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ABSTRACT

Offline reinforcement learning (RL) holds promise as a means to learn high-
reward policies from a static dataset, without the need for further environment
interactions. However, a key challenge in offline RL lies in effectively stitching
portions of suboptimal trajectories from the static dataset while avoiding extrapo-
lation errors arising due to a lack of support in the dataset. Existing approaches use
conservative methods that are tricky to tune and struggle with multi-modal data (as
we show) or rely on noisy Monte Carlo return-to-go samples for reward condition-
ing. In this work, we propose a novel approach that leverages the expressiveness
of latent diffusion to model in-support trajectory sequences as compressed latent
skills. This facilitates learning a Q-function while avoiding extrapolation error
via batch-constraining. The latent space is also expressive and gracefully copes
with multi-modal data. We show that the learned temporally-abstract latent space
encodes richer task-specific information for offline RL tasks as compared to raw
state-actions. This improves credit assignment and facilitates faster reward propa-
gation during Q-learning. Our method demonstrates state-of-the-art performance
across the D4RL suite, particularly excelling in long-horizon, sparse-reward tasks.

1 INTRODUCTION

Offline reinforcement learning (RL) offers a promising approach to learning policies from static
datasets. These datasets are often comprised of undirected demonstrations and suboptimal sequences
collected using different behavior policies. Several methods (Fujimoto et al. (2019); Kostrikov et al.;
Kumar et al. (2020)) have been proposed for offline RL, all of which aim to strike a balance between
constraining the learned policy to the support of the behavior policy and improving upon it. At the
core of many of these approaches is an attempt to mitigate the extrapolation error which arises while
querying the learned Q-function on out-of-support samples for policy improvement. For example,
in order to extract the best policy from the data, Q-learning uses an argmax over actions to obtain
the temporal-difference target. However, querying the Q-function on out-of-support state-actions
can lead to errors via exploiting an imperfect Q-function (Fujimoto et al. (2019)).

Framing offline RL as a generative modeling problem has gained significant traction (Chen et al.
(2021); Janner et al. (2021)); however, the performance is dependent on the power of the gener-
ative models used. These methods either avoid learning a Q-function or rely on other offline Q-
learning methods. Recently diffusion models (Sohl-Dickstein et al. (2015); Song & Ermon (2019)),
have emerged as state-of-the-art generative models for conditional image-generation (Ramesh et al.
(2022); Saharia et al. (2022a)). Rather than avoiding Q-learning, we model the behavioral policy
with diffusion and use this to avoid extrapolation error through batch-constraining. Previous
diffusion-based sequence modelling methods in offline RL diffused over the raw state-action space.
However, the low-level trajectory space tends to be poorly suited for reasoning. Some prior works
(Pertsch et al. (2021); Ajay et al. (2020)) have proposed to instead reason in more well-conditioned
spaces composed of higher-level behavioral primitives. Such temporal abstraction has been shown to
result in faster and more reliable credit assignment (Machado et al. (2023); Mann & Mannor (2014)),
particularly in long-horizon sparse-reward tasks. We harness the expressivity of powerful diffu-
sion generative models to reason with temporal abstraction and improve credit assignment.
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Inspired by the recent successes of Latent Diffusion Models (LDMs) (Rombach et al. (2022); Jun
& Nichol (2023)), we propose learning similar latent trajectory representations for offline RL tasks
by encoding rich high-level behaviors and learning a policy decoder to roll out low-level action
sequences conditioned on these behaviors. The idea is to diffuse over semantically rich latent
representations while relying on powerful decoders for high-frequency details. Prior works which
explored diffusion for offline RL (Janner et al. (2022), Ajay et al.) directly diffused over the raw
state-action space, and their architectural considerations for effective diffusion models limited the
networks to be simple U-Nets (Ronneberger et al. (2015)). The separation of the diffusion model
from the low-level policy allows us to model the low-level policy using a powerful autoregressive
decoder. We perform state-conditioned latent diffusion on the learnt latent space and then learn
a Q-function over states and corresponding latents. During Q-learning, we batch-constrain the
candidate latents for the target Q-function using our expressive diffusion prior, thus mitigating
extrapolation error. Our final policy samples latent skills from the LDM, scores the latents using
the Q-function and executes the best behavior with the policy decoder. We refer to our method as
Latent Diffusion-Constrained Q-learning (LDCQ).

There proposed latent diffusion skill learning method offers several advantages:

Flexible decoders for high-fidelity actions. The latent diffusion framework allows us to use pow-
erful decoders for our low-level policy πθ. Previous diffusion works for offline RL (Janner et al.
(2022), Ajay et al.) directly diffused over the raw state-action space, and architectural considera-
tions for effective diffusion models limited the networks to be simple U-Nets (Ronneberger et al.
(2015)). The separation of the diffusion model from the low-level policy allows us to model πθ
using an expressive autoregressive decoder. (Model architecture discussed in Appendix A.2). We
also note that LDMs can be easily used to model trajectories with discrete action spaces, since the
decoder and diffusion models are separated.

Temporal Abstraction with information dense latent space. Prior works (Pertsch et al. (2021);
Ajay et al. (2020)) have learned latent space representations of skills using VAEs. Their use of
weaker Gaussian priors forces them to use higher values of the KL penalty multiplier β to ensure
the latents are well regularized. However, doing so restricts the information capacity of the latent,
which limits the variation in behaviors captured by the latents. As we show in section 5.1, increasing
the horizon H reveals a clear separation of useful behavioral modes when the latents are weakly
constrained. Our method allows modeling the dense latent space with diffusion.

Faster training and inference. Inference with LDMs is significantly faster than having to recon-
struct the entire trajectory every forward pass with a raw trajectory diffusion model. The training
process is also more memory efficient since the networks can be much smaller.

Our method excels at long-horizon credit assignment through temporal abstraction, which allows
it to outperform prior offline RL algorithms in the challenging sparse reward antmaze and franka-
kitchen tasks. Further, the expressiveness of diffusion models also facilitates greatly improved batch-
constrained Q-learning outperforming prior work in the Adroit suite and the image-based Carla lane
driving task. Through these strong results, we show that Batch-Constrained Q-learning is a much
stronger method than prior work has indicated, when paired with more expressive generative
models and temporal abstraction. We also demonstrate how LDCQ can be extended to goal-
conditioned reinforcement learning.

