A Related Literature

A.1 Estimating the whole distribution

The most straightforward thought is to estimate the whole distribution which accomplishes the task
of mean regression and uncertainty quantification simultaneously. Generally, there are two ways to fit
a distribution: either fitting a parametric model or turning to nonparametric methods. Representative
parametric methods are Bayesian Neural Networks [MacKay, |1992] and Deep Gaussian Process
(DGP) [Damianou and Lawrencel 2013]], of which the latter assumes the data is generated according
to a Gaussian process of which the parameters are further generated by another Gaussian process. The
major drawbacks of these Bayesian-type methods are their high computation cost during the training
phase and statistical inconsistency under model misspecification. To resolve the computational
issue, [Gal and Ghahramanil, [2016] proposes a simple MC-Dropout method that captures the model
uncertainty without changing the network structure. Despite the view of Bayesian, the task of
distribution estimation also falls into the range of frequentists: by assuming the underlying distribution
family (say, Gaussian), one can fulfill the task by estimating the moments or maximizing the likelihood.
For example, the Heteroscedastic Neural Network (HNN) [Kendall and Gal,[2017] gives an estimation
of both mean and variance at the final layer by assuming the Gaussian distribution. An ensemble
method called Deep Ensemble [Lakshminarayanan et al., 2017] is constructed on the basis of HNN.
[Cui et al., |2020] designs an algorithm that finds the best Gaussian distribution to minimize the
empirical Maximum Mean Discrepancy (MMD) from the observed data so as to ensure the marginal
calibration property of quantiles. [Zhao et al.,2020] raises a randomized forecasting principle that
minimizes the randomized calibration error with a negative log-likelihood regularization term to
ensure the so-called sharpness. Although they claim the construction of (randomized) individual
calibration (named PAIC) from the existence of mPAIC predictors, they do not provide any non-trivial
mPAIC predictor except for the one that permanently predicts the uniform distribution.

The other approach to estimating the entire distribution is the nonparametric way without assuming
the underlying distribution. For example, Kernel Density Estimation (KDE) utilizes kernel methods to
estimate the conditional probability density function. Although the method enjoys certain theoretical
consistency guarantees [Lei and Wasserman, 2014, |Lei et al., 2018, Bilodeau et al., 2021]], it is
often computationally expensive and not sample-efficient in high dimensional cases, which makes
it impractical for uncertainty quantification. A similar idea is applied in [Song et al.l|2019] via a
post-hoc way. The method is to improve on some given distribution estimation via the Gaussian
process and Beta link function. However, unlike the KDE literature, the method in [Song et al., 2019]
lacks a theoretical guarantee of its consistency.

A.2 Estimating quantiles

Due to the excessive and sometimes unnecessary difficulties in estimating the distribution, some
researchers suggest estimating the quantiles only, since a satisfying quantile estimation suffices in
many downstream tasks. The quantile prediction is now regarded as a new task, where one natural idea
is to combine the average calibration error on quantiles with a sharpness regularization term. [Pearce
et al.| 2018|] appends a calibration error (with respect to coverage and sharpness) to the loss functions
to obtain the calibrated prediction intervals at a pre-specified confidence level. [Thiagarajan et al.,
2020]] induces an extra interval predictor with a similar combined loss. But their methods require
the pre-determined confidence or quantile level and the whole model needs to be retrained if one
wants another level of prediction. Such methods in [Pearce et al.,|2018| [Thiagarajan et al., 2020] are
only evaluated empirically without theoretical guarantee for even the marginal distribution. [Chung
et al.,|2021]] proposes an average calibration loss combined with a similar sharpness regularization
term, which achieves an average (but not individually, as we will discuss later) calibration. Along
with these models that aim to give a quantile prediction out of scratch, [Kuleshov et al., [2018]]
develops a post-hoc way of calibrating (on average) a pre-trained quantile prediction model via
isotonic regression methods. The aim is to choose a specific level of quantile prediction that reaches
the desired marginal calibration of which the consistency relies solely on the pre-trained model in
contrast to our model that applies a model-agnostic post-hoc calibration.

Another line of research is to use Kernelized Support Vector Machines (KSVM) to predict the
conditional quantiles in one step, which fixes the inconsistency issue [Takeuchi et al.l 2000, |Stainwart
and Christmann, |2011]]. Essentially, methods from both papers search for a quantile prediction
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function over the Reproducing Kernel Hilbert Space (RKHS), say . Theoretically, Takeuchi et al.
[2006] derive a performance guarantee for the conditional quantile estimator based on the assumption
of finite #-norm, which is in parallel with our Lipschitz class (Assumption[I] (a)). The Lipschitz
function class and the bounded H-norm function class overlap, but neither one is contained in the
other. Stainwart and Christmann| [2011]] analyze the same algorithm but adopt a different approach.
Instead of imposing a bounded H-norm, they impose a decay rate for the eigenvalues of the kernel
integral operator, alongside some other assumptions on the underlying distribution. Those works
focus on the RKHS space while we focus on the Lipschitz space. For the Lipschitz function class,
to the best of our knowledge, our work is the first result to provide an individual guarantee. From
the practical point of view, both papers rely on solving a kernelized learning problem that cannot
scale well with the sample size or dimension, while our algorithm is simple to implement and of low
computational cost.

A.3 Conformal prediction

A very closely related field is conformal prediction, where the goal is to give a coverage set that
contains the true label with a certain probability. Theoretically, the goal of conformal prediction
is no harder than our quantile prediction task since correct quantiles induce desired coverage sets,
while empirically different measurements are considered: the conformal prediction cares about giving
the sharpest covering set rather than specifying which quantiles are estimated. For the regression
problem, there is an “impossible triangle” summarized in a concurrent work [Gibbs et al.l [2023]:
(i) a conditional/individual coverage (as our Definition E]) (i1) no assumptions on the underlying
distribution (iii) a finite-sample guarantee and asymptotic consistency. Such a triangle is shown by
Vovk| [2012]), [Foygel Barber et al.|[2021]] to be impossible to achieve simultaneously. Some works in
the conformal prediction literature aim to reconcile the impossibility: Romano et al.[[2019] consider
the marginal/average case (as defined in Definition [T)), which greatly relaxes (i). (Gibbs et al.|[2023]]
violates (i) in a milder but different way, focusing on a midway between marginal coverage and
conditional coverage defined by the linear function class.

The most related paper to ours may be [Feldman et al.|[2021]]: both theirs and ours attempt to address
the minimum cost of keeping the requirement (i). Before diving into the detailed comparison, we
summarize the main difference first: |[Feldman et al.|[2021] relaxes the remaining two, while our
paper keeps (iii) and relaxes (ii) in a much milder way. [Feldman et al.|[2021]] achieves a theoretical
guarantee that the true conditional quantile is the minimizer of the regularized population loss under a
realizability assumption (that is, the true conditional quantiles lie in the function class considered) and
an assumption that the conditional distribution is continuous with respect to features. However, its
theoretical results have several limitations. First, it achieves only asymptotic consistency compared
to our finite-sample guarantee in Theorem [If which means that [Feldman et al.| [2021]] violates
requirement (iii). Besides, it only achieves a necessary condition that the true conditional quantile is
the minimizer of the population loss but not vice versa. Second, [Feldman et al.|[2021] violates (ii)
to a much deeper content than ours. Note that the key assumptions made in |Feldman et al.[[2021]]
are the zero-approximation-error assumption and the continuity assumption. The former means that
there should be no model misspecification at all, which is not a weak one in the statistical learning
theory and limits the guarantee from a desirable “distribution-free” property. On the contrary, our
algorithm can have a finite-sample guarantee with only three very general assumptions summarized
in Assumption[I] Furthermore, our Lipschitz assumption is made only to achieve a finite-sample
guarantee (of which the necessity is supported by Theorem|[6)), while it can still be relaxed to a weaker
one than [Feldman et al.| [2021]] to reach the same asymptotic result. To see that, our result only
requires the conditional quantile to be continuous, while [Feldman et al.|[2021] requires continuity for
the whole conditional distribution. Third, the regularization term in|Feldman et al.| [2021]] is related
to a zero-one indicator, which is discontinuous for gradient descent. The authors twist their algorithm
by replacing it with a smooth approximation to overcome the issue without any formal guarantee on
the twisted one. In contrast, our theory accompanies the exact same algorithm that we propose.

Our paper can also serve as a starting point for understanding the empirical success of the “split”
procedure that is common among the conformal prediction algorithms. As summarized before, most
conformal prediction methods theoretically abandon requirement (i) with only a marginal coverage
guarantee. But a tricky point is that if one only needs the marginal coverage, it suffices to merely
use the empirical quantile without the splitting step at all. Why does the learner bother to “split”?
Empirically, the splitting procedure helps to obtain a more homogeneous coverage across the whole
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feature space, while our paper is the first theoretical justification up to our knowledge: to reduce the
Lipschitz constant L and smooth the target. Such an intuition is justified by Theorem[I]and Theorem
[2) from both the upper and the lower bounds.

B Failure of Existing Algorithms in Individual Calibration

In this subsection, we will give a brief discussion of the existing methods in regression calibration
literature. We give a close inspection of the existing calibration algorithms, proving that they cannot
achieve a desirable result (or even avoid naive and meaningless ones).

Some methods assume that the underlying distribution is Gaussian [Cui et al.| |2020, [Zhao et al.,
2020]]. The most straightforward drawback one can think of is that these Gaussian-based methods
are not consistent once the Gaussian assumption is violated. However, we will prove with some
counter-examples that they cannot prevent the naive or meaningless prediction even if the underlying
model is Gaussian.

Cui et al.| [2020] use a two-step procedure to estimate the conditional distribution, where at each
step the underlying model is a neural network predicting the mean p(x) and variance o%(z). The
first step is simply fitting the observed {(X;, Y;)}"_; into the model, getting an initial guess of x
and o. The second step utilizes the maximum mean discrepancy (MMD) principle. To be more
specific, the second step iterates the following steps until convergence: first generate /N new samples
{V;}N| from the estimated Gaussian model N (fi(X;), 52(X;)), then update the model estimation
(/1,6 to minimize the empirical MMD || 3; Zf\il o(Y;) — % Zf\[:l #(Y;)|. But the problem is: the
corresponding relation between each {(X;,Y;)} pair is wiped out from the model by calculating
the empirical MMD. In other words, the procedure produces the same result even if one permute
n estimated conditional distributions {(&(X;),5(X;))} arbitrarily. This can lead to a failure in
predicting the true conditional distribution even under the Gaussian condition, especially when they
use multi-layer neural networks which are well-known universal approximators that can fit any
continuous function [Hornik et al.,{1989].

