
Under review as a conference paper at ICLR 2024

A PROOF OF LEMMA 4.1

Lemma 4.1. Suppose we have an FFN � with all absolute values of weights and biases bounded by
satisfy M,B respectively. Besides ReLU is adopted as the activation function. Then, our Eqn. 7 has
a unique absolutely continuous solution.

To begin with, we introduce a theorem from (Difonzo et al., 2024).
Theorem A.1. Let n 2 N[{0}, ⌧ 2 (0,+1), x0 2 Rd and let f satisfy the following assumptions:

(A1) For all t 2 [0, (n+ 1)⌧], f(t, ·, ·) 2 C
�
Rd ⇥ Rd;Rd

�
,

(A2) For all (x, z) 2 Rd ⇥ Rd, f(·, x, z) is Borel measurable,

(A3) There exists K : [0, (n + 1)⌧] ! [0,+1) such that K 2 L1([0, (n + 1)⌧]) and for all
(t, x, z) 2 [0, (n+ 1)⌧]⇥ Rd ⇥ Rd, we have:

kf(t, x, z)k  K(t)(1 + kxk)(1 + kzk), (14)

(A4) For every compact set U ⇢ Rd, there exists LU : [0, (n + 1)⌧] 7! [0,+1) such that LU 2
L1([0, (n+ 1)⌧]) and for all t 2 [0, (n+ 1)⌧], x1, x2 2 U, z 2 Rd, we have:

kf (t, x1, z)� f (t, x2, z)k  LU (t)(1 + kzk) kx1 � x2k (15)

Then there exists a unique absolutely continuous solution x = x (x0, f) to the following system:
⇢
x0(t) = f(t, x(t), x(t� ⌧)), t 2 [0, (n+ 1)⌧]

x(t) = x0, t 2 [�⌧, 0) , (16)

such that for j = 0, 1, . . . , n we have:

sup
0t⌧

k�j(t)k  Kj , (17)

where ��1(t) = x0,�j(t) = x(t+ j⌧), for j = 0, 1, . . . , n, K�1 := kx0k and

Kj = (1 +Kj�1)
�
1 + kKkL1([j⌧,(j+1)⌧])

�
· exp

�
(1 +Kj�1) kKkL1([j⌧,(j+1)⌧])

�
. (18)

Proof. Firstly, the function � is learnable FFNs, and the first layer can be represented as:

mt
1 = �(W0y

t +W1y
t�1 + b1), (19)

where W0 and W1 are two weight matrices, and b1 denotes the biases. The i layers can be written
as:

mt
i = �(Wim

t
i�1 + bi), (20)

where Wi and bi are corresponding weights and biases. These functions are continuous and Borel
measurable. Therefore, � also satisfies assumptions (A1), (A2).

Secondly, given any inputs yt,yt�1, we can see:

k�(yt,yt�1)k = kmt
l(· · ·mt

1(y
t,yt�1))k

 kmt
l(· · ·mt

2(Mkytk+Mkyt�1k+B))k

 · · · M lkytk+M lkyt�1k+ M l � 1

M � 1
B

 L(1 + kytk)(1 + kyt�1k),

where L = max{M l, M l�1
M�1 B}. Thus assumption (A3) is satisfied.

Third, note the ReLU activation function satisfies:

|�(x)� �(y)|  |x� y|. (21)

Given any x1,x2, z, we have:

kmt
1(x1, z)�mt

1(x2, z)k  kW0(x1 � x2)k Mkx1 � x2k. (22)

15

Under review as a conference paper at ICLR 2024

Then, the following inequation holds:

kmt
2(m

t
1(x1, z))�mt

2(m
t
1(x2, z))k  kW2(m

t
1(x1, z)�mt

1(x2, z))k M2kx1�x2k (23)

Thus, we can conclude:

k�(x1, z)� �(x2, z)k M lkx1 � x2k, (24)

which means the assumption (A4) is satisfied.

Then, based on Theorem A.1, we can claim that our graph ODE system Eqn. 7 has a unique abso-
lutely continuous solution.