2 RELATED WORK

Offline RL. Offline RL poses the challenge of distributional shift while stitching suboptimal trajec-
tories together. Conservative Q-Learning (CQL) (Kumar et al. (2020)) tries to constrain the policy
to the behavioral support by learning a pessimistic Q-function that lower-bounds the optimal value
function. Implicit Q-Learning (IQL) (Vieillard et al. (2022)) tries to avoid extrapolation error by
performing a trade-off between SARSA and DQN using expectile regression. Inspired by notable
achievements of generative models in various domains including text-generation (Vaswani et al.
(2017)), speech synthesis (Kong et al.) and image-generation (Ramesh et al. (2022); Saharia et al.
(2022a)), Chen et al. (2021) proposed to use a generative model for offline RL and bypass the need
for Q-learning or bootstrapping altogether with return-conditioning (Srivastava et al. (2019); Ku-
mar et al. (2019)). Our method instead formulates a solution with batch-constraining which uses
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generative models to model the data distribution and use it to generate candidate actions to learn a
Q-function without extrapolation-error. This relies on the assumption that sampling from the gen-
erative model does not sample out-of-support samples, which has been difficult to achieve with
previously used generative models in offline RL. This is a form of Batch-Constrained Q-Learning
(BCQ) (Fujimoto et al. (2019)). Further, to effectively address the problem of stitching, Pertsch
et al. (2021) and Ajay et al. (2020) proposed learning policies in latent-trajectory spaces. However,
they have to rely on a highly constrained latent space which is not rich enough for the downstream
policy. Our proposed method to use latent diffusion, which can model complex distributions, allows
for the needed flexibility in the latent space for effective Q-learning and the final policy.

Diffusion Probabilistic Models. Diffusion models (Sohl-Dickstein et al. (2015); Song & Er-
mon (2019)) have emerged as state-of-the-art generative models for conditional image-generation
(Ramesh et al. (2022); Saharia et al. (2022a)), super-resolution (Saharia et al. (2022b)) and inpaint-
ing (Lugmayr et al. (2022)). Recent offline RL works (Janner et al. (2022), Ajay et al.) have
proposed using diffusion to model trajectories and showcased its effectiveness in stitching together
behaviors to improve upon suboptimal demonstrations. However, Janner et al. (2022) make the
assumption that the value function is learnt using other offline methods and their classifier-guided
diffusion requires querying the value function on noisy samples, which can lead to extrapolation-
error. Similarly, Ajay et al. can suffer from distributional shift, as it relies on return-conditioning,
and maximum returns from arbitrary states can be unknown without access to a value function.
We propose a method for learning Q-functions in latent trajectory space with latent diffusion while
avoiding extrapolation-error and facilitating long horizon trajectory stitching and credit assignment.

3 PRELIMINARIES

3.1 DIFFUSION PROBABILISTIC MODELS

Diffusion models (Sohl-Dickstein et al. (2015); Song & Ermon (2019)) are a class of latent variable
generative model which learn to generate samples from a probability distribution p(x) by map-
ping Gaussian noise to the target distribution through an iterative process. They are of the form
pψ(x0) :=

∫
pψ(x0:T )dx1:T where x0, . . .xT are latent variables and the model defines the ap-

proximate posterior q(x1:T | x0) through a fixed Markov chain which adds Gaussian noise to the
data according to a variance schedule β1, . . . , βT . This process is called the forward diffusion pro-
cess:

q(x1:T | x0) :=

T∏
t=1

q(xt | xt−1), q(xt | xt−1) := N (xt;
√
1− βtxt−1, βtI) (1)

The forward distribution can be computed for an arbitrary timestep t in closed form. Let αt = 1−βt
and ᾱt =

∏t
i=1 αi. Then q(xt | x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I).

Diffusion models learn to sample from the target distribution p(x) by starting from Gaussian noise
p(xT ) ∼ N (0, I) and iteratively denoising the noise to generate in-distribution samples. This is
defined as the reverse diffusion process pψ(xt−1 | xt):

pψ(x0:T ) := p(xT )

T∏
t=1

pψ(xt−1 | xt), pψ(xt−1 | xt) := N (xt−1;µψ(xt, t),Σψ(xt, t)) (2)

The reverse process is trained by minimizing a surrogate loss-function (Ho et al. (2020)):

L(ψ) = Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I) || ϵ− ϵψ(xt, t) ||2 (3)

Diffusion can be performed in a compressed latent space z (Rombach et al. (2022)) instead of the
final high-dimensional output space of x. This separates the reverse diffusion model pψ(zt−1 | zt)
from the decoder pθ(x | z). The training is done in two stages, where the decoder is jointly trained
with an encoder, similar to a β-Variational Autoencoder (Kingma & Welling; Higgins et al. (2016))
with a low β. The prior is then trained to fit the optimized latents of this model. We explain this
two-stage training in more detail in section 4.1.

3



Published as a conference paper at ICLR 2024

3.2 OFFLINE REINFORCEMENT LEARNING

The reinforcement learning (RL) problem can be formulated as a Markov decision process (MDP).
This MDP is a tuple ⟨ρ0,S,A, r, P, γ⟩, where ρ0 is the initial state distribution, S is a set of states,
A is a set of actions, r : S ×A → R is the reward function, P : S ×A×S → [0, 1] is the transition
function that defines the probability of moving from one state to another after taking an action, and
γ ∈ [0, 1) is the discount factor that determines the importance of future rewards. The goal in RL
is to learn a policy, i.e., a mapping from states to actions, that maximizes the expected cumulative
discounted reward. In the offline RL setting (Levine et al., 2020), the agent has access to a static
dataset D = {sit,ait, sit+1, r

i
t} of transitions generated by a unknown behavior policy πβ(a | s) and

the goal is to learn a new policy using only this dataset without interacting with the environment.
Unlike behavioral cloning, offline RL methods seek to improve upon the behavior policy used to
collect the offline dataset. The distribution mismatch between the behavior policy and the training
policy can result in problems such as querying the target Q-function with actions not supported in
the offline dataset leading to the extrapolation error problem.

4 LATENT DIFFUSION REINFORCEMENT LEARNING

In this section, we elaborate on our latent diffusion-based method for offline RL.

4.1 TWO-STAGE LDM TRAINING

Latent Representation and Low-Level Policy. The first stage in training the latent diffusion model
is comprised of learning a latent trajectory representation. Given a datasetD of H-length trajectories
τH represented as sequences of states and actions, s0,a0, s1,a1, · · · sH−1,aH−1, we want to learn a
low-level policy πθ(a|s, z) such that z represents high-level behaviors in the trajectory. This is done
using a β-Variational Autoencoder (VAE) (Kingma & Welling; Higgins et al. (2016)). Specifically,
we maximize the evidence lower bound (ELBO):

L(θ, ϕ, ω) = EτH∼D[Eqϕ(z|τH)[

H−1∑
t=0

log πθ(at | st, z)]− βDKL(qϕ(z | τH) || pω(z | s0))] (4)

where qϕ represents our approximate posterior over z given τH , and pω represents our conditional
Gaussian prior over z, given s0. Note that unlike BCQ (Fujimoto et al. (2019)), which uses the
VAE as the generative model, we only use the β-VAE to learn a latent space to diffuse over. As
such, the conditional Gaussian prior pω is simply a loose regularization of this latent space, and
only weakly constrains the posterior. This is facilitated by the ability of latent diffusion models
to later sample from such complex latent distributions. Prior works (Pertsch et al. (2021); Ajay
et al. (2020)) have learned latent space representations of skills using VAEs. Their use of weaker
Gaussian priors forces them to use higher values of the KL penalty multiplier β to ensure the latents
are well regularized. However, doing so restricts the information capacity of the latent, which limits
the variation in behaviors captured by the latents. As we show in Section 5.1, increasing the horizon
H reveals a clear separation of useful behavioral modes when the latents are weakly constrained.