Zhao et al.|[2020] try to give a randomized prediction of the cdf (in their paper denoted by h[x,7](-),
where r is some Unif[0, 1] random variable). The idea behind this is that if one gets a good cdf

estimation, then F,(Y") should be close to the uniform distribution. So the target is to minimize the
empirical absolute difference between hlz, 7](y) and r (denoted by L1). If L < e with probability
at least 1 — ¢, then they call it (e, d)-probably approximately individual calibrated (PAIC). But
minimizing L, alone cannot avoid being trapped by a naive and meaningless calibration: hlz, r](y) =
r. So they combine the loss with another maximum likelihood type loss Lo (negative logarithm
of likelihood, by assuming the underlying distribution of Y is Gaussian). But combining that loss
cannot guarantee a meaningful calibration. To illustrate this, one just needs to consider the continuous
distribution case, where each X; = x; is only observed once almost surely. A global minimizer
for the empirical loss Ly = Y1, 2|h[z;, r](y;) — i is obtained if one predicts hlz;, ](-) to
be N(y; — o®1(r;),0?%), where A is the Gaussian and ®(-) is the cdf of standard Gaussian. It
can be easily checked that this Gaussian distribution’s 7" quantile is exactly ;). The maximum
likelihood type loss Ly is now 3 log(c?) + = 37" | &~ !(r;)? = £ log(c?) + constant. Minimizing
it means that the o2 term will asymptotically go to zero, leading to an overfit and meaningless result
of hlz;, r;](-) — dy,. Again, this overfitting problem can be exacerbated by the fact that they train
the model via a neural network, which is commonly believed to be highly overparametrized that can
fit into any data nowadays. We must also point out that although Zhao et al.|[2020] claims that they
prove the existence of an (¢, §)-PAIC predictor, the existence is only guaranteed by the existence of
another monotonically PAIC (where monotonicity requires h[z, 7](y) is monotonically increasing
with respect to r) predictor (see their Theorem 1). But they do not provide the existence of any
non-trivial mPAIC predictor other than the trivial solution h[x, r](y) = r. Therefore, we think their
argument is at least incomplete, if not suspicious.

For those existing methods that do not assume Gaussian distributions, unfortunately, they are still
inconsistent from an individual calibration perspective [Kuleshov et al.,[2018| [Chung et al.,[2021]].

Kuleshov et al.|[2018]] develop an isotonic regression way to calibrate the quantiles in the regression
setting, which is inspired by the widely used isotonic regression in the classification setting, hence
is a recalibration method based on some initial estimation of all quantiles (say {Q}, = F~1(7)).
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Then the authors propose an isotonic regression method that learns a monotonically increasing
function g (Texpected) = Tobserveds where Tobserved — Z i=1 ]]-{Y < Q‘rexpemd} The final OUtPUt is

Q, = Qg 1(7)- The major drawback of their method is that it heavily relies on the initial calibration

n

Q. Hence the final marginal (or individual) recalibration result is only valid when the function class
{ Q7€ [0, 1]} contains a marginal (or individual) calibrated prediction. Despite the marginal case,
such a realizability condition is too strong to obtain in the individual calibration set, leading to the
failure of their recalibration methods in the individual case.

Chung et al.|[2021] propose a combined loss in their Section 3.2 with respect to both average calibra-
tion and sharpness. The first term minimizes the calibration error: Ly = 1{ 3" | IL{Y <@} <

T} g LY = Qr(X) Y > Qr(Xa)}] + {3 L, 1{Y; < Q) > ) - £ 0 [(-Yi +
Q-(X:))1{Y; < Q-(X,)}]. Note that L, is zero if the prediction Q. is marglnally calibrated.
The second term is Ly = 157 | Q,(X:) — Q1_-(X;), called sharpness regularization term.

But that combined loss L = (I — ALy + ALg will fail even for calibrating such a simple in-
stance: X ~ Unif[0, 1], u ~ Unif[-1,1], and Y = uX. Any 7®(7 > 0.5) quantile should be
Q,(F,) = (1 — 0.5)x, while minimizing their proposed loss for A € [0, A¢] ends up with Q, = =
for those x < 7 — 0.5 and QT = 0 for those = > 7 — 0.5. For larger A € [\g, 1], minimizing their
proposed loss will lead to an all-zero meaningless prediction QT = 0. The detailed calculation can
be found in Appendix.

Finally, we point out another issue that using the training residuals as errors to estimate the error
distribution will lead to a biased (usually over-confident) estimation. For example, the Section
3.1 of |Chung et al.[[[2021]] proposes a combined method of first training a regression model f on
{(X;,Y;)}™_, and then train a regression model on res; = Y; — f(X;). But they use the same set of
data to do both steps of training, leading to a statistically inconsistent estimator. The inconsistency
becomes especially severe for modern highly overparametrized machine learning models that can fit
into even random data [Zhang et al., 2021].

Remark 1. Many researchers [|Chung et al., 2021} |Zhao et al.|[2020] argue that combining a sharpness
regularization term with the average calibration loss will help to force the calibration model to stay
away from marginal calibration. However, in this section, we show that those combining methods
fail to provide a meaningful individually calibrated quantile prediction. In conclusion, a sharpness
regularization term may help to achieve a marginal calibration, while it does no good for the goal of
individual calibration.

C Discussions on Negative/Impossibility Results for Individual Calibration

Before elaborating on those impossibility results, we adopt the lower bound result from the nonpara-
metric (mean) estimation literature |(Gyorfi et al.| [2002], showing that any estimator may suffer from
an arbitrarily slow convergence rate without additional assumptions on the underlying estimation,
even in a noiseless setting. The original result is established for the conditional mean regression, and
the same result holds for the conditional quantile estimator in our case.

Theorem 6 (Theorem 3.1 in |Gyorfi et al.| [2002]], rephrased). For any sequence of conditional

quantile estimators {QT n } and any arbitrarily slow convergence rate {a,, } withlim,,_, a,, = 0 and
ap > az > -+ >0, 3P, s.t. X ~ Unif[0,1], U|X ~ 64x) (hence Q. (U|X = x) = g(z), YT > 0),
where g(X ) € {-1,41}, and

. Q‘r,n(X)_g(X)’2i|
lim sup

n—oo a’?l,

|

Such a negative result further justifies our Assumption[I)in a way that one cannot achieve any mean-
ingful convergence rate guarantee without making any assumptions on the underlying distribution.

Discussions on|Zhao et al.|[2020]: The negative result obtained by|Zhao et al.|[2020] (their Proposition
1) is for the target of estimating the conditional distribution’s cdf. The authors argue that the quality

of an estimation F},(-) should be measured via how close the distribution £5,(Y) is to the uniform
distribution Unif[0, 1]. The measurement of closeness is defined by the Wasserstein-1 distance.
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Their counter-example is constructed in a way that Py x—, is a singleton (say, a delta distribution
on the point g(x), where g(z) is chosen adversarially by the nature). They prove that any learner
cannot distinguish between the true distribution and the adversarially chosen distribution from the

observed data, thus any algorithm that claims a small closeness between F},(Y') and Unif[0, 1]
cannot guarantee that the observed data are not sampled from the adversarial distribution. Since the
Wasserstein-1 distance between a delta distribution and Unif[0, 1] is at least §, the closeness claim is
false for at least the adversarial distribution. We need to note that the measurement they take is a little
suspicious: if the conditional distribution itself is a delta distribution, then the closeness of F,(Y)
to the uniform distribution cannot be regarded as a good measurement of distribution calibration,
since even the oracle will also suffer an at least i Wasserstein distance. Although a certain negative
result when Y'|X ~ d,(x) is also made in our Theorem @ we need to note that the closeness of

F,(Y) to Unif[0, 1] can only be a good calibration measurement if the conditional distribution is
continuous. On the contrary, for the general continuous conditional distributions (with only those
mild assumptions), our methods can achieve a minimax optimal rate individual calibration guarantee
with respect to any quantile (Theorem [I)).

Discussions on|Lei and Wasserman| [2014]], [Vovk|[2012]]: Vovk] [2012]’s impossibility result (their
Proposition 4) is a version of Lemma 1 in [Lei and Wasserman| [2014]]. Thus we will only discuss
Lemma 1 in [Lei and Wasserman| [2014] here. The impossibility result is established for those
distributions which have continuous marginal distributions Px. They focus on a conditional coverage

condition, meaning that one should obtain a (1 — p) coverage set C(Xtest) such that P(Yiey €

C'(Xiest)| Xiest = ) > 1 — p for any z € X almost surely. |Lei and Wasserman|[2014] prove that for
any distribution P and its any continuous point ¢, for any finite n, such an almost sure conditional
coverage must result in an infinite expected length of covering set with respect to Lebesgue measure.
This negative result seems to be disappointing for individual calibration at first glance. However,
an almost sure guarantee in a finite sample case is usually too strong in practice. Our results are
established for two weaker but more practical settings: either the strong consistency in the asymptotic
case as n — oo or a mean squared error guarantee at the finite sample case. A similar spirit of
relaxing the requirement in order to get a positive result can also be found in|Lei et al.| [2018]], where
the authors get an asymptotic result that the covering band will converge to the oracle under certain
assumptions. Note that their requirement is to get the sharpest covering band, meaning that they need
to estimate the probability density function, which leads to their more restricted assumptions and
different analysis, compared to ours.

D Comparison with Other Results

In this subsection, we make a comparison of the technical contributions with other related literature
such as concentration of order statistics and Kernel Density Estimation (KDE).

