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A APPENDIX
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Figure 4: A toy example: visualization of (a) original data and (b) its K-means cluster for Cora
dataset. T-SNE is used to project high-dimensional data into 2-D space. (c) 9 cluster centers can
be regarded as a pseudo-grid in the 2-D space. Next, (d) a neighbor is transformed into the anchor
space, and anisotropic convolution is implemented.

Fig. @] shows the main idea of Graph Deformer Network, K-means Cluster on the original data
produce 9 cluster centers, pseudo-grid shape, indicating several implicit directions like 3 x 3 re-
ceptive field (top left, top right, etc.) in images. Initially anchor nodes are generated by imposing
an non-linear transformation on cluster centers in order to match the updated features. Then, the
irregular neighbors can be deformed into the anchor space. Finally anisotropic convolution can be
implemented by using different filters on the anchor node.

A.1 RELATED WORK

In this section, we briefly retrospect the graph convolutional neural networks related to our work.
Recently, numerous graph convolution methods accrue in the field of artificial intelligence. These
works roughly fall into two categories: spectral based methods (Bruna et al., 2014} [Susnjara et al.
2015} Defferrard et al, 2016}, [Levie et al.| [2018) and spatial based methods (Gilmer et al., 2017}
Such et al., 2017; |Simonovsky & Komodakis, 2017} Gao et al., 2018 [Huang et al., 2018} [Liu et al.
2019)). Based on the Spectral Graph Theory (Chung},[1997), the work (Shuman et al., 2013) presents
a basic framework to process graph data via filtering. Bruna et al. firstly generalized convolutional
neural networks to graphs through the decomposition of the graph Laplacian matrix
[2014). The work (Henaff et al., [2015) seeks to express spatial localization of filters with smoothing
coefficients. Then, ChebyNet (Defferrard et al.}[2016) and GCN (Kipf & Welling, 2016) take advan-
tage of recursive Chebyshev polynomials to approximate parameterized filters, where the computing
efficiency is significantly improved. Ever since, increasing work (Li et al., 20182;[2019}|Chen et al )
2018} [Zhuang & Mal, 2018) is dedicated to designing, improving, and optimizing convolution oper-
ators on graphs. On the other hand, the spatial based approaches perform convolution directly on
graphs by aggregating node features over a spatial neighborhood. DCNN (Atwood & Towsley, 2016)
proposes a diffusion-convolution method. Niepert et al. (Niepert et al., [2016) normalized a graph
to a grid-shaped structure and performed traditional convolution operations. DGCNN
adds a disordered graph convolutional layer(DGCL) to avoid the loss of information. Graph-
SAGE (Hamilton et al.l 2017) generates embeddings by sampling and aggregating node features in
a local neighborhood. Velickovic et al. (Velickovic et al.l 2017) adopted an attention mechanism
into graph learning. MoNet (Monti et al., 2017) utilized a Gaussian mixture model to encode the
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weights between nodes and aggregate node features. JK-Net (Xu et al.|[2018) aggregates features of
different layers by max-pooling, concatenation, or LSTM-attention. GIN (Xu et al., 2019) presents
a theoretical framework to analyze the expressive power of GNNs. GIC method (Jiang et al., 2019)
attempts to discover the direction of variations by Gaussian mixture models.

A.2 THE NOTATIONS

We summarize the used notations of our paper as follows.

Table 5: The notations used in the paper.

Notation Representation
g graph
Vv vertex set
& edge set
A A adjacency matrix
X, X' feature matrix
X, X; feature vector of node in graph
NUSL set of s-hop neighbors for node v;
v anchor set
v one anchor node
X feature vector of anchor node
f filters
D deformer function
C anisotropic convolution operator
K convolution kernel
P plooing / graph coarsening operator
F) deformed multi-granularity feature matrix for node v,
Vsampling sampled node set from graph
ay feature vector of anchor node & after updating
q. anchor-related feature vector (query feature vector)
u. value feature vector
u deformed feature vector on anchor node k
«a weight matrix
Xy, output of graph deformer convolution for node v,
Z binary cluster matrix for graph coarsening
A.3 PROOF OF PROPOSITION/I]
! !
1 (3 (% G
(a) Mean aggregator fails (b) Sum aggregator fails

Figure 5: Examples of graph structures on which mean and sum aggregators fail. The neighborhood
regions of v and v’ have the same representation even though their graph structures are different.