The use of latent diffusion gives us flexibility to make the decoder more powerful. The low-level
policy πθ is represented as an autoregressive model which can capture the fine details across the
action dimensions, and is similar to the decoders used by Ghasemipour et al. (2021) and Ajay et al.
(2020). While the environments we test in this work use continuous action spaces, the use of latent
diffusion allows the method to easily translate to discrete action spaces too, since the decoder can
simply be altered to output a categorical distribution while the diffusion process remains unchanged.

Latent Diffusion Prior. For training the diffusion model, we collect a dataset of state-latent pairs
(s0, z) such that τH ∼ D is a H-length trajectory snippet, z ∼ qϕ(z | τH) where qϕ is the VAE
encoder trained earlier, and s0 is the first state in τH . We want to model the prior p(z | s0), which is
the distribution of the learnt latent space z conditioned on a state s0. This effectively represents the
different behaviors possible from the state s0 as supported by the behavioral policy that collected
the dataset. To this end, we learn a conditional latent diffusion model pψ(z | s0) by learning the
time-dependent denoising function µψ(zt, s0, t), which takes as input the current diffusion latent
estimate zt and the diffusion timestep t to predict the original latent z0. Like Ramesh et al. (2022)
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and Jun & Nichol (2023), we found predicting the original latent z0 works better than predicting the
noise ϵ. We reweigh the objective based on the noise level according to Min-SNR-γ strategy (Hang
et al. (2023)). This re-balances the objective, which is dominated by the loss terms corresponding to
diffusion time steps closer to T . Concretely, we modify the objective in Eq. 3 to minimize:

L(ψ) = Et∼[1,T ],τH∼D,z0∼qϕ(z|τH),zt∼q(zt|z0)[min{SNR(t), γ}(|| z0 − µψ(zt, s0, t) ||2)] (5)

Note that qϕ(z | τH) is different from q(zt | z0), the former being the approximate posterior of
the trained VAE, while the latter is the forward Gaussian diffusion noising process. We use DDPM
(Ho et al. (2020)) to sample from the diffusion prior in this work due to its simple implementation.
As proposed in Ho & Salimans, we use classifier-free guidance for diffusion. This modifies the
original training setup to learn both a conditional µψ(zt, s0, t) and an unconditional model. The
unconditional version, is represented as µψ(zt,Ø, t) where a dummy token Ø takes the place of s0.
The following update is then used to generate samples: µψ(zt,Ø, t)+w(µψ(zt, s0, t)−µψ(zt,Ø, t)),
where w is a tunable hyper-parameter. Increasing w results in reduced sample diversity, in favor of
samples with high conditional density. We summarize the two stage LDM training in Appendix 2.
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Figure 1: Latent Diffusion Reinforcement Learning Overview a) We first learn the latent space
and low-level policy decoder by training a β-VAE over H-length sequences from the demonstrator
dataset. b) We train a latent diffusion prior conditioned on s0 to predict latents generated by the VAE
encoder. c) After learning a Q function using LDCQ (Algorithm 1), we score latents sampled by the
prior with this Q function and execute the low-level policy πθ conditioned on the argmax latent.

4.2 LATENT DIFFUSION-CONSTRAINED Q-LEARNING (LDCQ)

In batch-constrained Q-learning (BCQ), the target Q-function is constrained to only be maximized
using actions that were taken by the demonstrator from the given state (Fujimoto et al. (2019)).

π(s) = argmax
a

s.t.(s,a)∈D

Q(s,a) (6)

In a deterministic MDP setting, BCQ is theoretically guaranteed to converge to the optimal batch-
constrained policy. In any non-trivial setting, constraining the policy to actions having support from
a given state in the dataset is not feasible, especially if the states are continuous. Instead, a behavior
model πψ(a | s) must be learned on the demonstrator data and samples from this model are used as
candidates for the argmax:

π(s) = argmax
ai∼πψ(a|s)

Q(s,ai) (7)

However, in many offline RL datasets, the behavior policy is highly multimodal either due to the
demonstrations being undirected or because the behavior policy is actually a mixture of unimodal
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policies, making it difficult for previously used generative models like VAEs to sample from the
distribution accurately. The multimodality of this policy is further exacerbated with increases in
temporal abstraction in the latent space, as we show in section 5.1. We propose using latent diffusion
to model this distribution, as diffusion is well suited for modelling such multi-modal distributions.
We propose to learn a Q-function in the latent action space with latents sampled from the diffusion
model. Specifically, we learn a Q-function Q(s, z), which represents the action-value of a latent
action sequence z given state s. At test time, we generate candidate latents from the diffusion prior
pψ(z | s) and select the one which maximizes the learnt Q-function. We then use this latent with the
low-level policy πθ(ai | si, z) to generate the action sequence for H timesteps.

Training. We collect a replay buffer B for the datasetD ofH-length trajectories and store transition
tuples (st, z, rt:t+H , st+H) from τH ∼ D, where st is the first state in τH , z ∼ qϕ(z | τH) is
the latent sampled from the VAE approximate posterior, rt:t+H represents the γ-discounted sum
of rewards accumulated over the H time-steps in τH , and st+H represents the state at the end of
H-length trajectory snippet. The Q-function is learned with temporal-difference updates (Sutton &
Barto (2018)), where we sample a batch of latents for the target argmax using the diffusion prior
pψ(z | st+H). This should only sample latents which are under the support of the behavioral policy,
and hence with the right temporal abstraction, allows for stitching skills to learn an optimal policy
grounded on the data support. The resulting Q update can be summarized as:

Q(st, z)← (rt:t+H + γHQ(st+H , argmax
zi∼pψ(z|st+H)

(Q(st+H , zi)))) (8)

We use Clipped Double Q-learning as proposed in (Fujimoto et al. (2018)) to further reduce over-
estimation bias during training. We also use Prioritized Experience Replay (Schaul et al. (2015)) to
accelerate the training in sparse-reward tasks like AntMaze and FrankaKitchen. We summarize our
proposed LDCQ method in Algorithm 1.

Algorithm 1 Latent Diffusion-Constrained Q-Learning (LDCQ)

1: Input: prioritized-replay-buffer B, horizon H , target network update-rate ρ, mini-batch size
N , number of sampled latents n, maximum iterations M , discount-factor γ, latent diffusion
denoising function µψ , variance schedule α1, . . . , αT , ᾱ1, . . . , ᾱT , β1, . . . , βT .