Current quantile concentration analyses are all based on the i.i.d. assumption, which is not applicable
to the continuous case conditional quantile estimation problem, where the learner almost surely does
not observe identical features. But to complete our discussions, we give a brief introduction to the
existing quantile concentration methods. There are two lines of research, which we call vertical and
horizontal correspondingly. Vertical concentration guarantee is based on curving the convergence
rate of the Smirnov process (the process of the empirical cdf converges to the true cdf) and applying
the Dvoretzky-Kiefer-Wolfowitz inequality [Dvoretzky et al., [1956, Massartl |[1990] to get a sharp
coverage along the vertical line (in regards to cdf function value), that is, the get a sharp 6 > 0 such
that QT_(; <Q,< QTH with high probability [Szorenyi et al., 2015} |Altschuler et al.,[2019]. But
turning such a vertical guarantee that guarantees the coverage probability into a horizontal one that
guarantees the estimation error is highly non-trivial. By assuming the cdf to be strictly increasing
and continuous, [Szorenyi et al.| [2015]], [Torossian et al.| [2019]], [Kolla et al.|[2019], [Howard and
Ramdas| [2022] get a horizontal concentration of order O(l /v/n). |Cassel et al.| [2018] assume a

Lipschitz cdf (hence an upper bound for pdf) and get a rate of O(1/+/n). |Altschuler et al.{[2019]
directly assumes a function (which they call R) of the cdf to transform the vertical concentration
into a horizontal one. Another line of quantile concentration is to directly get a horizontal guarantee.
Yu and Nikoloval [2013]] use Chebyshev’s inequality to prove the horizontal concentration while
remaining coarse-grained compared to Hoeffding type guarantee. [Zhang and Ong| [2021] utilize
an alternative assumption and analysis of [Boucheron and Thomas| [2012] that relates to a certain
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type of distribution with non-decreasing hazard rate (or monotone hazard rate, MHR). Although the
MHR assumption is common in survival analysis, such an assumption is no longer appropriate for
many other distributions, such as Gaussian. In our proof, we make a combination of the finite sample
theory of the M-estimator and the local strong convexity of the conditional expected pinball loss to
derive a new proof for the concentration of empirical conditional quantile around the true conditional
quantile. We do not assume the upper bound or lower bound on the pdf, the strict increasing cdf,
or the non-decreasing hazard rate. We also generalize the i.i.d. setting of quantile concentration
to the independent but not identical setting, which is the first one to our knowledge in the quantile
concentration literature.

Another important line of research is the kernel density estimation (KDE) literature focuses on giving
a full characterization of the conditional distribution. Such a goal is aligned with the need for the
full characterization of pdf in some downstream tasks. For example, if one wants to find the sharpest
covering set (or covering band, if one further assumes the conditional distribution is univariate), then
one must identify the probability density function so that thresholding can thus be constructed [Lei and
Wassermanl, 2014} [Lei et al., 2018]|]. But for a simpler and probably wider class of downstream tasks,
such as decision-making based on quantiles (newsvendor problem) and evaluating and minimizing
the quantiles (robust optimization), an accurate estimation of the conditional quantiles should suffice.

From the point of developing practical algorithms, KDE methods are often computationally intractable
for conditional quantile estimations. To get a quantile estimation, one has to integrate the full
probability density function. The whole procedure is highly costly even if one discretized the
integration. Another point is that theoretical guarantees in the KDE literature are often established
with respect to the mean integrated squared error (MISE), while it does not simultaneously guarantee
convergence with respect to some quantile. Consider a simple instance where the estimated probability

density function p(y) differs from true probability density function p(y) by a factor of O (ﬁ . ﬁ)

The MISE converges with a rate of O (%) However, the cumulative pdf estimation error (denoted

by [V |p(t) — p(t)|dt may diverge (since | i)oo ‘71|dt is a divergent integration). The divergence is

caused by the non-exchangeability between the square and the integration.

Since the final goal is to get an estimation of the conditional quantile, we can relax the assumptions
in the KDE literature largely. For those nonparametric methods such as|Lei and Wasserman| [2014],
they require the smoothness (to be more specific, Holderness) of the underlying conditional pdf
with respect to y and the Lipschitzness with respect to x in the infinite norm, which is a far stronger
assumption than our case. Instead, we only assume that the conditional quantile (rather than the full
pdf with respect to the sup norm) is Lipschitz. For those methods that establish the KDE convergence
results in a generalization bound via complexity arguments, our assumption is still much weaker.
For example, Bilodeau et al.|[2021]] make a realizability assumption (that the true pdf must lie in
the hypothesis class) to achieve a generalization bound, while our assumption just requires the true
conditional quantile lies in a bounded set [-M, M] C R.

In a word, our analysis combines the idea of decomposing the error into bias and variance terms as in
nonparametric regression methods and the spirit of the covering number arguments in the analysis of
parametric models. Such a combination is novel and non-trivial, which is critical for the relaxation of
the assumptions.

E Numerical Experiment Details

In this part, we provide detailed experiment settings for Section 4]

E.1 Evaluation metrics

* Mean Absolute Calibration Error (MACE): for (expected) quantile level 7 and a quantile
prediction model Q(X, 7), define "observed quantile level" by

- %Z 1{Y; < Q(X;,7)}.

=1

obs
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For pre-specified quantile levels 0 < 71 < --- < 73y < 1, MACE is calculated by:

MACE({(X;,Y;)}™1,Q) : MZ|TJ—TOZ’S

In practice, we set M = 100 and pick 7’s from 0.01 to 0.99 with equal step size.

» Adversarial Group Calibration Error (AGCE): introduced in Zhao et al.[[2020], AGCE
is calculated in practice by first sub- sampling (possibly with replacement) By, --- , B, C
{(X;,Y:)}, and then retrieve the maximum MACE from the pool:

AGCE({By}}.1. Q) := max{MACE(B;, Q)}.

* Check Score: check score is an empirical version of the expected pinball loss. For pre-
specified quantile levels 0 < 7y < --- < 7, < 1 (in our experiments 7’s are set in the same
way as in MACE), the check score is defined as:

CheckScore({(X;, ;) ™1, Q) : an (X,7),Y),

with p (Q(X,7),Y) = L 2 1(Q(X:,7), 7).

* Length: our length metric gives the average interval length of a predicted 90% confidence
interval. The interval is given as the area between the lower quantile (at level 714, = 0.05)
and the upper quantile (at level 7,, = 0.95):

n

Length({(X:, Y0}y, @) = — 3 (QUX, 7up) — Q(X, mow)

i=1

» Coverage: to encourage a fairer comparison, we always attach the empirical coverage rate
to the length metric. Coverage rate evaluates the percentage of real data that is covered by
the given 90% confidence intervals:

n

Coverage({(X“ Y) =1 Q) :L Z ]]-{Q(Xifrlow) S Y; S Q(XivTup)}~

i=1

We make a brief explanation for the selection of the performance metrics as follows. The former three
metrics are typical measurements in the literature of quantile regression and uncertainty calibration
that measure the quality of the calibrations, while the latter two are classic metrics in the field of
conformal prediction. Although the quantile calibration task is very closely related to the conformal
prediction task, the goals are still different. Conformal prediction aims to provide as sharp as possible
prediction sets that cover the true outcomes with desired rates. While a precise quantile prediction
guarantees the coverage rate, such a covering band may not be the sharpest. As is discussed in
Appendix [B] the additional sharpness regularization term could harm the goal of precise quantile
prediction. For example, people may select 0.05 and 0.95 quantiles to construct a 0.9 coverage
band, but the sharpest covering band probably would deviate from such quantiles. However, a high-
quality quantile prediction alone is of independent interest for many downstream tasks, such as the
newsvendor problem. This points to a difference between the objectives of calibration and conformal
prediction. As a result, the popular performance metrics applied in conformal prediction such as the
average interval length and the coverage rate are not direct measurements for the quantile calibration
problem. Nevertheless, we still present the Length and the Coverage metrics for completeness. Some
other measurements, for example, the independence between the coverage indicator and the band
length in |[Feldman et al.|[2021]], are only a necessary condition of the quantile calibration and are
therefore not considered here.

E.2 Synthetic Dataset
For an example of heteroscedastic Gaussian noises, consider an underlying generation scheme of

(X,Y) € R? from X ~ Unif[0,15] and Y| X ~ N (po(X), 08(X)), with p19(X) = 4 - sin(32 X)
and 0¢(X) = max{0.2X - [sin(X)],0.1}. We generate ny,, = 40000 samples for training and
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nest = 1000 for testing. For our NRC method, we randomly select n; = 36000 for training a
regression model and N, — n1 = 4000 samples for the quantile calibration step. All neural
networks used in this example have hidden layers of size [100, 50]. As shown in Figure our NRC
method successfully captures the actual fluctuation of conditional variance, while the traditional
benchmark model Deep Ensemble which relies on 5 heteroscedastic neural networks cannot capture
the individual dependence on the feature of the noise variance.

E.3 Dimension reduction implementation

As given in Theorem [T} for high dimensional data (i.e., large d) the upper bound guarantee may get
too loose as a theoretical guarantee. Motivated by this dilemma, we propose applying dimension-
reduction techniques when doing nonparametric approximation. We summarize them as the NRC-DR
algorithms. There are loads of choices for dimension reduction, in this work we only implement three
of them: random projection, covariate selection, and second-to-last layer feature extraction.

* Random Projection |Dasguptal [2013]]: we use the Gaussian random projection method, in
which we project the d-dimensional inputs on the column space of a randomly generated
do % d matrix (assuming that dy < d, otherwise original input will be retained), whose
elements are independently generated from N (0, é)

» Covariate Selection: we select the most relevant features from the input vector. In this
experiment, we select dy out of d features that have the largest absolute value of Pearson
correlation coefficient with the target variable.

» Second-to-Last Layer Embedding: The second-to-last layer of a trained neural network
has been widely used for feature extraction when the input dimension is high. We add an
additional layer of size dj to the regression network f (1) in Algorithm and directly use
this layer as the feature embedding.

NRC algorithms implemented with each of these dimension-reduction techniques are called NRC-RP,
NRC-Cov, and NRC-Embed respectively. In the UCI-8 experiments we implement NRC-RP and
NRC-Cov, with the full result presented in Table 4] while for high-dimensional datasets we choose
the medical expenditure panel survey (MEPS) datasets [panel 19} 2017, jpanel 20, 2017} jpanel 21,
2017] as suggested in [Romano et al.| 2019] to test out our NRC-RP and NRC-Embed variants. The
sizes and feature dimensions of these datasets are listed in Table 3l Due to the relative abundance
of training data, we set the hidden layers of neural networks to [64, 64], the rest hyperparameters
are pre-determined by grid search. For the results presented in Table 2] we reduce the dimension to
dy = 30.

