6 ± 12 61.3 ± 2 100.0 ± 0
PPO+D(C) 86.8 ± 7 52.8 ± 3 100.0 ± 0
PPO+D(A)+MICo(C) 76.3 ± 6 63.7 ± 3 99.5 ± 0
PPO+Adv(A) 96.9 ± 2 53.2 ± 3 100.0 ± 0
PPO+Adv(A)+MICo(C) 100.0 ± 0 57.0 ± 2 98.5 ± 1
PPO+Dr(A) 89.1 ± 6 54.3 ± 3 100.0 ± 0
PPO+Dr(C) 98.1 ± 1 50.8 ± 3 99.6 ± 0
PPG 94.1 ± 2 75.5 ± 2 100.0 ± 0
PPG+MICo(C) 98.0 ± 1 76.4 ± 2 100.0 ± 0
PPG+MICo(A) 95.4 ± 2 85.8 ± 2 100.0 ± 0
PPG+D(A) 89.5 ± 4 71.2 ± 2 100.0 ± 0
PPG+D(C) 96.3 ± 2 75.1 ± 2 100.0 ± 0
PPG+D(A)+MICo(C) 85.9 ± 7 71.6 ± 2 100.0 ± 0
PPG+Adv(A) 98.4 ± 1 63.3 ± 2 100.0 ± 0
PPG+Adv(A)+MICo(C) 99.4 ± 1 62.9 ± 2 100.0 ± 0
PPG+Dr(A) 91.3 ± 3 74.9 ± 2 100.0 ± 0
PPG+Dr(C) 93.1 ± 6 75.6 ± 2 100.0 ± 0
DCPG 92.3 ± 7 76.4 ± 2 100.0 ± 0
DCPG+MICo(C) 98.1 ± 1 76.6 ± 2 100.0 ± 0
DCPG+MICo(A) 91.7 ± 3 74.3 ± 2 100.0 ± 0
DCPG+D(A) 80.9 ± 4 69.9 ± 2 100.0 ± 0
DCPG+D(C) 97.8 ± 1 76.3 ± 2 100.0 ± 0
DCPG+D(A)+MICo(C) 83.4 ± 5 69.6 ± 2 100.0 ± 0
DCPG+Dr(A) 97.5 ± 2 76.7 ± 2 100.0 ± 0

C.2 PROCGEN

The Procgen Benchmark is a set of 16 diverse PCG environments that echoes the gameplay variety
seen in the ALE benchmark Bellemare et al. (2015). The game levels, determined by a random seed,
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Table 4: Measurements of compression efficiency C(ZC |O; ·) (Equation (9)) of the actor’s represen-
tation ϕC in Procgen. Results highlighted in red when the auxiliary loss decreases the metric relative
to the base algorithm, highlighted in green when the auxiliary loss increases the metric relative to
the base algorithm, and highlighted in yellow otherwise. Auxiliary losses are applied to the actor
(A) and critic (C) in the form of dynamics prediction (D), MICo, and advantage distillation (Adv).

Algorithm C(ZC |O;V ) C(ZC |O;L) C((ZC |O,Z ′
C |O′;A))

PPO 93.7 ± 3 88.4 ± 2 85.6 ± 4
PPO+MICo(C) 100.0 ± 0 90.3 ± 1 82.7 ± 3
PPO+MICo(A) 97.6 ± 2 92.4 ± 1 64.4 ± 6
PPO+D(A) 99.7 ± 0 90.2 ± 1 87.4 ± 3
PPO+D(C) 87.6 ± 4 77.4 ± 2 99.1 ± 0
PPO+D(A)+MICo(C) 91.0 ± 6 88.1 ± 2 84.4 ± 3
PPO+Adv(A) 96.7 ± 2 89.3 ± 1 87.6 ± 4
PPO+Adv(A)+MICo(C) 100.0 ± 0 89.9 ± 1 87.0 ± 3
PPO+Dr(A) 98.0 ± 1 90.0 ± 1 87.9 ± 3
PPO+Dr(C) 97.5 ± 1 87.0 ± 2 86.3 ± 3
PPG 99.2 ± 1 81.6 ± 2 90.3 ± 3
PPG+MICo(C) 93.0 ± 6 90.9 ± 2 91.8 ± 2
PPG+MICo(A) 100.0 ± 0 80.9 ± 2 84.4 ± 4
PPG+D(A) 100.0 ± 0 79.2 ± 2 91.3 ± 3
PPG+D(C) 89.4 ± 4 77.6 ± 2 100.0 ± 0
PPG+D(A)+MICo(C) 93.3 ± 4 89.1 ± 2 87.1 ± 4
PPG+Adv(A) 100.0 ± 0 80.9 ± 2 89.7 ± 3
PPG+Adv(A)+MICo(C) 99.9 ± 0 92.3 ± 1 93.1 ± 3
PPG+Dr(A) 98.7 ± 1 81.7 ± 2 90.2 ± 3
PPG+Dr(C) 96.4 ± 3 81.8 ± 2 85.8 ± 4
DCPG 99.5 ± 1 81.7 ± 2 92.1 ± 3
DCPG+MICo(C) 98.9 ± 1 88.6 ± 2 93.5 ± 2
DCPG+MICo(A) 99.8 ± 0 81.4 ± 2 87.2 ± 4
DCPG+D(A) 100.0 ± 0 80.7 ± 2 92.6 ± 3
DCPG+D(C) 91.3 ± 3 81.2 ± 1 100.0 ± 0
DCPG+D(A)+MICo(C) 99.6 ± 0 87.4 ± 2 92.7 ± 3
DCPG+Dr(A) 100.0 ± 0 81.3 ± 2 89.4 ± 3
DCPG+Dr(C) 97.0 ± 2 81.2 ± 2 90.7 ± 3

can differ in visual design, navigational structure, and the starting locations of entities. All Procgen
environments use a common discrete 15-dimensional action space and generate 64×64×3 RGB ob-
servations. A detailed description of each of the 16 environments is provided by Cobbe et al. (2020).
RL algorithms such as PPO reveal significant differences between test and training performance in
all games, making Procgen a valuable tool for evaluating generalisation performance.