2: Initialize Q-networks QΘ1
and QΘ2

with random parameters QΘ1
, QΘ2

and target Q-networks
QΘtarget1

and QΘtarget2
with Θtarget1 ← Θ1, Θtarget2 ← Θ2

3: for iter = 1 to M do
4: Sample a minibatch of N transitions {(st, z, rt:t+H , st+H)} from B
5: Sample n latents for each transition: zT ∼ N (0, I)
6: for t = T to 1 do ▷ DDPM Sampling
7: ẑ = µψ(zt,Ø, t) + w(µψ(zt, st+H , t)− µψ(zt,Ø, t))
8: zt−1 ∼ N (

√
αt(1−ᾱt−1)

1−ᾱt zt +
√
ᾱt−1βt
1−ᾱt ẑ, I(t > 1)βtI)

9: end for
10: Compute the target values y = rt:t+H + γH{max

z0

{min
j=1,2

QΘtargetj
(st+H , z0)}}

11: Update Q-networks by minimizing the loss: 1
N ||y −QΘ(st, z)||22

12: Update target Q-networks: Θtarget ← ρΘ+ (1− ρ)Θtarget
13: end for

Policy Execution. The final policy for LDCQ comprises generating candidate latents z for a par-
ticular state s using the latent diffusion prior z ∼ pψ(z | s). These latents are then scored using
the learnt Q-function and the best latent zmax is decoded using the VAE autoregressive decoder
a ∼ πθ(a | s, zmax) to obtain H-length action sequences which are executed sequentially. Note that
the latent diffusion model is used both during training the Q-function and during the final evaluation
phase, ensuring that the sampled latents do not go out-of-support. The policy execution algorithm is
detailed in the Appendix 3.

4.3 LATENT DIFFUSION GOAL CONDITIONING (LDGC)

Diffuser (Janner et al. (2022)) proposed framing certain navigation problems as a sequence inpaint-
ing task, where the last state of the diffused trajectory is set to be the goal during sampling. We
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can similarly condition our diffusion prior on the goal to sample from feasible latents that lead to
the goal. This prior is of the form pψ(z | s0, sg), where sg is the target goal state. Since with la-
tent diffusion, the training of the low-level policy alongside the VAE is done separately from the
diffusion prior training, we can reuse the same VAE posterior to train different diffusion models,
such as this goal-conditioned variant. At test time, we perform classifer-free guidance to further
push the sampling towards high-density goal-conditioned latents. For tasks which are suited to goal
conditioning, this can be simpler to implement and achieves better performance than Q-learning.
Also, unlike Diffuser, our method does not need to have the goal within the planning horizon of the
trajectory. This allows our method to be used for arbitrarily long-horizon tasks.

5 EXPERIMENTAL EVALUATION AND ANALYSIS

In our experiments, we focus on 1) studying the helpfulness temporal abstraction has in distinguish-
ing latent skills (Section 5.1) 2) evaluating the ability of diffusion models to sample from the latent
space (section 5.2 and 5.3) and 3) evaluating the performance of our method in the D4RL offline RL
benchmarks (section 5.4).

5.1 TEMPORAL ABSTRACTION INDUCES MULTI-MODALITY IN LATENT SPACE

In this section, we study how the horizon length H affects the latent space and provide empirical
justification for learning long-horizon latent space representations. For our experiment, we consider
the kitchen-mixed-v0 task from the D4RL benchmark suite (Fu et al. (2020)). The goal in this task
is to control a 9-DoF robotic arm to manipulate multiple objects (microwave, kettle, burner and
a switch) sequentially, in a single episode to reach a desired configuration, with only sparse 0-1
completion reward for every object that attains the target configuration. As Fu et al. (2020) states,
there is a high degree of multi-modality in this task arising from the demonstration trajectories
because different trajectories in the dataset complete the tasks in a random order. Thus, before
starting to solve any task, the policy implicitly needs to choose which task to solve and then generate
the actions to solve the task. Given a state, the dataset can consist of multiple behavior modes, and
averaging over these modes leads to suboptimal action sequences. Hence, being able to differentiate
between these tasks is desirable.

We hypothesize that as we increase our sequence horizon H , we should see better separation be-
tween the modes. In Figure 2, we plot a 2D (PCA) projection of the VAE encoder latents of the
starting state-action sequences in the kitchen-mixed dataset. With a lower horizon, these modes are
difficult to isolate and the latents appear to be drawn from a Normal distribution (Figure 2). How-
ever, as we increase temporal abstraction from H = 1 to H = 20, we can see three distinct modes
emerge, which when cross-referenced with the dataset correspond to the three common tasks exe-
cuted from the starting state by the behavioral policy (microwave, kettle, and burner). These modes
better capture the underlying variation in an action sequence, and having picked one we can run
our low-level policy to execute it. As demonstrated in our experiments, such temporal abstraction
facilitates easier Q-stitching, with better asymptotic performance. However, in order to train these
abstract Q functions, it is necessary to sample from the complex multi-modal distribution and the
VAE conditional Gaussian prior is no longer adequate for this purpose, as shown in section 5.2.

5.2 LDMS ADDRESS MULTI-MODALITY IN LATENT SPACE

In this section, we provide empirical evidence that latent diffusion models are superior in modelling
multi-modal distributions as compared to VAEs. For our experiment, we again consider the kitchen-
mixed-v0 task. The goal of the generative model here is to learn the prior distribution p(z | s)
and sample from it such that we can get candidate latents corresponding to state s belonging to the
support of the dataset. However, as demonstrated earlier, the multi-modality in the latent spaces
increases with the horizon. We visualize the latents from the initial states of all trajectories in the
dataset in Figure 3a using PCA with H = 20. The three clusters in the figure correspond to the
latents of three different tasks namely microwave, kettle and burner. Similarly, we also visualize
the latents predicted by the diffusion model Figure 3b) and the VAE conditional prior Figure 3c) for
the same initial states by projecting them onto the principal components of the ground truth latents.
We can see that the diffusion prior is able to sample effectively all modes from the ground truth
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Figure 2: Projection of latents across horizon. Latent projections of trajectory snippets with
different horizon lengths H . From the initial state there are 3 tasks (Kettle, Microwave, Burner)
which are randomly selected at the start of each episode. These 3 primary modes emerge as we
increase H , with the distribution turning multi-modal.

latent distribution, while the VAE prior spreads its mass over the three modes, and thus samples out
of distribution in between the three modes. Using latents sampled from the VAE prior to learn the
Q-function can thus lead to sampling from out of the support, resulting in extrapolation error.

(a) Ground truth (b) Diffusion prior (c) VAE prior

Figure 3: Visualization of latents projected using PCA for kitchen-mixed with H = 20. The dif-
fusion prior models the ground truth much more accurately while the VAE prior generates out-of-
distribution samples.