E.4 Benchmark methods

We explain the benchmark models and uncertainty quantification methods we are competing against
in Section ] The first type of method is based on the Gaussian assumption. They assume that
the conditional distribution of Y given X can be fully determined by the conditional mean and
variance. These models are of the same output structure of two neurons: one for prediction of
(X)), another for o(X). At the implementation of the experiments, we assume that ;(X) and
o(X) share the same overall network structure, with two hidden layers of size [20, 20] for small
datasets and [64, 64] for large or high dimensional datasets. Amongst them, MC-Dropout (MCDrop)
Gal and Ghahramani| [2016], Deep Ensembles (DeepEnsemble) [Lakshminarayanan et al.| [2017]
and Heteroscedastic Neural Network (HNN) |Kendall and Gal|[2017]] are trained by minimizing the
negative log-likelihood (NLL) error. The Maximum Mean Discrepancy method (MMD) |Cui et al.
[2020] trains by first minimizing the NLL loss of an HNN model, and then re-train the model to
minimize the MMD between the model prediction and the same training set at the second phase.
The method introduced in section 3.2 of |(Chung et al.| [2021]] introduces a combined calibration loss
(CCL) with an average calibration loss and a sharpness regularization term, and the model is trained
by minimizing it. Apart from these feed-forward structures, there is also a Deep Gaussian Process
model (DGP) Damianou and Lawrence| [2013]] which assumes that the data are generated from a
Gaussian process, and is trained by the doubly stochastic variational inference algorithm |Salimbeni
and Deisenroth| [2017]. The DGP model is of high training cost, we thus only test it on small datasets.
We also run experiments on post-hoc calibration methods, such as isotonic regression (ISR) suggested
by Kuleshov et al.|[2018]]. In our experiments, we evaluate the post-hoc ISR method by attaching it
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to a pre-trained HNN model. We also implement another post-hoc method named Model Agnostic
Quantile Regression (MAQR) method given in section 3.1 of |(Chung et al.|[2021]. Their algorithm
is similar to ours in terms of training a regression model first, but different in two aspects: first,
MAQR uses the same dataset to do both regression training and quantile calibration; second, MAQR
obtains a quantile result at the second phase via training a new quantile regression model, which in
our implementation is a neural network. For the algorithms coming from the conformal prediction
society, we test the Conformalized Quantile Regression (CQR) method introduced by Romano et al.
[2019]] and the Orthogonal Quantile Regression (OQR) approach from Feldman et al.|[2021]]. The
CQR algorithm also takes a training step followed by a calibration step, with the training step learning
the target quantiles by minimizing the pinball loss and the calibration step further calibrating the
quantile predictions by conformal prediction. Based on the CQR paradigm, the OQR algorithm
further improves conditional coverage by introducing an additional regularization term to the vanilla
pinball loss used for quantile regression. The regularization term encourages the independence
between interval length and the violation (falling out of the predicted interval) event of the response
variable.

E.5 Experiment details on the 8 UCI datasets

We have run extensive experiments to compare our methods against multiple state-of-the-art bench-
mark models. The full results are listed in Table[dl A brief review of all the benchmarks has been
provided in Section [E.4] and realizations of algorithms NRC-RP and NRC-Cov are explained in
Appendix

A short summary of the 8 UCI datasets is listed in[3} For all the network structures used in Section
we fix the size of the hidden layers to [20, 20] (and [10] for the DGP model). For our dimension
reduction algorithms, the target dimension that we reduce to is set to 4. The rest hyperparameters
(including the learning rate, minibatch size, kernel width, etc) are pre-determined by running a grid
search. The learning rate is searched within [1072,5 x 1073, 10~?], the minibatch size is searched
within [10, 64, 128], and the rest hyperparameters exclusive to each model are searched in the same
fashion. For each possible combination of model and dataset, we save its optimal hyperparameters
into separate configuration files.

During the main experiment, for each combination of model and dataset, we load its optimal
hyperparameter configurations, on which we repeat the whole training process 5 times. Each time
we randomly split out 10% of the whole sample as the testing set. On the remaining set, for our
NRC algorithms we additionally separate out 30% for recalibration, and for the rest algorithms, no
additional partitioning is required. The rest data is then fed into the whole train-validation loop, and
we set up an early stopping scheme with a patience count of 20. That is, if for 20 epochs no decrease
in loss is observed on the validation set, then the training is early stopped.

Table 3: Descriptions of Datasets. Each row gives the number of examples contained in the corre-
sponding dataset and the number of features in the input variable.

(@)

Dataset  # Examples # Features (b)
Boston 506 13 Dataset # Examples  # Features
Concrete 1030 8 Meps_19 15785 139
Energy 768 8 Meps_20 17541 139
Kin8nm 8192 8 Meps_21 15656 139
Naval 11934 17 Bike-Sharing 17379 11
Power 9568 4 Wine-Red 1599 11
Wine 4898 11 Auto-MPG 392 6
Yacht 308 6
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Table 4: Full table of experiment results on 8§ UCI datasets

Dataset Metric HNN MCDrop DeepEnsemble CCL ISR DGP MMD
MACE 0.065+0.04 0.14:£0.03 0.06:£0.04 0.11:£0.04 0.057+0.03 0.11+0.01 0.18::0.03
Boston AGCE 0.25:£0.09 0.22:£0.04 027007 034+0.1 0.27£0.08 0.36+0.1 0.41:£0.09
CheckScore 0.96:£0.2 1.9+0.2 1403 1.1£0.4 0.95:£0.2 1.1£0.3 1.3+0.4
Length(Coverage) 8.9+1(88%) 8.61(95%) 8.5+1(90%) 5.340.7(90%) 7.941(88%) 4.620.1(75%) 10£1(97%)
MACE 0.038+0.02 0.078+0.02 0.053+0.03 0.11£0.03 0.044+0.02 0.170.02 0.098+0.05
Concret AGCE 0.18::0.03 0.240.04 0.18::0.03 0.22+£0.03 0.19:£0.05 0.25+0.04 0.24:£0.07
ONCree - CheckScore 22406 3.6+0.2 1.940.3 23406 23406 1.740.2 3.9+1
Length(Coverage) 19+1(89%) 25+4(95%) 19+1(93%) 17£1(77%) 20+0.8(89%) 5.120.1(50%) 2323(94%)
MACE 0.07+0.04 0.16:£0.02 0.065-£0.04 0.13+0.07 0.055+£0.03 0.085+0.01 0.130.05
Enere AGCE 0.240.07 0.21£0.01 0.19::0.04 0.29+0.1 0.21:£0.07 0.2+0.03 0.28+0.1
24 CheckScore 0.610.1 14403 0.640.09 0.79+0.1 0.6=0.1 025002 0.71£0.2
Length(Coverage) 7.84+2(88%) 9+4(93%) 7.7+0.6(94%) 2.140.2(60%) 7.14£2(95%) 4.240.4(97%) 8:0.8(92%)
MACE 0.049+0.04 0.034+0.01 0.07740.05 0.1+£0.02 0.013+0.005 0.035+0.01 0.13:£0.01
Kingam AGCE 0.1140.04 0.075£0.01 0.1240.06 0.130.02 0.072:£0.02 0.08+0.03 0.18+0.02
CheckScore 0.0310.001 0.045+0.002 0.027+0.002 0.03:£0.002 0.0310.001 0.023+0.001 0.035+0.003
Length(Coverage) ~ 0.26:£0.005(88%)  0.5-:0.02(95%) 029+0.006093%)  0.25£0.003(80%)  028+0.007(90%)  0.28+0.00294%)  0.37+0.002(86%)
MACE 0.12:£0.05 0.140.03 0.12:£0.05 0.18+0.1 0.011+0.005 0.120.06 0.240.007
Naval AGCE 0.17:£0.06 0.15£0.05 0.14:£0.06 0.22+0.1 0.054-:0.009 0.15+0.05 0.24+0.005
k CheckScore 0.00086::0.0002 0.0018::0.0006 0.00064-:0.0002 0.0021::0.0006 0.00079-:0.0003 0.0026::0.0006 0.0064:0.0007
Length(Coverage)  0.013:£0.0008(99%)  0.02::0.002(94%) ~ 0.015:£0.0003(100%) 0.016-0.0007(84%) ~ 0.0078-:0.0008(90%) ~ 0.05+0.004(97%)  0.0054:0.0003(77%)
MACE 0.045+0.02 0.29+0.01 0.045+0.03 0.16+0.07 0.011+0.006 0.13+0.01 0.21:£0.03
Power AGCE 0.140.02 0.340.01 0.075+0.03 0.21:£0.08 0.065+0.02 0.16:£0.007 0.23£0.03
CheckScore 1.340.09 24+3 1340.1 15402 1.340.1 1.30.009 1.740.2
Length(Coverage) 13+1(87%) 2043(97%) 16:£0.5(97%) 14:£1(80%) 13£0.8(90%) 1740.1(86%) 131(85%)
MACE 0.05:£0.04 0.036:0.02 0.049+0.03 0.057+0.009 0.016+0.009 0.047+0.03 0.13:£0.02
Wi AGCE 0.110.05 0.10.03 0.1240.05 0.120.03 0.091:£0.02 0.1120.05 0.1620.02
mne CheckScore 0.240.01 0.240.01 0.240.009 0.21:£0.01 0.240.01 0.2+0.01 0.24:£0.02
Length(Coverage)  2.4:0.07(89%) 2.440.09(90%) 2.240.02(88%) 2.340.06(86%) 2.2:40.03(87%) 2.3£0.008(89%) 2.4:£0.08(92%)
MACE 0.075+£0.05 0.110.03 0.049-£0.02 0.11£0.04 0.06+0.03 0.110.03 0.1420.05
Yacht AGCE 0.34:40.1 0.29:£0.08 0.35:£0.06 0.45:£0.05 0.34:£0.09 0.29:0.05 0.42:£0.08
4 CheckScore 1.4£0.6 1.940.6 1.140.4 0.49+0.2 15406 0.54£0.2 11403
Length(Coverage) 8.14£2(70%) 18+5(94%) 10£1(91%) 7.8+1(86%) 10£0.9(88%) 5.340.2(85%) 9.24£2(90%)
Dataset Metric MAQR CQR OQR NRC NRC-RF NRC-RP NRC-Cov
MACE 0.05140.02 0.049+0.02 0.057+0.03 0.055+0.02 0.048+0.02 0.055+0.02 0.055+0.02
Boston AGCE 0.25+0.06 0.24+0.06 0.19+0.05 0.19+0.05 0.25+0.08 0.26+0.07 0.19+0.05
CheckScore 1.140.2 0.72:£0.1 0.7340.2 1.140.2 12404 1.140.2 1.140.2
Length(Coverage) 9.11(88%) 7.1:£0.7(82%) 8+1(90%) 10+1(94%) 9.7+£1(91%) 111(94%) 9.6£1(90%)
MACE 0.049+0.03 0.059+0.03 0.048+0.02 0.058+0.02 0.04740.02 0.038-0.03 0.04540.02
Concrete AGCE 0.18::0.06 0.23£0.05 0.18:£0.05 0.19+£0.05 0.18::0.05 0.19:0.04 0.240.06
CheckScore 2402 1.72:£0.6 1.5740.2 1.9+0.4 14402 2.6+0.7 2404
Length(Coverage) 17+2(79%) 2040.7(89%) 170.8(89%) 2140.8(90%) 19:£0.9(92%) 2141(89%) 214+1(89%)
MACE 0.063+0.02 0.075+0.03 0.058+0.01 0.04+£0.01 0.037+0.008 0.04+0.01 0.04£0.01
Ener AGCE 0.21:£0.04 0.18:£0.008 0.17£0.006 0.260.1 0.22:£0.06 0.24+0.08 0.26:+0.1
ey CheckScore 0.610.2 0.14::0.03 031402 0.69+0.2 0.18::0.03 0.690.2 0.69:£0.2
Length(Coverage) 6.23(84%) 1.840.3(95%) 3.7+0.8(94%) 4.5+1(88%) 1.540.1(89%) 8.5£3(91%) 7.34291%)
MACE 0.03240.02 0.04120.02 0.05340.01 0.017+0.007 0.013+0.004 0.017+0.007 0.017+0.007
Kingam AGCE 0.072:£0.02 0.075:£0.02 0.099-£0.01 0.070.02 0.067-£0.02 0.056--0.02 0.07+0.02
CheckScore 0.029+0.001 0.02540.0009 0.0360.001 0.032:0.002 0.044-:0.001 0.0320.002 0.032:0.002
Length(Coverage) ~ 027+0.01(87%)  0.26+0.005(89%)  045+0.00593%)  0.25+£0.003(90%)  0.52+0.007(90%)  0.28+0.006(89%)  0.27-0.009(90%)
MACE 0.043£0.02 0.077£0.07 024202 0.017£0.007 0.012:£0.005 0.017£0.007 0.017£0.007
Naval AGCE 0.08140.01 0.098+0.05 0.27+40.1 0.052::0.008 0.0540.01 0.0630.02 0.052::0.008
CheckScore 0.002140.0007 0.0011-0.0009 0.003240.001 0.002:£0.0007 0.00088-£0.0001 0.002:£0.0007 0.002£0.0007
Length(Coverage)  0.017+0.003(84%) ~ 0.015+0.00298%)  0.023+0.004(63%)  0.0097+0.002(91%) ~0.0088+0.0006091%) 0.012::0.002(90%)  0.01:£0.002(91%)
MACE 0.029+0.02 0.049+0.005 0.057+0.007 0.0086-:0.003 0.014-0.008 0.01:0.004 0.0086:£0.003
Power AGCE 0.06:£0.01 0.07120.02 0.084-0.008 0.057+0.007 0.058+0.01 0.053:0.008 0.057+0.007
CheckScore 1.240.03 1.140.03 1.240.08 1.240.05 1+0.03 1.3+0.07 1.240.05
Length(Coverage) 12-£0.8(88%) 13+0.7(93%) 141(95%) 13+£0.3(91%) 11£0.1(90%) 14+£1091%) 13+1(92%)
MACE 0.02940.02 0.056+0.007 0.05£0.004 0.017+0.006 0.016+0.01 0.017+0.006 0.017+0.006
Wine AGCE 0.0940.03 0.140.06 0.13£0.08 0.075+0.03 0.07740.02 0.078+0.03 0.075+0.02
CheckScore 0.240.02 0.21:£0.02 021002 0.21+£0.01 0.19::0.01 021001 021001
Length(Coverage) ~ 2.3+0.1(84%) 2.340.04(89%) 2.340.03(89%) 2.340.04(90%) 2.240.02(90%) 2.340.05(90%) 2.4:0.06(90%)
MACE 0.088+0.04 0.073£0.05 0.1420.08 0.120.06 0.096-£0.05 0.087£0.04 0.093£0.05
Yacht AGCE 031007 0.34:£0.04 0.38:£0.05 0.34:£0.07 0.42:£0.08 031+0.08 0.31:£0.04
4 CheckScore 0.32:£0.09 0.19£0.07 0.41:£0.2 0.44+0.2 0.18::0.03 0.540.2 0.40.2
Length(Coverage) 3.3+1(83%) 1.740.4(72%) 3.6+0.8(88%) 53+1(93%) 32+1091%) 4541(93%) 55+£1(91%)
E.6 Experiment details on the Bike-Sharing dataset