We conduct our experiment on the easy setting of Procgen, which employs 200 training levels and
a budget of 25M training steps, and evaluate the agent’s scores on the training levels and on the full
range of levels, excluding the training levels. We use the version of Procgen provided by EnvPool
(Weng et al., 2022). Following prior work, (Raileanu et al., 2021; Jiang et al., 2021; Moon et al.,
2022), for each game we normalise train/test scores by the mean train/test score achieved by PPO
in that game.

For PPO, we base our implementation on the CleanRL PPO implementation (Huang et al., 2022),
which reimplements the PPO agent from the original Procgen publication in JAX. We use the same
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ResNet policy architecture and PPO hyperparameters (identical for all games) as Cobbe et al. (2020)
and reported in Table 5.

We re-implement PPG and DCPG in JAX, based on the Pytorch implementations provided by Huang
et al. (2022) and Moon et al. (2022). We use the default recommended hyperparameters for each
algorithms, which are reported in Table 6. We note that our PPG implementation ends up outper-
forming the original implementation by about 10% on the test set, while our DCPG implementation
underperforms test scores reported by Moon et al. (2022) by about 10%. We attribute this discrep-
ancy to minor differences between the JAX and Pytorch libraries, and decided to not investigate
further.

We conduct our experiments on A100 and RTX8000 Nvidia GPUs and 6 CPU cores. One seed for
one game completes in 2 to 12 hours, depending on the GPU, algorithm, and whether the architecture
is coupled or decoupled (for example, PPG decoupled can be expected to run 4x to 6x slower than
PPO coupled).

C.3 BRAX

For our experiments in Brax, we implement a custom “video distractors” set of tasks, similar to
those from (Stone et al., 2021). In this setup, a video plays in an overlay on the pixels the agent
views. There is a disjoint set of videos between the training and testing environments. The random
seed determines the environment’s initial physics and the video overlay at the beginning of training.
The pixels themselves are full-RGB 64 × 64 × 3 arrays, but we use framestacking to bring each
agent input to 64× 64× 9 pixels.

Similar to the algorithms used in the Procgen experiments, we implement our algorithms in JAX
and base them on ClearnRL.

We conduct our experiments on RTX A4500 Nvidia GPUs and 6 CPU cores. One seed completes
in 7.5-48 hours, depending on the environment and its physics backend as well as the algorithm.
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Table 5: Hyperparameters used for PPO in Procgen and Brax experiments. All runs employing a
specific (or combination of) representation learning objective use the same hyperparameters.

Parameter Procgen Brax

PPO
γ 0.999 0.999
λGAE 0.95 0.95
rollout length 256 128
minibatches per epoch 8 8
minibatch size 2048 512
Jπ clip range 0.2 0.2
number of environments 64 32
Adam learning rate 5e-4 5e-4
Adam ϵ 1e-5 1e-8
max gradient norm 0.5 0.5
value clipping no no
return normalisation yes no
value loss coefficient 0.5 0.5
entropy coefficient 0.01 0.01

PPO (coupled)
PPO epochs (actor and critic) 3 -

PPO (decoupled)
Actor epochs 1 1
Critic epochs 9 1

MICo objective
MICo coefficient 0.5 0.01
Target network update coefficient 0.005 0.05

Dynamics objective
Dynamics loss coefficient 1.0 0.01
In-distribution transitions weighting 1.0 1.0
Out-of-distribution states weighting 1.0 1.0
Out-of-distribution actions weighting 0.5 0.5

Advantage distillation objective
Advantage prediction coefficient 0.25 -
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Table 6: Hyperparameters used for PPG and DCPG in Procgen experiments. Hyperparameters
shared between methods are only reported if they change from the method above. All runs employ-
ing a specific (or combination of) representation learning objective use the same hyperparameters.

Parameter Procgen

PPG
γ 0.999
λGAE 0.95
rollout length 256
minibatches per epoch policy phase 8
minibatch size policy phase 2048
minibatches per epoch auxiliary phase 512
minibatch size auxiliary phase 1024
Jπ clip range 0.2
number of environments 64
Adam learning rate 5e-4
Adam ϵ 1e-5
max gradient norm 0.5
value clipping no
return normalisation yes
value loss coefficient policy phase 0.5
value loss coefficient auxiliary phase 1.0
entropy coefficient 0.01
policy phase epochs 1
auxiliary phase epochs 6
number of policy phases per auxiliary phase 32
policy regularisation coefficient βc 1.0
auxiliary value distillation coefficient 1.0

DCPG
value loss coefficient policy phase 0.0
delayed value loss coefficient policy phase 1.0

MICo objective
MICo coefficient 0.5
Target network update coefficient 0.005

Dynamics objective
Dynamics loss coefficient 1.0
In-distribution transitions weighting 1.0
Out-of-distribution states weighting 1.0
Out-of-distribution actions weighting 0.5
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