5.3 PERFORMANCE IMPROVEMENT WITH TEMPORAL ABSTRACTION

We empirically demonstrate the importance of temporal abstraction and the performance im-
provement with diffusion on modelling temporally abstract latent spaces. We compare our
method with a variant of BCQ which uses temporal abstraction (H > 1), which we re-
fer to as BCQ-H. We use the same VAE architecture here as LDCQ, and fit the condi-
tional Gaussian prior with a network having comparable parameters to our diffusion model.

Figure 4: D4RL score of LDCQ
and BCQ-H on kitchen-mixed-v0
with varying sequence horizon H

We find that generally, increasing the horizon H results in bet-
ter performance, both in BCQ-H and LDCQ, and both of them
eventually saturate and degrade, possibly due to the limited de-
coder capacity. With H = 1, the latent distribution is roughly
Normal as discussed earlier and our diffusion prior is essen-
tially equivalent to the Gaussian prior in BCQ, so we see sim-
ilar performance. As we increase H , however, the diffusion
prior is able to efficiently sample from the more complex latent
distribution that emerges, which allows the resulting policies
to benefit from temporal abstraction. BCQ-H, while also see-
ing a performance boost with increased temporal abstraction,
lags behind LDCQ. We plot D4RL score-vs-H for BCQ-H and
LDCQ evaluated on the kitchen-mixed-v0 task in Figure 4. The
benefit of temporal abstraction is ablated for different tasks in
Appendix J.
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5.4 OFFLINE RL BENCHMARKS

In this section, we investigate the effectiveness of our Latent Diffusion Reinforcement Learning
methods on the D4RL offline RL benchmark suite (Fu et al. (2020)). We compare with Behavior
Cloning and several state-of-the-art offline RL methods. Diffuser (Janner et al. (2022)) and Decision
Diffuser (Ajay et al.) are prior raw trajectory diffusion methods. We found that our method does
not require much hyperparameter tuning and only had to vary the sequence horizon H across tasks.
In maze2d and AntMaze tasks we use H = 30, in kitchen tasks we use H = 20 and in locomotion
and adroit tasks we use H = 10. We train our diffusion prior with T = 200 diffusion steps. The
other hyperparameters which are constant across tasks are provided in the supplemental material. In
Table 1, we compare performance across tasks in the D4RL suite. We would like to highlight tasks
in Maze2d, AntMaze and FrankaKitchen environments which are known to be the most difficult
in D4RL, with most algorithms performing poorly. Maze2d and AntMaze consist of undirected
demonstrations controlling the agent to navigate to random locations in a maze. AntMaze is quite
difficult because the agent must learn the high-level trajectory stitching task alongside low-level
control of the ant robot with 8-DoF. In the maze navigation tasks, we also evaluate the performance
of our goal-conditioned (LDGC) variant. For Diffuser runs we use the goal-conditioned inpainting
version proposed by the authors since the classifier-guided version yielded poor results.

Table 1: Performance comparison on D4RL tasks. LDGC evaluated in goal-directed maze tasks.

Dataset BC BCQ CQL IQL DT Diffuser DD LDCQ (Ours) LDGC (Ours)
maze2d-umaze-v1 3.8 12.8 5.7 47.4 27.3 113.5 - 134.2 ± 4.0 141.0 ± 2.7
maze2d-medium-v1 30.3 8.3 5.0 34.9 32.1 121.5 - 125.3 ± 2.5 139.9 ± 4.2
maze2d-large-v1 5.0 6.2 12.5 58.6 18.1 123.0 - 150.1 ± 2.9 206.8 ± 3.1

antmaze-umaze-diverse-v2 45.6 55.0 84.0 62.2 54.0 - - 81.4 ± 3.5 85.6 ± 2.4
antmaze-medium-diverse-v2 0.0 0.0 53.7 70.0 0.0 45.5 24.6 68.9 ± 0.7 75.6 ± 0.9
antmaze-large-diverse-v2 0.0 2.2 14.9 47.5 0.0 22.0 7.5 57.7 ± 1.8 73.6 ± 1.3

kitchen-complete-v0 65.0 52.0 43.8 62.5 - - - 62.5 ± 2.1 -
kitchen-partial-v0 38.0 31.7 50.1 46.3 42.0 - 57.0 67.8 ± 0.8 -
kitchen-mixed-v0 51.5 34.5 52.4 51.0 50.7 - 65.0 62.3 ± 0.5 -

halfcheetah-medium-expert-v2 55.2 64.7 91.6 86.7 86.8 88.9 90.6 90.2 ± 0.9 -
walker2d-medium-expert-v2 107.5 57.5 108.8 109.6 108.1 106.9 108.8 109.3 ± 0.4 -
hopper-medium-expert-v2 52.5 110.9 105.4 91.5 107.6 103.3 111.8 111.3 ± 0.2 -

halfcheetah-medium-v2 42.6 40.7 44.0 47.4 42.6 42.8 49.1 42.8 ± 0.7 -
walker2d-medium-v2 75.3 53.1 72.5 78.3 74.0 79.6 82.5 69.4 ± 3.5 -
hopper-medium-v2 52.9 54.5 58.5 66.3 67.6 74.3 79.3 66.2 ± 1.7 -

halfcheetah-medium-replay-v2 36.6 38.2 45.5 44.2 36.6 37.7 39.3 41.8 ± 0.4 -
walker2d-medium-replay-v2 26.0 15.0 77.2 73.9 66.6 70.6 75.0 68.5 ± 4.3 -
hopper-medium-replay-v2 18.1 33.1 95.0 94.7 82.7 93.6 100.0 86.2 ± 2.5 -

pen-human 34.4 68.9 37.5 71.5 - - - 74.1 ± 2.7 -
hammer-human 1.2 0.3 4.4 1.4 - - - 1.5 ± 0.8 -
door-human 0.5 0.0 9.9 4.3 - - - 11.8 ± 1.9 -
relocate-human 0.0 -0.1 0.2 0.1 - - - 0.3± 0.1 -
pen-cloned 37.0 44.0 39.2 37.3 - - - 47.7 ± 1.9 -
hammer-cloned 0.6 0.4 2.1 2.1 - - - 2.8 ± 1.2 -
door-cloned 0.0 0.0 0.4 1.6 - - - 1.1± 0.4 -
relocate-cloned -0.3 -0.3 -0.1 -0.2 - - - -0.2± 0.1 -
pen-expert 85.1 114.9 107.0 - - - - 121.2 ± 3.6 -
hammer-expert 125.6 107.2 86.7 - - - - 45.8 ± 10.5 -
door-expert 34.9 99.0 101.5 - - - - 105.1 ± 0.3 -
relocate-expert 101.3 41.6 95.0 - - - - 104.7 ± 1.4 -

carla-lane-v0 17.2 -0.1 20.9 18.6 - - - 24.7 ± 3.2 -

Both LDCQ and LDGC achieve state-of-the-art results in all sparse reward D4RL tasks. The goal-
conditioned variant outperforms all others in maze2d and AntMaze. This variant is extremely simple
to implement through supervised learning of the diffusion prior with no Q-learning or online plan-
ning and is ideal for goal-reaching tasks. We also provide an evaluation of our method on the D4RL
locomotion suite and the Adroit robotics suite. While these tasks are not specifically focused on
trajectory-stitching, our method is competitive in the locomotion tasks and stronger than baselines
in Adroit. To extend our method to Carla’s image input spaces, we compress the image using a
β-VAE encoder such that our method operates on a compressed state space (more in Appendix G).
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6 CONCLUSION