The Bike-Sharing dataset is a time series dataset that records the number of bike rentals as well as the
value of 11 related features at each hour. As briefly described in Section 4] for this experiment we
design the LSTM-HNN and LSTM-NRC models, each having 2 layers, 40 hidden neurons for each
layer, and a sliding window of size 5. For the LSTM-NRC model, in the recalibration step we are
required to calculate (as part of the whole kernel matrix calculation) the distance between to input
variables, and we retrieve the input vector by concatenating all the features within the history window
(into a 55-dimension vector). As the dimension is high, we adopt dimension-reduction techniques
and use random projection to map the concatenated feature vector to a 4-dimensional space.

Most experiment details, in terms of hyperparameter selection, early stopping criteria, etc, as similar
to the settings described in Appendix [E:5] One difference lies in the splitting of the dataset. Due
to the temporal property, we are only allowed to predict "the future" from "the past", thus we split
the starting 80% of time stamps for training (and further split for recalibration, if required), and the
ending 20% of time stamps for testing.
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E.7 Robustness to Covariate Shift

Covariate shift [Quinonero-Candela et al.,[2008]] describes a frequently observed phenomenon that
the distribution of the covariates (also called the independent variable, feature variable, etc) that
differ between the training and testing datasets. In the presence of covariate shift, a calibration
model attained from the training set that only achieves average calibration (i.e., naive predictions
of quantiles) may no longer suit well for the testing dataset, while an individually calibrated model
maintains its optimality in terms of all the metrics mentioned above.

Following the experiment design in [Chen et al.|[2016]] and [Wen et al.[[2014], we experiment on
both real datasets and half-synthetic ones (all of which are available on|Dua and Graff| [2017])). The
experiment design is almost the same as in Section 4} except for a difference in the processing of
testing sets. The experiment results on a subset of benchmarks are presented in Table [5] which
further validates the robustness of our algorithm to covariate shift, especially from the dominating
performance on the half-synthetic datasets. A few remarks on the datasets: the Wine dataset and
Auto-MPG dataset both induce a natural interpretation of covariate shift, with the training set and the
testing set having different colors in the experiment on the Wine dataset, and different origin cities on
the Auto-MPG dataset; and on the rest two datasets we synthetically simulate a covariate shift for the
testing set, as recommended in|Chen et al.| [2016]]. To be specific, we introduce a covariate shift into
the testing set by following steps:

1. Randomly split out 10% of the whole dataset as the "testing pool".
2. On the training set X7, Calculate empirical mean and variance ji = Xr, 5= Cov(Xr).
3. Sample Xeeq ~ N (2, ﬁ])

4. Resample (with replacement) 1000 examples from the testing pool, following density
N (Xseed, 0.3%0).

Table 5: Experiments on covariate shift datasets. The first three rows are real datasets, while the
last two are half-synthetic ones. For the Auto-MPG dataset, models are always trained on data
samples from city 1, and tested on dataset of either city 2 or city 3, denoted by "MPG2" and "MPG3"
respectively. Our algorithm has an outstanding performance, especially so on the two half-synthetic
datasets.

Dataset Metric HNN MCDrop  DeepEnsemble ISR DGP NRC
MACE 0.32+0.1  0.2240.07 0.3240.06 0.31+0.09  0.26+0.06 0.2+0.03
Wine AGCE 0.33+0.1  0.2340.07 0.3440.06 0.33+0.08  0.28+£0.05  0.23+0.03
CheckScore  0.51£0.2  0.29+0.06 0.431+0.1 0.48+0.2  0.31+£0.06  0.31+0.09

MACE 0.065+0.03  0.1240.01 0.07£0.03 0.059+0.02 0.17+0.01  0.069+0.008
MPG12 AGCE 0.21£0.05  0.22+0.04 0.19£0.03 0.21£0.06  0.30£0.05  0.2940.06
CheckScore 1.2£0.2 1.5£0.2 1.1+0.04 1.1£0.06 1.7£0.2 1.2£0.05

MACE 0.1+£0.02  0.16+0.02 0.11+£0.02 0.1+£0.03  0.23+0.03  0.08+0.03
MPG13 AGCE 0.2+0.009  0.24+0.03 0.2:£0.02 0.24+0.06  0.37£0.07 0.26+0.1
CheckScore  1.1£0.04 1.6+0.3 1.24+0.08 11+0.05 1.440.07 0.9+0.06

MACE 0.1+0.04  0.1740.09 0.12+0.03 0.059+0.01 0.19£0.02  0.05+0.008
Concrete AGCE 0.13+£0.04  0.18+0.08 0.15+0.04 0.093+0.02 0.21+£0.01  0.07+0.01
CheckScore  4.1140.2 4.84+0.8 4.31+0.2 4+0.3 2.3+0.27 2.540.1

MACE 0.24+0.08  0.33+£0.1 0.2£0.01 0.11£0.02  0.08£0.03  0.05+0.02
Boston AGCE 0.26+0.07  0.34+£0.1 0.21£0.01 0.14£0.02  0.1+£0.03  0.075£0.02
CheckScore 2.14+0.7 32+1.2 1.5+0.05 1.140.1 0.71£0.3 0.61+0.05
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F Some Basic Probability Results

In this section, we present several well-known probability theory results.

Lemma 1 (Bernstein’s Inequality). Let &1, ...,&, be N independent random variables. Suppose
|€:| < Mo almost surely. Then ¥t > 0,

s N2
P >t <exp|——x : N .
Zi:l NVar(fl) -+ gMot

Lemma 2 (Hoeffding’s Inequality). Let &1, ...,&, be N independent random variables. Suppose
a; < & < b; almost surely. Then V't > 0,

N 2t2
P <Z(&- —-E&)) = t) < exp <_ZN(ba)2> ’

i=1 i=1

al 2t2
P <;(]E[£z] —&) > t) < exp <_Z,Ji1(b¢ - ai)2> .