B ALGORITHM

The training algorithm of our FAIR is summarized in Algorithm 1.

Algorithm 1 Learning Algorithm of FAIR
Input: The mesh graph G, a sequence of observations Gt0:t0+T = {Gt0 , · · · , Gt0+T }.
Output: Parameters in our FAIR.

1: Initialize model parameters;
2: // Foresight Step
3: while not convergence do

4: for each training sequence do

5: Feed each sample into the graph ODE;
6: Generate the predictions at the given timestamps using Eqn. 8;
7: Minimize the mean square error for these timestamps in Eqn. 9;
8: Update the parameters using gradient descent;
9: end for

10: end while

11: // Refinement Step
12: while not convergence do

13: for each training sequence do

14: Generate the predictions at the given timestamps using Eqn. 8;
15: Generate the refined predictions from Eqn. 12;
16: Minimize the mean square error for the target in Eqn. 13
17: Update the parameters using gradient descent;
18: end for

19: end while

The inference algorithm of our FAIR is summarized in Algorithm 2.

Algorithm 2 Inference Algorithm of FAIR
Input: The mesh graph G, a sequence of observations Gt0:t0+T = {Gt0}.
Output: Parameters in our FAIR.

1: t = t0
2: X̂t0,ref = Xt0

3: while t < t0 + T do

4: // Foresight Step
5: Feed X̂t,ref into the graph ODE;
6: Generate the predictions X̂t+1, X̂t+1+r, · · · , X̂t+1+rL�r using Eqn. 8;
7: // Refinement Step
8: Generate the refined predictions X̂t+1,ref from Eqn. 12;
9: t t+ 1

10: end while

16

Under review as a conference paper at ICLR 2024

C DATASET DETAILS

Four physics simulation benchmark datasets are utilized to evaluate our proposed FAIR and the
compared baselines with details listed in Table 3.

CylinderFlow simulates the incompressible Navier-Stokes flow of water around a cylinder on a
fixed 2D Eulerian mesh generated by COMSOL (Multiphysics, 1998). This mesh has an irregular
structure with varying edge lengths in different regions. The simulation consists of 600 time steps,
with an interval of 0.01s between each step. Node attributes in the system include mesh position,
node type, velocity, and pressure. Node types can be divided into three different categories in fluid
domains, i.e., fluid nodes, wall nodes, and inflow/outflow boundary nodes. We predict the velocity
values in both directions.

Airfoil simulates the aerodynamics around the cross-section of an airfoil wing for compressible
Navier-Stokes flow by SU2 (Economon et al., 2016). As the edge lengths of the mesh range between
2 ⇥ 10�4m to 3.5m, the mesh structure is highly irregular. Each trajectory containing 5, 200 nodes
has 500 time steps with an interval of 0.008s. Node attributes include mesh position, node type,
velocity, pressure, and density. We aim to predict the velocity, density, and pressure in the future.

DeformingPlate is a hyper-elastic plate in the structural mechanical system, deformed by a kinematic
actuator, simulated with a quasi-static simulator COMSOL. Each trajectory has 400 time steps with
1, 200 nodes average. A one-hot vector for each type of node distinguishes actuators from plates in
the Lagrangian tetrahedral mesh. In addition, node type, position, and velocity are fed to predict the
whole trajectories.

InflatingFont is from BSMS-GNN (Cao et al., 2023), including 1, 400 2 ⇥ 2-character matrices in
Chinese. InflatingFont has more complex geometric shapes, 2 to 8 times the number of nodes, and
70 times the number of contact edges. We aim to predict the future position of every mesh node.

For each dataset, the train/val/test splits follow the recent work (Cao et al., 2023).

Table 3: All of our four datasets are listed in detail. The system describes the underlying PDE:
hypere-lastic flow, or a compressible or incompressible Navier-Stokes flow. Simulation data is
generated using a solver. In DeformingPlate and InflatingFont, there is no time step since it is a
quasi-static simulation.