Proof. Let us first illustrate the cases that cannot be distinguished by mean/sum aggregation. There
exist two non-isomorphic graphs whose response outputs are consistent on mean and sum aggrega-
tion. As shown in Fig.[3] the gray node is a reference node, denoting features of the green and yellow
nodes as x4, x,. Then, (a) §(2x,+2x,) = 1 (x,+xX,), and the mean aggregator cannot distinguish
them. (b) (3x4 + x,)=(x4 + 2x,) if 2x, = X,,, and the sum aggregator cannot distinguish them. In
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practice, the sum aggregator is relatively better than the mean aggregator because the sum operation
reflects the accumulation number (i.e., node degree).

Next, we will prove the proposed graph deformer process (not including the anisotropic convolution
part) can distinguish these two cases. Projecting the different neighborhoods into anchor space can
keep the energy constant, i.e., the sum of neighbors in the local neighborhood is the same as the sum
on each anchor node after deforming.

(1) Thus, for two non-isomorphic graphs, if their sum on a local neighborhood is different such as
Fig. then it must be different after deforming into anchor space.

(2) If two non-isomorphic graphs have the same sum on the local neighborhood as shown in
Fig. then the sum is still same after deforming. But their representations corresponding to
the same anchor node are different with a high probability. If two local neighborhoods have the
same representation on each anchor after being deformed, taking Fig. [5(b)| as an example, setting
m = 3, i.e., 3 anchor nodes, then we have

0,0X0 + (1,0X1 + Q2 0X2 + g 0X4 + (5, 0X5 = Qi 0Xp + 7, 0X7 + g 0X8 + (g 0Xg,  (14)
0,1X0 + (1,1X1 + Qg 1X2 + 0 1X4 + Q5,1 X5 = Q,1X6 + 7, 1X7 + g 1X8 + (g 1Xg,  (15)
0,2X0 + (12X + Qg 9Xg + 0y 2X4 + (5 2X5 = Qg 2Xe + Q7 2X7 + g 2Xg + (g 2Xg,  (16)

Xp + X1 + X2 + X4 + X5 = X¢ + X7 + Xg + Xo,

S.t. ex 58 v
a];k; - p(<X]) kz) ) k/:0;17.'. 7m_17 ( )

Zk/ eXp(<Xj,ak’>)

—

Bl = Q0 = Q1,0 = Q2,0 = Q40 = Q5,0 = Qg0 = Q7,0 = Qig 0 = (9,0, (18)
Bo=ap1 =011 =021 =041 =051 =061 =071 =081 =091, (19)
53 =Qp2=Q12=Q22 =Q42 = Q52 = Qg2 = Q73 = Qg2 = Q9 2, (20)
61+62+62:17 (2])
5 — exp((x;,ax)) K =01, ,m-—1. (22)

- exp((xj,aw))’
Because these two graphs are non-isomorphic but the sum is the same, then the features x; is differ-
ent. Moreover, the derived normalized attention score for all nodes should be the same. Thus, the
inner product between these nodes and anchors should satisfy,
<X0,§k>:<xl,5k>+cl:"':<Xg,§k>—|—097 k’:O,l,u- ,m—l, (23)

which means that the inner product between any two nodes and all anchor nodes differs by a same
constant C;. In this case, it is equivalent to a linear normalization of the inner product. Both x; and
ays are optimized by the neural network. And the formula of Eqn. [23|difficultly holds. Thus, the
proposed graph deformer process usually is an injective, stronger than sum/mean aggregation. [

A.4 PROOF OF PROPOSITION[Z]

Before giving the Proof of Proposition2} we first simply elaborate on the Weisfeiler-Lehman (WL)
graph isomorphism test.

WL test (Shervashidze et al., [2011) is a state-of-the-art graph kernel method, which concatenates
each vertex of a labeled graph and its neighbors to create a sorted multiset label, and then assigns a
new label/color to this multiset by hashing. Vertices with the same multiset are assigned the same
label. This can be formulated as

¢ (v) = HASH ((c(t—1>(v),{c<t—1)(u)|u € Nj}})) : (24)

where the ¢*) (v) means the color/label of node v in iteration ¢, N! is the set including the 1-hop
neighbors of node v, and {-} is a multiset.