In this work, we showed that offline RL datasets comprised of suboptimal demonstrations have
expressive multi-modal latent spaces which can be captured with temporal abstraction and is well
suited for learning high-reward policies. With a powerful conditional generative model to capture the
richness of this latent space, we demonstrated that the simple batch-constrained Q-learning frame-
work can be directly used to obtain strong performance. Our biggest improvements come from
long-horizon sparse reward tasks, which most prior offline RL methods struggled with, even previ-
ous raw trajectory diffusion methods. Our approach also required no task-specific tuning, except for
the sequence horizon H . We believe that latent diffusion has enormous potential in offline RL and
our work has barely scratched the surface of possibilities.

7 REPRODUCIBILITY

We provide link to our code in section A.1. We provide details of our model architectures in section
A.2 and hyperparameters in A.3. Our experiments were conducted on the open D4RL benchmark
datasets.
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A TRAINING DETAILS

A.1 SOURCE CODE

The source code is available at: https://github.com/ldcq/ldcq.

A.2 NETWORK ARCHITECTURE

A.2.1 VARIATIONAL AUTOENCODER

Encoder. For learning the latent trajectory representation, our VAE uses an architecture similar to
Ajay et al. (2020). The encoder consists of two stacked bidirectional GRU layers, followed by mean
and standard deviation heads which are each a 2 layer MLP with RELU activation for the hidden
layers. The mean output head is a linear layer. The standard deviation output head is followed by a
SoftPlus activation function to ensure it is always positive. The hidden layer dimension is fixed to
256.

Decoder. For the low-level policy decoder, we use an auto-regressive policy network similar to that
described in EMAQ (Ghasemipour et al. (2021)), in which each element of the action vector has
its own MLP network, taking as input the current state, latent representation, and all previously-
sampled action elements. The complete action vector is sampled element-by-element, with the most
recently sampled element becoming an input to the network for the next element. These MLP
networks consists of 2 layers followed by 2 layers of mean and standard deviation heads similar to
the encoder network. The mean output head is a linear layer and the standard deviation output head
is followed by a SoftPlus activation. Again, ReLU activation is used after all hidden layer and the
hidden dimension is fixed to 256.

A.2.2 DIFFUSION PRIOR

The diffusion prior is a deep ResNet (He et al. (2016)) architecture consisting of 8 residual blocks. It
takes as input a vector representing a latent trajectory z and outputs a denoised version of the latent.
The hidden blocks are of dimensions: [128, 32, 16, 8, 16, 32, 128]. Similar to a U-Net (Ronneberger
et al. (2015)), the initial blocks are connected by residual connections to the later blocks having
the same hidden dimension. The diffusion timestep t is encoded with a 256-dimensional sinusoidal
embedding and then further encoded with a 2-layer MLP. The conditioning state s is also encoded by
a 2 layer MLP. In each residual block, the state and time encodings are concatenated with the current
layer activation for conditioning. When training the unconditional diffusion model for classifier-free
guidance, the state input is given as a vector of zeros to represent a null vector.

A.2.3 Q-NETWORKS

The Q-networks take as input the state s, latent z and consist of a 5 layer MLP with 256 hidden units
in the first 3 layers, 32 hidden units in the third layer, and finally a linear output layer. We use GELU
activation function between hidden layers. LayerNorm is applied before each activation.

A.3 HYPERPARAMETERS

The hyperparameters which are constant across tasks for the different stages of our proposed method
are given in Tables 2, 3 and 4.

A.4 HARDWARE

The models were trained on NVIDIA RTX A6000. Since different tasks have different dataset sizes,
the model training times changes across tasks. Depending on the task, training the β-VAE took
between 3-7 hours, the diffusion prior took between 4-12 hours and the Q-Learning took between
3-5 hours.
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Table 2: β-VAE hyperparameters

Parameter Value
Learning rate 5e-5
Batch size 128
Epochs 100
Latent dimension (z) 16
β 0.05
Hidden layer dimension 256

Table 3: Diffusion training hyperparameters

Parameter Value
Learning rate 1e-4
Batch size 32
Epochs 300
Diffusion steps (T ) 500
Drop probability (For unconditional prior) 0.1
Variance schedule linear
Sampling algorithm DDPM
γ (For Min-SNR-γ weighing) 5

Table 4: Q-Learning hyperparameters

Parameter Value
Learning rate 5e-4
Batch size 128
Discount factor (γ) 0.995
Target net update rate (ρ) 0.995
PER buffer α 0.7
PER buffer β Linearly increased from 0.3 to 1, Grows by 0.03 every 3000 steps
Diffusion samples for batch argmax 500
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B LOW LEVEL POLICY AND SKILL PRIOR TRAINING

We describe the training of the β-VAE for learning the skill representations and the low level policy,
and then training the diffusion skill prior in Algorithm 2

Algorithm 2 LL Policy and Skill Prior Training

1: Input: horizonH , KL regularization coefficient β, number of stepsM , diffusion timesteps T , γ
for Min-SNR-γ, sequence encoder qϕ, conditional Gaussian prior pω , policy decoder πθ, latent
diffusion prior µψ , offline dataset D, variance schedule α1, . . . , αT , ᾱ1, . . . , ᾱT , β1, . . . , βT .

2: for iter = 1 to M do ▷ Training β-VAE
3: Sample a n size minibatch of H length subtrajectories {s(1:n)t:t+H ,a

(1:n)
t:t+H} from D

4: Sample zi ∼ qϕ(z|s(i)t:t+H)

5: L(ϕ, θ, ω) =
∑n
i=1

∑t+H
j=t − log πθ(a

(i)
j |s

(i)
j , z(i)) + βDKL(qϕ(z|s(i)t:t+H)||pω(z|s(i)t ))

6: Take gradient step to minimize L
7: end for
8: for iter = 1 to M do ▷ Training diffusion skill prior
9: Sample a n size minibatch of H length subtrajectories {s(1:n)t:t+H ,a

(1:n)
t:t+H} from D

10: Sample z(i) ∼ qϕ(z|s(i)t:t+H)

11: Sample diffusion time τ (i) ∼ U [1, T ]
12: Noise latents z(i)τ ∼ N (

√
ᾱτz

(i), (1− ᾱτ )I)
13: L(ψ) =

∑n
i=1 min{SNR(τ (i)), γ}(|| z(i) − µψ(z(i)τ , st, τ) ||2)

14: Take gradient step to minimize L
15: end for

C POLICY EXECUTION

After training the diffusion prior and Q-learning, we execute the policy as described in Algorithm 3.