Dataset Nodes (avg) Edge (avg) Type Steps

CylinderFlow 1885 5424 Eulerian 600
Airfoil 5233 15449 Eulerian 500
DeformingPlate 1271 4611 Lagrangian 400
InflatingFont 13177 39481 Lagrangian 100

D BASELINE DETAILS

We compare our FAIR with a range of state-of-the-art methods, i.e., GraphUNets (Gao & Ji, 2019),
GNS (Sanchez-Gonzalez et al., 2020), MeshGraphNet (Pfaff et al., 2021), MS-GNN-GRID (Lino
et al., 2021), Social-ODE (Wen et al., 2022) and BSMS-GNN (Cao et al., 2023). Their details are
elaborated as follows:

• GraphUNets (Gao & Ji, 2019) proposes new pooling and unpooling operations, which can be
implemented in an UNet-style architecture (Ronneberger et al., 2015). We have replaced the
original GCN layers into our message passing layers following (Cao et al., 2023).

• GNS (Sanchez-Gonzalez et al., 2020) is the pioneering work on physical simulations, which lever-
age graphs to depict systems and model dynamics using message passing neural networks. This
work demonstrates that graph neural networks have the ability to capture long-range interactions.
We employ 15 message passing layers as in Cao et al. (2023).

• MeshGraphNet (Pfaff et al., 2021) is an effective framework for mesh-based physical simulations,
which combine graph neural networks and re-mesh techniques to learn the dynamics for next-time

17

Under review as a conference paper at ICLR 2024

predictions. Based on the basic node modeling of graph networks, MeshGraphNet introduces
additional edge encoders. The edge representation is updated during each MeshGraphNet layer.
We also employ 15 message passing layers as in Cao et al. (2023).

• MS-GNN-GRID (Lino et al., 2021) is a representative work for those building the hierarchy with
spatial proximity, which introduces a novel multi-scale graph neural network model, designed to
enhance and accelerate predictions in continuum mechanics simulations. Following (Lino et al.,
2021; Cao et al., 2023), MS-GNN-GRID is implemented using the finest edge encoder, an addi-
tional aggregation module for node and edge representations, and a node returning module.

• Social-ODE (Wen et al., 2022) is a latent ordinary differential equation generative model, which
can understand and predict dynamics from irregularly-sampled partial observations with under-
lying graph structures. In our implementation, we use a similar structure paradigm with our ap-
proach, i.e., Encoder-ODE-Decoder pattern, where both the encoder and decoder consist of 7 layer
networks for node and edge modeling.

• BSMS-GNN (Cao et al., 2023) is a framework that introduces a bi-stride pooling strategy for
large-scale physical simulations, addressing existing challenges associated with scaling complex-
ity, over-smoothing, and incorrect edge introductions. BSMS-GNN follows the design paradigm
of UNet (Ronneberger et al., 2015). We adhere to the original network configurations and utilize
several UNet layers for experiments.

E IMPLEMENTATION DETAILS

In this paper, we present an extensive series of experiments leveraging the frameworks of Py-
Torch (Paszke et al., 2017), PyG (Fey & Lenssen, 2019), and TorchDiffEq (Kidger et al., 2021). To
ensure fairness, we implement our approach with a publicly available codebase by BSMS-GNN (Cao
et al., 2023). We execute all experiments on a single A100 GPU, including the speed test. To maxi-
mize training efficiency, we set the batch size across all experiments at the maximum level supported
by the GPU memory. Our optimization strategy includes the use of Adam optimizer, with a learning
rate set at 1e� 4, with an exponential learning rate decay strategy.

Following BSMS-GNN, we apply Gaussian noise to each original trajectory at the start of every
epoch, aiming to enhance the adaptability of the model to process noisy inputs. Furthermore, to
maintain fairness, we set the layer number for both encoder and decoder to 7, while MeshGraphNet
and BSMS-GNN both have 15 layers. Each layer includes the nodal encoder, processor, and nodal
decoder, all activated by ReLU and embedded within two hidden-layer MLPs. The MLPs have a
residual connection, while a LayerNorm normalizes all MLP outputs except for the nodal decoder.
Our code is available at https://anonymous.4open.science/r/FAIR anonymously. We
will make the code public after the anonymity period.