Proof. The graph deformer process has been analyzed in which usually is injective. For a
single-scale neighborhood, the anisotropic convolution described in Eqn. [9]is equal to the next form

i’ur = MLP ([ﬁh 7ﬁm—1])a (25)
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which is a combination of concatenation on anchor nodes and a multilayer perceptron.

For a multiset{u; }, i =0,1,--- ,m — 1, where 0, represents a d-dimensional vector. There exists
some order making the concatenation on the {1u; } unique. That means the concatenation can obtain
different results for different local neighborhoods. Thus, the concatenation aggregation can satisfy
an injective, which also is implemented in the WL test. Additionally, according to the universal
approximation theorem (Hornik} [1991), multilayer feedforward networks are, under very general
conditions on the hidden unit activation function, universal approximators provided that sufficiently
many hidden units are available. Thus, we can reach the conclusion.

O
A.5 DATASETS
The global properties of datasets for node and graph classifications have been summarized in Table[6]

and Table[7] and details are as follows:

Table 6: Summary of graph datasets for node classification.
Dataset | Nodes Edges Features Classes Label rate

Cora 2708 5429 1433 7 0.052
Citeseer | 3327 4732 3703 6 0.036
Pubmed | 19717 44338 500 3 0.003

Table 7: Summary of graph datasets for graph classification.

Dataset [ Graphs Classes Node labels Max nodes Avg.nodes Avg.edges
MUTAG 188 2 7 28 17.93 19.79
PTC 344 2 19 109 25.56 14.69
NCI1 4110 2 37 111 29.87 32.3
ENZYMES 600 6 3 126 32.63 62.14
PROTEINS 1113 2 3 620 39.06 72.82
IMDB-BINARY 1000 2 - 136 19.77 96.53
IMDB-MULTI 1500 3 - 89 13.0 65.94

o Citation graph. The Cora dataset is constructed by 2708 machine learning papers belonging
to 7 classes. Each node represents a paper, and two papers are connected if one cites another
paper. There are a total of 5429 edges. Node features are bag-of-words representation
indicating the absence/presence of the corresponding word from the dictionary that consists
of 1433 unique words. Similarly, Citeseer contains 3327 papers divided into 6 classes.
Node features are also bag-of-words representation with 3037 unique words. There exist
4732 edges between the nodes. Pubmed is a larger dataset containing 19717 papers and
44338 edges. The node features are real-valued entries indicating Term Frequency-Inverse
Document Frequency (TF-IDF) of the corresponding word from a dictionary.

e Bioinformatics datasets. MUTAG (Debnath et al.| [1991) is a nitro compounds dataset in-
cluding 188 samples and is divided into 2 classes. PTC (Toivonen et al.l 2003) consists
of compounds labeled according to carcinogenicity on rodents with 19 node labels. NCI1
(Wale et al., [2008) is a balanced dataset of chemical compounds collected by the National
Cancer Institute (NCI), which contains 4110 chemical compounds with 37 discrete node
labels about the human tumor cell. ENZYMES (Borgwardt et al., 2005) consists of 600
protein tertiary structures divided into 6 classes and obtained from the BRENDA enzyme
database. PROTEINS (Borgwardt et al.| [2005) consists of 1113 proteins in which nodes
are secondary structure elements (SSEs). There exists an edge between two nodes if they
are contiguous in the amino acid sequence.

e Social network datasets. IMDB-BINARY and IMDB-MULTI are movie collaboration
datasets derived from the work (Yanardag & Vishwanathan, [2015)), where every graph be-
longs to a kind of movie genre which is also to be predicted. The IMDB-BINARY dataset
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contains two types: Action and Romance. While the IMDB-MULTI dataset is constructed
from Comedy, Romance, and Sci-Fi genres. Each node represents an actor/actress. If two
actors appear in the same movie, then they are connected by an edge.