Algorithm 3 Policy Execution

1: Input: horizon H , number of latents to sample n, Q-function QΘ, policy decoder πθ, latent
diffusion denoising function µψ , variance schedule α1, . . . , αT , ᾱ1, . . . , ᾱT , β1, . . . , βT .

2: done = False
3: while not done do
4: Observe environment state s0
5: Sample n latents: zT ∼ N (0, I)
6: for t = T to 1 do ▷ DDPM Sampling
7: ẑ = µψ(zt,Ø, t) + w(µψ(zt, s0, t)− µψ(zt,Ø, t))
8: zt−1 ∼ N (

√
αt(1−ᾱt−1)

1−ᾱt zt +
√
ᾱt−1βt
1−ᾱt ẑ, I(t > 1)βtI)

9: end for
10: Find best skill by scoring them with Q-function: i = argmax

i
QΘ(s0, z

i
0)

11: h = 0
12: while h < Hand not done do ▷ Execute Skill zi0
13: Observe environment state sh
14: Get action ah ∈ πθ(a|sh, zi0)
15: Execute action ah
16: Update done
17: h = h+ 1
18: end while
19: end while
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D COMPARISON WITH OTHER LATENT SKILL LEARNING METHODS

In this section, we compare our method against existing algorithms which do latent skill learning
with generative models in the D4RL tasks. Specifically, we compare against the VAE based algo-
rithms OPAL (Ajay et al. (2020)) and PLAS (Zhou et al. (2020)), and the Normalizing Flow based
algorithm Flow to Control (Yang et al. (2023)). We were not able to replicate the OPAL results with
the code provided to us by the authors. We list the best scores we were able to obtain with it. We did
not find code to implement Flow to Control, and so use the results listed in their paper. The results
are shown in table 5.

Table 5: Performance comparison on D4RL tasks. Algorithms are evaluated only on the tasks listed
in their respective papers.

Dataset OPAL PLAS Flow2Control LDCQ (Ours) LDGC (Ours)
maze2d-large-v1 - 122.7 - 150.1 ± 2.9 206.8 ± 3.1

antmaze-medium-diverse-v2 57.5 0.0 83.7 68.9 ± 0.7 75.6 ± 0.9
antmaze-large-diverse-v2 52.0 0.0 52.8 57.7 ± 1.8 73.6 ± 1.3

kitchen-partial-v0 55.5 43.9 74.9 67.8 ± 0.8 -
kitchen-mixed-v0 50.2 40.8 69.2 62.3 ± 0.5 -

halfcheetah-medium-expert-v2 - 99.3 - 90.2 ± 0.9 -
walker2d-medium-expert-v2 - 97.2 - 109.3 ± 0.4 -
hopper-medium-expert-v2 - 111.0 - 111.3 ± 0.2 -

halfcheetah-medium-v2 - 42.2 - 42.8 ± 0.7 -
walker2d-medium-v2 - 66.9 - 69.4 ± 3.5 -
hopper-medium-v2 - 36.9 - 66.2 ± 1.7 -

halfcheetah-medium-replay-v2 - 45.7 - 41.8 ± 0.4 -
walker2d-medium-replay-v2 - 14.3 - 68.5 ± 4.3 -
hopper-medium-replay-v2 - 51.9 - 86.2 ± 2.5 -

pen-human - 67.3 63.1 74.1 ± 2.7 -
hammer-human - 4.6 3.3 1.5 ± 0.8 -
door-human - 4.4 15.1 11.8 ± 1.9 -
relocate-human - 0.3 - 0.3 ± 0.1 -
pen-cloned - 49.0 65.8 47.7 ± 1.9 -
hammer-cloned - 1.0 2.1 2.8 ± 1.2 -
door-cloned - 3.3 8.1 1.1 ± 0.4 -
relocate-cloned - -0.2 - -0.2 ± 0.1 -

E LATENT DIFFUSION-CONSTRAINED PLANNING (LDCP)

In this section, we explore another method to derive a policy for offline RL with latent diffusion other
than our proposed methods Latent Diffusion-Constrained Q-Learning (LDCQ) and Latent Diffusion
Goal Conditioning (LDGC). This is a model-based method which learns a temporally abstract world
model of the environment from offline data. Specifically, we learn a temporally abstract world model
pη(st+H | st, z) that predicts the state outcome of executing a particular latent behavior after H
steps. That is, given the current state st and a latent behavior z the model predicts the distribution
of the state st+H . This is trained in a supervised manner by sampling transition tuples (st, z, st+H)
from τH ∼ D and minimizing the objective:

L(η) = EτH∼D || pη(st+H | st, z)− st+H ||2 (9)

where η are the parameters of the temporally abstract world model pη .

In goal-reaching environments, we leverage this model to do planning using the diffusion prior. We
sample n latents zi (1 ≤ i ≤ n) using the diffusion prior for the current state st, and use the learnt
dynamics model to compute predicted future state sit+H for each latent zi. These final states are
then scored using a cost-function J and the latent corresponding to the best final state is chosen for
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execution. Note that sampling latents from the diffusion prior ensures that the world model is not
queried on out-of-support data. We refer to this method as Latent Diffusion-Constrained Planning
(LDCP). The planning procedure is summarized in Algorithm 4.

Algorithm 4 Latent Diffusion-Constrained Planning (LDCP)

1: Input: horizon H , number of latents to sample n, cost-function J , policy decoder πθ, tem-
porally abstract world model pη , latent diffusion denoising function µψ , variance schedule
α1, . . . , αT , ᾱ1, . . . , ᾱT , β1, . . . , βT .

2: done = False
3: while not done do
4: Observe environment state s0
5: Sample n latents: zT ∼ N (0, I)
6: for t = T to 1 do ▷ DDPM Sampling
7: ẑ = µψ(zt,Ø, t) + w(µψ(zt, s0, t)− µψ(zt,Ø, t))
8: zt−1 ∼ N (

√
αt(1−ᾱt−1)

1−ᾱt zt +
√
ᾱt−1βt
1−ᾱt ẑ, I(t > 1)βtI)

9: end for
10: Compute future states for each latent zi0: siH = pη(s

i
H | s0, zi0)

11: Find best skill based on the cost-function: i = argmin J (siH)
12: h = 0
13: while h < Hand not done do ▷ Execute Skill zi0
14: Observe environment state sh
15: Get action ah ∈ πθ(a|sh, zi0)
16: Execute action ah
17: Update done
18: h = h+ 1
19: end while
20: end while

The cost-function which we use for the goal-reaching environments is the Euclidean distance to the
goal. We can also extend this planning to horizons greater than H by further sampling latents for
each future state sit+H (1 ≤ i ≤ n). This means, after sampling n latents for st with the diffusion
prior, we further sample n more latents for each of the future states sit+H . This increases the ‘plan-
ning depth’ d. The final states at the last level of planning are then scored using the cost-function
and the latent at the first level which led to that final state is chosen for execution. This procedure
complexity grows exponentially and thus the planning depth has to be restricted. For a planning
depth of d, there are nd model calls. We found a planning-depth of d = 2 to be sufficient for all
navigation environments achieving state-of-the-art results. Thus, with a latent sequence horizon of
H = 30, our total planning horizon is 60. The results are tabulated in Table 6.