F MORE RESULTS

F.1 PREDICTIONS AT DIFFERENT TIME STEPS

Figure 6: RMSE of our FAIR and MeshGraphNet with respect to different prediction lengths on
CylinderFlow.

Figure 6 records the prediction errors of our proposed FAIR and MeshGraphNet with different time
steps in terms of RMSE on CylinderFlow. From the results, we can observe that our proposed

18

https://anonymous.4open.science/r/FAIR

Under review as a conference paper at ICLR 2024

FAIR demonstrates stronger modeling capabilities with relatively lower errors at large-time steps.
In contrast, MeshGraphNet suffers from serious error accumulations, with the prediction error about
twice as large as ours at the final time step.

F.2 VISUALIZATION

Figure 7 shows more visualization at a range of time steps on CylinderFlow. Here we utilize a
different instance to show the results at the time steps among {1, 10, 50, 100, 300, 400}. From the
results, we can validate the superiority of the proposed FAIR again.

MeshGraphNet

BSMS-GNN

FAIR

GroundTruth

Figure 7: Visualization of CylinderFlow at multiple time steps.

F.3 INFLUENCE OF DIFFERENT STEP SIZES

Figure 8 shows the results with respect to different step sizes r on Airfoil. From the results, it can be
found that the prediction errors first decrease and then increase, which achieves the minimum when
r is around 2. This observation is consistent with that in Sec. 5.3.

Figure 8: The performance with respect to different step sizes r at different time steps on Airfoil.

F.4 INFLUENCE OF FUTURE PREDICTION NUMBERS

Figure 9 records the results with respect to different future prediction numbers L on Airfoil. From
the results, we can observe that prediction errors would decrease generally till saturation and the
errors would not dramatically decrease when L is over 3 in most cases. Due to the trade-off between
effectiveness and efficiency, we set L to 3 as default.

F.5 VISUALIZATION OF ERRORS

Figure 11 visualizes the prediction errors of different approaches compared with the ground truth
on CylinderFlow, respectively. From top to bottom, we show the results at the time steps 1, 10, 50,

19

Under review as a conference paper at ICLR 2024

Figure 9: The performance with respect to different prediction lengths L at different time steps on
Airfoil.

High Error

Low Error

Figure 10: Visualization of FAIR on 3D dataset DeformingPlate, with the time steps among
1, 100, 200 and 300.

100, 300 and 400. We can observe that although both baselines and our FAIR can make accurate
short-term predictions with limited prediction errors, these baselines would suffer from serious error
accumulation in long-term forecasting. Figure 12 visualizes the prediction errors on Airfoil and we
can find that our FAIR is consistently superior to the compared baselines. Moreover, Figure F.4
shows the difference on 3D dataset DeformationPlate.

20

Under review as a conference paper at ICLR 2024

Step 1

Step 10

Step 50

Step 100

Step 300

Step 400

MeshGraphNet BSMS-GNNFAIR

Figure 11: Visualization of error on CylinderFlow with multiple time steps.

21

Under review as a conference paper at ICLR 2024

Step 1

Step 10

Step 50

Step 100

Step 300

Step 400

MeshGraphNet BSMS-GNNFAIR

Figure 12: Visualization of error on Airfoil at multiple time steps.

22

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Graph Neural Networks (GNNs)
	Neural Ordinary Differential Equations (ODEs)

	The Proposed FAIR
	Coarse Foresight with Graph ODE Twins
	Refinement with Interpolation
	Pyramid-like Propagation

	Experiments
	Experimental Setup
	Performance Comparison
	Analysis

	Conclusion
	Proof of Lemma 4.1
	Algorithm
	Dataset Details
	Baseline Details
	Implementation Details
	More Results
	Predictions at Different Time Steps
	Visualization
	Influence of Different Step Sizes
	Influence of Future Prediction Numbers
	Visualization of Errors