Lemma 3 (Poisson Approximation). Let S, = ZZZI &n b, Where for each n the random variables
&n ks k € [n] are mutually independent, each taking value in the set of non-negative integers. Suppose
that pp i = P(&n x = 1) and €, 1, = P(&n i > 2) are such that as n — oo,

(a) Zzzl Dk - A< [ceN
(b) maxyein{Pn i} — 0;
(C) ZZ:l En’k; — 0

1 N

N > (& - El&)

=1

D 4. . ST .
Then, S,, — Poisson(\) of a Poisson distribution with parameter A as n — <.

G Proofs in Section 2]

Proof of Proposition[l) From the fact that Y = U + f(X), one can replace the Y term in each
probability with U + f(X), proving that the LHS and RHS probabilities are identical. O

Proof of Proposition2] By Lemmal[f] we know that
Q-(z) € argminE[l,(u, U)|X = z].
u€R

Since I, (u1,u2) = I (u; + ¢,uz + ¢), Ve € R, we have

Q- (z) € argminE[l, (u+ f(X),U + f(X))|X = =],

u€R

which completes the proof. O

H Proofs in Section 3.1

We start the analysis on a fixed point z € X. We first analyze the case where n(z) > 0, i.e.
i € [n],||X; — z|| < h. We denote those || X; — x| < h by {Xl-k}:(:xl). We denote Fy|x, by
F}.. We denote the average distribution of F}, by F' = ZZSI) = (11) F,, and denote its 7" quantile by

Q- (F). We abbreviate the estimation Q3NQ obtained by Algorithmto be Q- in this section. To

bound the difference |Q7(x) — Q-(U|X = z)|, we factorize it into two terms, as an analogy to the
bias-variance factorization in nonparametric analysis:

@r(@) = Q(UIX = )| < |Qr(F) = Qr(UIX = )| + |Qr(a) — Qo(F),

where the former term is called the bias term and the latter the variance term. We now deal with
them one by one.
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Lemma 4. Under Assumption|l|(a) with Lipschitz constant L, we have
Q- (F) - Q.(UIX = )| < Lh.
Proof of Lemmad] By Assumption[l](a), Vk € [n(z)],
Q-(UIX = Xi,) - Q-(U|X = )| < Lh,
which implies that

Fe((Q(UIX = 2) + Lh) ") = Fu(Q-(UIX =) + Lh) > 7,

Fy ((QT(U|X — )+ Lh)*) <.
Hence,

n

—~

o) Fp(Q-(U|X = 2)+Lh) > 7,

F((Q:(UIX = 2)+Lh)") = F(Q-(UIX = x)+Lh) =

=
\ |

>

n(@)
=10

F(@WIX =)+ 1h)") Fo((@UIX=2)+Ln) ) <7,

which justifies that ~
O

Lemma@controls the bias term. For the variance term, we need a more careful analysis. We start with
inspecting the properties of the expected pinball loss function. We will show that under Assumption
|I| (b) and (c), the empirical risk minimization solution obtained at the second step of Algorlthmm is
actually close to the true quantile of F' by two steps:

Step 1. The empirical risk minimizer QT(.T) concentrates around its corresponding population risk’s
unique minimizer for sufficiently large n(x) > C(p, r, M), where the minimizer is denoted by u*.

Step 2. The unique population risk minimizer «* in Step/[I]is identical to the population risk minimizer
of By pllr (uw, U)].

We prove the latter Step 2] first due to its simplicity. The following Lemma [5]proves Step 2]
Lemma 5. We define the population risk stated in Steplby I:(u) = Ey,~r,| Z(xl) n(lm)l (u, Ug)]-
Suppose Assumpttonmhold for some L,p,r, M. Then

(a) L. is twicely differentiable and convex;

(b) L is identical to By;,_ 5[l (u, U)] up to a constant;

(c) For sufficiently small h < %,
u* € [-M, M), and I is p-strongly convex within a ball of radius ro around its minimizer u*.

3rg > 5, s.t. the minimizer of I, is unique (denoted by u*),

To prove Lemma[5] we introduce the following Lemma 6] whose proof is postponed to Appendix [J|

Lemma 6. For any distribution with cdf F (u) = P(U < w), the expected pinball loss with respect to
F'is semi-derivative with respect to u, and

O_Ey~rll-(w,U)] = F(u™) =T,
O Eunr(ls(u,U)] = F(u) — 7.

Furthermore, for those F(u™) = F(u), the derivative exists.

Proof of Lemma[5] By Lemmalf] we have

n

V.l LE(: V.E r(u,U)] = L
U ( s UNFk ()

—

)
Fk(u) —T.
1

b
I
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Since we assume that (X, U) follows a continuous distribution, and the conditional pdf exists, then

VI, Z Pr(u

where py, is the pdf of Fy,, Vk € [n(z)], which proves part ().

n(x)

For part (b), one only needs to notice that I has the cdf of the form _ - z) Fy, which implies

that By, [l (u, U)] has the same derivative as [.

For part (c), by Assumption|[I](c), we have n(z) balls B(Q,(U|X = X;,),r) k € [n(z)], such that
pr(u) >p, Vue B(QT(U|X = Xik),z).

At the same time, from the proof of Lemma@ we know that

|Q+(F) — Q-(U|X = X;,)| <Lh <

T,

DN | =

which means that

w\»—‘

max{Qr (VX = Xi,) —r} + 5 - <min Q- (U]X = X;,)
< Q- (F)
< max Q- (U|X = X;,)

1
< min{Q (VX = X,) +1}— 5
Such an inequality implies that for at least a ball of radius 2
n(x)
_T
VEy.pll (u, U Zpk 2p, Vu€ B(Q:(F),3),
which proves the uniqueness of ©* and the local strong convexity.
Since miny Q. (U|X = X;,) < Q,(F) < max; Q,(U|X = X;,) and Q,(U|X = X;,) €
[—M, M|, we have ~
ut = QT(F) € [7M7M]
O

Now we go back to prove Step[I] To get the optimal convergence rate, our arguments share the
same spirits of Bartlett et al.| [2005]], [Koltchinskii| [2006] of getting fast convergence rates for the
M-estimators of low variance. But for simplicity, we derive our proof of uniform convergence via
Bernstein’s inequality and covering number arguments, which is more similar to the way of Maurer
and Pontil| [2009].
We are now interested in

£k( ) = (u Ui ) (QT(F)’Uik)7 Vu € [_MvM]’ Ui NU|X Xiy, k€ [n(a?)]
A direct computation shows that
Lemma 7. Vu € [—M, M], we have

€k (u)| < Q- (F)| < [u—Q.(F)
Var(6y(w) < 5 max{r?, (1= 7%} Ju = Qu(F)[* < 3 [u - @, (F)[

)

Proof of Lemmal7} Note that the pinball loss can be expressed in an alternative way:
~ lT(”v U) max{(l—T)( g ) (U—U)}, -
1(Qr(F),U) = max {(1 — ) (Q-(F) ~U), 7 (U~ Q.(F))}.
From the fact that |(1 — 7)(u — U) — (1 = 7)(Q-(F) = U)| < (1 = 7) |[u — Q-(F)]
and that |7(U — u) — 7(U — Q-(F))| < 7lu— Q-(F)], statement via Lemma

For the second claim, one just need to notice that any almost surely bounded by [a, b] random variables
have at most a variance of 5 (b — a)?. O
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Combining Lemma [I]and Lemma[7] we directly prove the following

Lemma 8 (Pointwise Convergence). V§ > 0,n(z) > 0,u € [—M, M|, with probability at least
1 — 6 the following holds

1 ) 1 2 _ 1
n(a) 2= E[¢k Tkz:: ()}U—QT(F)‘log((S)

Proof. Direct corollary from Lemma|[IT]and Lemma 7] O

To reach a uniform convergence guarantee from pointwise convergence, we utilize the covering
number arguments.

Definition 4 (e-Covering Numbers). Ve > 0, a function class F is said to have an e-covering number
of
N(Ea‘F7 || : ||OO) = lnf{“FO‘ ‘FO C ]:avf € ]:aafo S -FOaS't' ||f - fOHOO < 6}'

We compute the function class formed up by the functions I, (u, ) — I (Q,(F), ).
Lemma 9 (Covering Number). Assume Assumption |I| (b) holds with parameter M. Define
Ly = {l-(u,-) = 1:(Q(F),"): u € [-M, M]}. Then Ve > 0,
diam([—-M,M]) 2M
N (6 Lan |- o) < PR _ 20

Proof of Lemmal9] By a similar argument to that in Lemma[7] we have
’(l‘r(ulv ) - lT(QT(F)v )) - (l‘r(u2v ) - lT(QT(F)v ))’ S |u1 — U2|,
where the left-hand-side is the function infinity form by itself.

Combining the above fact with another that

lur —ug| < sup |u} — ub| = diam([—M, M]),
u} ub€[—M,M]

we complete the proof. O

Since there will be many coefficients dependence, we abbreviate any constant C' that depends
polynomially on some other factors (ci,- - ,¢4) by C(e1, -+ ,¢q). Now we provide the uniform
convergence result by combining the pointwise convergence and the covering number.

Lemma 10 (Uniform Convergence). Ve, d > 0, assume n(z) is sufficiently large such that n(x) >
% log(%), we have with probability at least 1 — 6,

1 2 2M
7 2Pl 1 5t < s sl @i (%)
holds for Yu € [—M, M].

k=1
2 — 12 2M
— |u—Q,(F)|"1 el
+ \/?m(x) |u @ ( )’ og< ) )
Specifically, if we select € = e n(z)M,

we have Vn(z) > Cy(log(M)) = 610g(max{2M 10}),
% > Ela Z 6utu)| < o (4+ 55 Toa(2n(a) 1)

B — 12
+ \/3n(m) |u - QT(F)| log(2n(x)M)
holds for Vu € [—M, M].
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Proof of Lemma[I0} Ye > 0, we can select an e-cover of the function class L(_ 1, denoted by
8 = {Llu) = () = L (@ (F), 5 e ),
Note that
e(u) = 1-(w,Us,) — 1(Q-(F),U;, ) = L[u(Uy,,), Yue€ [-M,M],
which means that Ju; € S, s.t.
1€k (u) = &k ()| = [L[u](Us,) = Llug)(Ui)] < [|Lfu] = Llu;]lloc <.