A.6 EXPERIMENTAL SETUPS

Node classification. For node classification, we adopt the data preprocessed in the work (Yang
et al.l 2016), and follow its data partitioning rules. There are only 20 samples in each class for
training. A total of 500 samples are used for validation and 1000 samples are used for testing for
all datasets. The label rate has been summarized in the Appendix. The GDN model consists of two
convolutional layers, each of which follows by a pooling layer. Then a fully connected layer and an
output layer with the softmax function generate the prediction results. The network structure can be
simply represented as Input — C — P(mean) — C — P(mean) — FC(softmax) — Output, where C,
P and FC denote convolution, pooling, and fully connected layer, respectively. P(mean) indicates
the “mean” operation in the pooling layer. The number of anchor nodes is set to 16. The scale of
the neighborhood is set to 2 in both convolutional layers, i.e, including the features of the node itself,
first-order and second-order neighborhoods. We train the model 600 epochs with the initial learning
rate of 0.05. The dropout rate is set to 0.5 to alleviate over-fitting. We run 10 experiments to take
the average as the accuracy“mean = standard deviation”.

Graph classification. A three-layer GDN model is applied for the learning of overall graph. Each
convolutional layer is followed by a pooling layer with the downsampling rate of 0.5. The channels
of the three convolutional layers are set to {64, 128,256}, respectively. Finally, a fully-connected
layer with the softmax function directly predicts the label. The network structure can be simply
represented as Input — C(64) — P(0.5) — C(128) — P(0.5) — C(256) — P(all) — FC(softmax) —
Output, where P(all) means that only a supernode is retained at the last pooling layer. Also, the
number of anchor nodes is set to 16 and the scale of the neighborhood is set to 2. We randomly
divide the dataset with the proportion of 9:1, where 9 folds are as the training set and the remaining
1 fold is as the testing set. The accuracies are reported in terms of “mean =+ standard deviation” of
10-fold cross-validation. For each cross-validation, we train 500 epochs with the initial learning rate
of 0.05.

A.7 DISCUSSION

How to set depth and width of the network?

The network depth (i.e., layer number) and filtering width (i.e., order number) has some relation to
the diameter of the graph. Usually, the total receptive field size of the top layer in the convolution
network may be upper-bounded by the diameter of the graph. For a fixed receptive field size, we
may employ a deeper network (stacking multiple layers) with small order (small width), or a shallow
network with large order number (large width). Like numerous standard CNN, deeper networks
(e.g., ResNet) with a small width (small kernel size) usually have better performance than shallow
network with a large width.

How the problem of over-smoothness is handled by the GDN?

(1) Simply speaking, we introduce anchor nodes and deform the irregular neighborhoods into reg-
ular anchor space, and use different filters on different anchors. It makes anisotropic convolution
available. Theoretical analysis and experimental results validate its effectiveness.

(2) Making an analogy, the first principal component is the principal direction of the data distribution
when Principal Component Analysis (PCA) is used to fit data. If only the first principal component
is used, the information in other directions will be lost. If more principal components are retained,
the data distribution can be better characterized. Similarly, traditional GCN integrates neighborhood
nodes via a sum aggregator, only retaining the most important information of the receptive field.
And our method tries to project the data in multiple directions (w.r.t. anchors), each of which is
intuitively similar to the PCA projection direction. Therefore, our method retains more information.
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A.8 GDN ALGORITHM

Our proposed graph deformer network (GDN) for node classification can be summarized as follows:

Algorithm 1: GDN algorithm for node classification

Input: node feature matrix X € R"*¢; adjacency matrix A € R™*"; the scale of neighborhoods
S’; the number of layers L; the number of key nodes m; the deformer function D; the
coarsening function P; the deformer parameter O; the convolution operation C; the
fully-connected function g; the convolution kernel .

Output: the predicted labels of nodes Y € RPxC
=0 0 —0NY (e .
YV = {(vg,xg)}hﬁol + Clustering { (v, X;)|v; € Vsampling }3

Z) x4, t=1,,m

for!=1,2,---,Ldo
xffl eiffl,tzl,-u T
X% <—ReLU(Wf4i§C_1 +bY), k=1, ,m;
for v,. € V do

fors=1,---,Sdo
FET’S) A the./\/b‘ ,th%Vi (iaxéil?@l);
X C(Fr), K,

end
%, [ xS
z, = g¢'(%) ;

S
’ng“ = ,P{Zlngta"'}vvt S UNS(’UT) 5
s

end

end
Y, = argmax {softmax{fX(zL)}}.
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