Now Vé > O we apply Lemmal on {&x(u;)} 7, u; € S with probability guarantee of at least
1- we have Vu; € S,

2 _ N(e, Li—nran | - loo)
§3m|UjQT(F)|log( S

2 - N(es Liatans |-l
+\/:)m\uj62T<F)|21og< (e [MSSM] -l )).

Comblnlng above inequality with the fact that |5 (u) — € (u;)| < € and the way we select the cover
in Lemma|§| such that |u — u;| < €, we complete the proof.

N(Eﬁ M, M] M)

m

S Ble(ug)] — - > Gly)
k=1

k=1

To verify the specific conclusmn one just need to notice that our choice of n(x) ensures that

n(z) > 3 log(2n(z)M) for e = n(w ,0 = W O
Lemma 11 (Generalization Bound for Q). If we take Q,(x) = arg min,, ZZ(Tl el I (u,U;,) as
we do in Algorithm then for sufficiently large m > Co (Q_ ,7~1, M), we have with probability at

1
least 1 — W’

. - _ Cs(p~t, M, log(n(z)M)) - 1
0< ZT T - lT T F S — =0|—F= ’
S TQ- () ~ T-(Q-(F)) - ()

where C3 == 8 + 84 log( (x )M)er.

3p
More specifically, with probability at least 1 — W
A | _ Calp™', M,log(n(z)M)) 1
Qs () = Q- (F)| < == - :
n(x) n(x)

where Cy = , /Cs -

e}

2
o’

Proof of Lemma(I1} We first claim that for sufficiently large n(z) > Cb, the empirical minimizer

Q. (z) must fall into the neighborhood B(Q.(F), 5) stated in Lemma (c). In fact, one just needs
to verify that

1

e (4 + % log(2n(x)M)) +

1 1 -r?
/B tog(2n(z)m) < BE
n(m) 3

which will definitely hold for sufficiently large n(z) > Cy(p~',r=1, M).
(r) 1

From the fact that minimizing "’ e

constant, we know that

I-(u,U;,) is equivalent to minimizing it minus some

29



By Lemma[5and Lemma|[I0] we have
0 < 1 (Qr(2)) = 1+ (Q-(F))

1 ) )
= <> El(Q- ()]
n(x) Pt
1 8M 16 - _
< (@) <4 + =3 1og(2n(x)M)> + \/Sn(x) 10, (z) — Q- (F)|2 log(2n(z) M)

(1:(Q(2)) — 1-(Q-(F)) ) log(2n(x) M),

(s~ ]

1 8SM 16
< ) (4 + = 1og(2n(:1c)M)> + \/?m(x) :

where the first inequality follows from Lemma 3] (a), the second inequality from Lemma|[I0} and the
last from Lemmal3](c).

Solve the quadratic inequality

o B

VS T\ @

w,

where a = 4 + 8L log(2n(z) M), B = %;W, we have

B
wg\/() 2() ()<\/7%(\/B+\/&>7

where w is exactly \/I, (Q- (2)) — [ (Q- (F)).

Hence

1 Qe ()T (Q(F) < = 26+ 20) = — (84 15 og(an(opan) + UMD,

The latter conclusion follows from the local strong convexity of I, again, as is shown in Lemma
(©). O

Lemma|[TT|proves our Step(]] finally. We can combine Step[T|and Step[2]now to get an upper bound
that is critical for the following analysis:

Lemma 12 (Bounding ‘Qf(x) - Q-U|X =2) ‘). Suppose Assumption |l| holds. For sufficiently

small h < 5%, we have

0.(z) — Q. (U|X = x)‘ < Lh+ 1{n(z) < Co}M
Cy
+ I{n(z) > Ca} <M]l{Bounds in LemmalT1\fail} + > )
V()
where Cy = Cay(p~t,r 1, M), Cy = Cy(p~t, M, log(n(z)M)) in Lemma and the failing

probability in Lemma is no larger than W provided n(z) > Cs.

Proof of Lemmal[I2] A direct corollary from Lemma[d]and Lemma TT] O

Proof of the pointwise consistency part of Theoreml[l] Since the O ( \/%) term and the failing
n(x

probability term in Lemmatend to zero as n(x) — oo, we only need to verify that we can select h

such that as n — 0o, we have

(@) h — 0;
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b)VC > 0,P(n(z) > C) =1
We will show that both conditions are true for any xy where the pdf p(x) is positive and continuous
at x = xg, if we select h = C5n7ﬁ.

The first argument automatically holds as n — co. We turn to prove the second one.

Since p(z) is continuous at p(zg), we can find sufficiently large n > Ny, such that

p(z) > ; . Vo € B(o, h).
Then the probability of 1{X; € B(xo, h)} can be lower bounded by

P(X; € B(xo, h)) > 2 ;O)Vhd = Cen~ 2,

where V is the volume of the unit ball in X C R%, Cy := @VC},.

VC > 0,j € Ny, we can define a sequence of parameters {\;}32,,
Poisson(A\;),

such that for any 7; ~

1
Pn; >C)>1—-=, j=12,...,
J

where we assume without loss of generality that A; is non-decreasing.

For each j, we can define an auxiliary sequence of independent random variables {v; 4 ;} for

l=1ql,q=1,2,...,5=1,2,..., such that each random variable v; 4 ; ~ Bernoulli(%).
By Lemma we can find a sequence of {g;}52,, such that
" 1 2
P(Zm,q,j zC) >P(n;2C)—~21-=, Yg=gq;,j=12,...,
J J
=1

where we select g; without loss of generality that is non-increasing.

As {1{X; € B(xg,h)}}" is also an 1ndependent Bernoulli random variable sequence with param-

d .
eter Cgn™ @2, we can select a non-decreasing sequence of {N. j}oc such that Vn > Nj,

j:ls
d i
Cen™ T2 > #, n>gq;.

Then Vn > N, we have

P (’n([)ﬁo) = i]l{)(z S B(.%‘(),h)} > C) >P <i Vin,j > C) >1-— %,

=1 i=1

where the first inequality follows from the result of stochastically dominant of 1{X; € B(z¢, h)}
OVer Uy p, ;.

Ve > 0, we can select sufficiently large j > %, then Vn > max{Ny, N, },
P(n(zo) > C) > 11—k,

which completes the proof. O

To prove the mean squared error part of Theorem I we state a lemma on the Binomial random
variable that will be proved later.

Lemma 13. For any ¢ ~ Binomial(n, p), we have

(a)]E[ 1{¢ > 0}} i

(b)Vr € N,r < np, we have P(¢ < 1) < ((:p__rr))%.
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Now we return to the proof of the mean squared error part of Theorem [I]

Proof of the mean squared error part of Theorem[I) By direct computation from Lemma [12] we
have

E [|QT(Xtest) - QT(U‘X = Xtesl)|2:|

= Ex [Exy [Eun,, 10 (Xiew) = Q- (U1X = Xiew) ]

<Ex,, [EXM [4L2h2

1

+ 4M2(n(Xtest)M)

2 ]]-{n(Xtesl) > 02}

[404 (E71 s M, log(n(Xlest)M))2
n(Xtest)

+ 4M2]].{n(Xtest) < CQ}:”

Ci(p~", M, log(nM))
n(Xlesl)

where the first inequality comes from the fact that (a + b+ ¢ + d)? < 4(a? + b% + ¢® + d?), and the
second from that n(Xey) < n. Note that we replace the original Cy that depends on the logarithmic
term of n (X ) with a new C that does not depend logarithmically on n( X ) but logarithmically
on the entire n. From the definition of Cy in Lemma [T1] we recall that the dependence on the
logarithmic term is polynomial.

By Lemma (T3] (a), we have

<4L?h? + Ex,, l]Ele [ L{n(Xes) > Co} + 4AM?*1{n(Xest) < Cz}H ;

EX IL{n()(test > CZ)}:| S EXLH |: ]]-{n(Xtest > 0)}

1
(Xiest)
2

S P € B(Xewh))”

1
n(Xeest)

We try to bound Ex [m}'

Since X C [0, 1]%, we can generate an Z-cover of X, denoted by S = {2;}54,, where

j=1
C
Cdgﬁ7

where C'is some intrinsic constant with respect to the space R equipped with metric || - .

Then

1 1
Ex IP(XiEB(X,h))] :/XWdP
1 xGBzJ%
<Z/ {))}d

11{95 € B(z;, )}
_Z/ %)) = 24p

:Cd_ h,d,

v

where P is the probability measure with respect to X, and the first inequality follows from that S is a

% _cover of X, the second from the fact that B(z;, &) C B(z, h) for those ||z — z;|| < £, and the

inequality from the fact that [ 1{z € B(z;, 2)}dP = P(B(z;, ).

We now try to bound Ex, [Exlm [1{n(Xes) < Cg}]] .
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If nP(B(x,h)) > 2[C2], then by Lemma|I3](b), we have
nLCzj < 4
(nP(B(x,h)) — |C2])* ~ nP(B(z,h))
If nP(B(z,h)) < 2|Cs], then for sufﬁciently large n > 4| C3] — 1, by direct calculation we have,
P(B(x,h)) 2 3 1 G
_ L <2 — < . <o < R S
1— P(B(z,h)) — a5 161 [C] < SO o |Co)

n—17= 3 n—2 " n—3
which implies that

Al (1= PBE.) " (PBE)) <2 5-10:) - (1 - PBE. ), Ve (0]
where C!, is the number of combinations of (n,[). Hence

P(n(x) < Cs)

< P(n(z) < [C2))

[Ca2]

-3 (1= Pwn) (P
=0

< 8(%)2(1 — P(B(x, h)))”

8(Ca)?
3

P(n(z) < Cy) <

< exp(—nP(B(a, h))).

Since exp(—a) < 1 - max,{bexp(—b)} = L, we have

C
B(n(x) < Co) € prpl s

8(Cs)?

where C7 = =352

Therefore, we can conclude that (w.l.o.g. we assume C7 > 4)
max{C7,4} Cy
nP(B(z,h)) nP(B(x,h))

P(n(x) < Cy) <

Hence, we can finally give the bound by

E [|Qr (Xiew) = Q- (UIX = Xiew)|?]
C&(zj_l,M, log(nM))
n(Xtesl)

1 1
< 4L2h? + ClCh™e. ~+ C;Ch™. -

< 4AL’h% 4+ Ex,, {n(Xest) > Co} + 4M?*1{n(Xeest) < Cz}]

Ele, |:

1
=4L?h* + Ch(p~ vt M, log(nM))h ™. e

For the special case of L = 0, we can select h = ©(M), hence reaching a fast rate of convergence of
order O (%‘)

If L > 0, by selecting h =n" T3 [t +2 (dC%) ™ #+2, we get the convergence result that

d+2

E[1Q:(Fx) = Q- (Fx)I?] < L#3 .n~7 (dcg (Lop~" e M log(n) )™,
where the dependence of C% on log(n) is polynomial. We conclude that

E[1Qr(Fx) - Q- (Fx)lP] = O (L# 7).
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Remark 2. A for large d cases, the left behind term (dCﬁ)% is almost 1, compared to other terms.

2d 2
The major contribution to the error upper bound is made by the Ld+zn~ @+2 term. If L is replaced by
kL, then n must be at least k%n to keep the upper bound to remain the same, which implies that the
contribution of L is much more significant than n.

As for the lower bound, Theorem [2] follows immediately from Theorem 3.2 in [Gyorfi et al.| [2002]
with Holderness parameter (1, L). Note that the class P” we construct has a conditional distribution
identical to the Gaussian of the unit variance, which automatically fulfills our Assumption [I](b) and
(c). The only additional requirement in P~ compared to their D(*+%) is that we require the existence
of pu(z) = 0 for some = € [0,1]%. In their proof, they construct a sub-class based on the division
of [0, 1]% into smaller cubes, where the mean function y(x) is (1, L)-Holder (i.e. L-Lipschitz) on
each cube while being zero on the boundary of those cubes. Hence our additional requirement of
3z € [0, 1] such that ;(x) = 0 does not affect the result.

Lemma 14 (Theorem 3.2 in|Gyorfi et al.|[2002]). Consider a conditional mean estimation problem
(i.e. regression problem) with the estimator sequence {[i,,} and true conditional mean p. For the
class PL, the sequence

2d 2
a, = Larzn~ a+2
is a lower minimax rate of convergence. In particular,
E ”ﬂn - /1'”2
lim inf inf sup % >(Cs >0,
N0 fin (X )Y)~P,PEPL  Ldtzn” a2

for some constant Cg independent of L.

Proof of Theorem 2| Since for any Gaussian distribution with known variance, estimating its mean is
equivalent to estimating its any 7 quantile, Theorem is a direct corollary from Lemma once
one verifies that P” satisfies Assumption

Verifying Assumption (a): Since the 7" conditional quantile is of the type p(x) + ®(7) and p(X)
is L-Lipschitz, the conditional quantile is also of course L-Lipschitz.

Verifying Assumption [1] (b): Because p(z) is L-Lipschitz and X is bounded, its image p(X) is
bounded. Furthermore, as we know 0 € (X)), we can bound p(X) by [—L+v/d, L\/d], leading to the
boundedness of the conditional quantile set j(X') + ®(7).

Verifying Assumption|1](c): The pdf around u(x) + ®(7) is of the same shape as that of standard
Gaussian at ®(7), which is definitely lower bounded from zero in a neighborhood. O

I Proofs in Section[3.2]

Proof of Theorem 5] By the definition of mutual independence, we have VA € F(A), B € F(U),
P(U € B|Z € z(A))P(X € A|Z € 2(A)) =P(U € B, X € A|Z € z(A)).
Hence,
P(U € B,X € A|Z € z(A))
P(X € A|Z € 2(A))
_PUeB XcAZcz
- P(X €A ZezA
PUeB, XecAZecz
P(X € A, Z € z(A)
_PUeB,XcA)
- P(X €A
=P(U € B|X € A),

P(U € B|Z € z(A)) =

—~

4)) /B(Z € 2(4))
[B(Z € 2(4))
4))

—_— —

R

leading to the conclusion that
Fyix=2 = Fu|z=2(a)-
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Thus, if we have any consistency guarantee or mean squared error guarantee on
Q-(U|Z = 2(2)) = Q- (U|Z = 2(x))],
then we also get the same result for
Q-(U|Z = 2(2)) = Q-(U|X = 2)|.

Notice that the dimension of Z is dy < d, we can conclude the proof. O

Proof of Theoremd} By definition of quantiles, we know
P(U < Q,(U|Z)|Z) = Fy12(Q-(U|Z)) = 7

Since we assume that Fy; 7 is absolutely continuous with respect to the Lebesgue measure, the
Radon-Nikodym derivative exists, which is the conditional probability density function. Thus Fy;|z

must be locally Lipschitz. Then for any fixed bounded neighborhood I containing Q(U|Z), Fy|z

is Lipschitz on I with some Lipschitz constant L(I). Therefore Ve > 0 and small enough such that
B(Q-(U|Z),e) C 1,
Fy12(Q-(U|Z) — €) = Fy 2(Q-(U|Z)) — L(I)e.
By the definition of quantiles, we have
Fuiz(Q-(U|Z) —¢) <.
Hence
Fu12(Q-(U|Z)) < L(I)e + 7.
Taking ¢ — 0, we have
Fuyiz(Q-(U[Z)) <7
Combining it with the fact that Fy;|7(Q-(U|Z)) > 7, we prove that
O
Proof of Theorem |5} We only prove the middle inequality, since the remaining two hold from similar
arguments.

By a similar argument as Proposition if one knows Z(%2) | then the best single point decision they
can make with respect to conditional expectation of pinball loss is

Q- (U|Z'%)) € argmin E[l, (u, U)|Z )]
u€R
Since Z(1) € F(Z(42)), if another learner makes a decision based on the first d; components of
Z(%) | say, Q,(U|Z(™)), then they must suffer a pinball loss no smaller than that Z(¢2) learner,
which is
Ell-(Q,(U|Z\%), U)|2'%)] < Ell(Q-(U|Z),U)|Z*)].

By taking the expectation with respect to Z(%2) the tower property of the conditional expectation
tells us that

E[1- (@ (U12%)),0)] = E[E[l-(@-(U]2(%)),0)| 2]

< E[E[ (- (U]2")), 1) 2*)|
[ZT Q. (U|Z2), U)]
Noticing that Y = U + f(X) and I, (a + ¢, b + ¢) = I, (a, b), we have

L (u+ f(X),Y) =l (u, U),
which verifies the proof finally. O

Remark 3. One may wonder if one can conduct the proof of Theorem [5]in a simpler way via Jensen’s
inequality since (-, -) is convex with respect to its first component. But unfortunately, such an
argument does not work for the quantile case, since in general,

E[Q-(UIX)] # Q-(U).
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J Proofs of Auxiliary Lemmas in Appendix [H]

Proof of Lemmal6] Denote the probability measurement by P. From the definition of pinball loss
and expectation, we have

]EU[ZT(u,U)]:/j (7—1)(U—u)dP+/ioT(U—u)dP
:/u (T—l)(U—u)dP+/OOT(U—u)dP

For a small but positive A > 0, we have

Eyll-(u— A, U)] — Ey[ly (u, U)]

:/;_A(T_1)(U—u+A)dP+/:C_AT(U—u+A)dP
/:(71)(Uu)dP/:oT(UU)dP
:/;(T_1)(U—u+A)dP+/:OT(U—u+A)dP

/:(Tl)(Uu)dP/uooT(Uu)dP
_/u"_A(T—1)(U_u+A)dP+/uu_AT<U—u+A)dP

=A l/:(Tl)dPJr/:onP

+/ (U—-u+A)dP
u”—A

-
:A(T—F(U_))+/ (U—u+ A)dP.
u”—A
Note that any cdf is cadlag (right continuous with left limits). Thus, Ve > 0, 3§ > 0, s.t. VA < 4,
[F(u™ = A) = F(u)| < e.

Then we have

0< /QF_A(U—u—FA)dP
< /M,AAdP
< Ae.
Hence
A(r = F(u™)) <Eyll-(u — A U)] = Eyll-(u, U)] < A(T = F(u™) +¢).
Then

Ey [l (u — A,U)] — Ey [l (u, U)]

7 — F(u™) < liminf

A—0+ A
< lim sup Eyllr(u — A, U)] — Eu[l-(u, U)]
A—0+ A

<7—F(u)+e
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Since € can be arbitrarily small, the limit exists, and

o By pll(u.U)] = — T Eellr(u=AU) = Eyllr(u,U)]

A—0+ A - F(u ) -

The other side of semi-derivative can be derived in a similar way, which we omit for simplicity. [

Lemma 15. For any aq,a2,b1,b2 € R, we have

| max{ay, by} — max{as, bo}| < max{|a; — asl,|b1 — b2}
Proof of Lemma|7_3[ If a; > b; (or a; < b;) simultaneously for ¢ = 1, 2, the claim is straightforward.
Without loss of generality, we assume a; < by < by < ag. Then

LHS:ag—bléaz—CLl:RHS.

Proof of Lemmal(I3] As for part (a), we notice that

n

1 1 .
E[HJ:;ﬁlCW(l—p) ;

1 n—1q
- n+1 E:@iwﬁl p)"
1 n+1
n—j+1
= (n+1p chﬂp]l* P
1

1
= (1 p) =

(n+1)p (n+1)p’

where C/ is the number of combinations of (n, [).

Since ¢ < %ﬂ for any k > 1, we have

. E“OO}} =k LiJ S

For part (b), we prove its symmetric argument that Vr > np,
rq
(r —np)?’

P(¢ >r) <

whereqg=1—p
The probability ratio of two adjacent value is

BC=r+1) _(n—r)p
BC=r)  (r+1)g

< (n=7)p

<

1 r—np
rq

<1

Hence for any k& > r, we have

P(C=k) <P =1)- (1— T‘””)’H.

rq
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Summing all these £’s from r to oo, we have

P((>r) =) P((=k)
k=r

0o k—r
o _T*Tlp
SP(C_T)k_T(l p” )

1_<1_m)
rq

=P =1)- fqnp.

From a similar argument of inspecting the probability ratio between [np] < k < r, we know that
P((=k) > P((=r1).

There are at least r — [np] + 1 > r — np such k’s (including r itself), so we have
L> (r—np)P(C =1),

which leads to the conclusion that

P((>r) < M >

(r —np)?’

If we have < np, then we repeat the above arguments by replacing r with n — r and reversing p
and ¢, we can prove

P(C <) < m Vir < np.
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