Table 6: Performance comparison on D4RL navigation tasks with LDCP.

Dataset BC BCQ CQL IQL DT Diffuser DD LDCQ (Ours) LDGC (Ours) LDCP (Ours)
maze2d-large-v1 5.0 6.2 12.5 58.6 18.1 123.0 - 150.1 ± 2.9 206.8 ± 3.1 184.3 ± 3.8

antmaze-medium-diverse-v2 0.0 0.0 53.7 70.0 0.0 45.5 24.6 68.9 ± 0.7 75.6 ± 0.9 77.0 ± 1.1
antmaze-large-diverse-v2 0.0 2.2 14.9 47.5 0.0 22.0 7.5 57.7 ± 1.8 73.6 ± 1.3 59.7 ± 1.3

E.1 VISUALIZING MODEL PREDICTIONS

Learning a world model also allows us to visualize the effect of executing any given latent behavior.
This means, even when the model is not used for planning, like in LDCQ, it can be used to compute
the final state that will be reached for every latent behavior from a particular state. This information
can be used to understand if the model is learning reasonable behavior modes.

We plot the xy-coordinates of our abstract world model pη(st+H | st, z) predictions at a T-
intersection of AntMaze large environment for latents sampled from our diffusion prior z ∼ pψ(z |
st) in Figure 5 to demonstrate this. The plot shows that the diffusion prior sampled latents which go
in all the three directions at the T-intersection.
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Figure 5: Visualizing model predictions: Visualization of future states with latents sampled from
the diffusion prior at a T-intersection in antmaze-large-diverse-v2 D4RL task. We can see multi-
modal future state predidctions corresponding to 3 possible directions at the T-intersection.

F D4RL TASKS

(a) Ant-Maze (b) Franka-Kitchen (c) Adroit

Figure 6: D4RL environments

The tasks of AntMaze and Franka Kitchen require long horizon credit assignment and stitching
trajectories in the behavior dataset. We highlight consistently strong performance in these tasks as
the primary empirical result of our method, since most other baselines perform poorly here, even
other diffusion based methods. The Adroit suite also consists of narrow, but precision oriented
manipulation tasks with sparse rewards. We also show very strong performance here. This task does
not require trajectory stitching, but needs filtering of low reward demonstrations while sticking close
to the behavior support.

The locomotion datasets are collected from SAC agents of varying performance. Our method has
average performance on the locomotion suite while being much stronger in the other tasks. We sus-
pect the high periodicity of the walking gaits in the locomotion suite does not benefit much from
reasoning with temporal abstraction. We also do not use a perturbation function during Q-learning
like Fujimoto et al. (2019), which makes it difficult for us to improve over the poor controllers
in medium and medium-replay locomotion datasets. Introducing a perturbation function requires
careful tuning to avoid extrapolation error, and the converged Q-learning wouldn’t necessarily cor-
respond to a high value policy, which is why other offline RL methods, which try to balance this
tradeoff, evaluate online during training and consider the best scores. We however only evaluate a
policy once after training is fully complete.
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G CARLA AUTONOMOUS DRIVING TASK

To extend our method for tasks with high-dimensional image input spaces, we propose to compress
the image space such that our method operates on this compressed state space. We create a low-
dimensional compressed representation using an autoencoder E before using the LDCQ framework.
Note that this encoder operates on a single image and not on a temporal sequence of images (Figure
7). The downstream framework of LDCQ however operates on the temporal compressed image
sequences.

Figure 7: Autoencoder training for image-based task

We evaluate the performance of our method on the CARLA autonomous driving D4RL task. The
task consists of an agent which has control to the throttle (gas pedal), the steering, and the break
pedal for the car. It receives 48 × 48 RGB images from the driver’s perspective as observations. We
use a β-VAE architecture to create a 32-dimensional compressed state for this task. The horizon for
LDCQ is set to H = 30.

H RANDOM WALK 1D

In this experiment, we construct a simple toy problem to show how sampling effectively from the
multimodal behavioral distribution helps the diffusion prior outperform a Gaussian VAE prior during
Q-learning. We construct a simple toy MDP with a one-dimensional state space S ∈ [−10.0, 10.0].
The agent starts at the origin (0,0) and receives a reward of 10 if it reaches either the far left (-10.0) or
far right (10.0) state, and -1 reward every other step. The environment times out after 500 steps. The
action is the distance moved in that timestep with a max distance of length 1, A ∈ [−1.0, 1.0]. The
dataset consists of episodes where the agent randomly selects actions from the uniform distribution
a ∼ U([−1.0,−0.8] ∪ [0.8, 1]). This means the agent has a step size between 0.8 to 1.0 units either
left or right every timestep. We train a VAE to try to fit this action distribution, and use BCQ to learn
a policy. We also train train a diffusion based policy with LDCQ, using H = 1 and compare the
results.

Figure 8: 1D Random walk

We find that the VAE frequently samples actions never present in the dataset. This is because the
Gaussian mean to the above action distribution is 0.0, but no actual actions are present between
(−0.8, 0.8) where a large proportion of probability mass is assigned by the Gaussian model. Mean-
while, the diffusion prior is able to fit the 2 modes quite well. After 10000 steps of Q-learning,
the diffusion constrained policy learns to navigate to either end perfectly and achieves an average
reward of -2.2 while the VAE constrained policy is still almost random, frequently taking actions
with small step size and an average reward of -66.
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I INCREASING DIFFUSION STEPS IMPROVES PERFORMANCE

We study the impact of the number of diffusion steps on the performance for LDCQ. We found that
for the locomotion tasks, increase in diffusion timesteps T during evaluation generally corresponds
to increase in task performance. We plot these results in Figure 9.

Figure 9: D4RL score for LDCQ with varying diffusion steps T in locomotion tasks.

For the long horizon tasks, we found that increasing diffusion steps resulted in an initial trend upward
in performance. Beyond this, the performance does not improve with additional diffusion steps
(Figure 10).

Figure 10: D4RL score for LDCQ with varying diffusion steps T

We also used additional diffusion steps at time t = 0 similar to Diffusion-X (Pearce et al. (2023)).
This means that after the DDPM sampling of diffusion from time T to 1, we run X additional
diffusion steps to further denoise the sample, assuming time-step t = 1. Pearce et al. (2023) reasoned
that this pushes the samples further towards higher-likelihood regions. We used 10 additional steps
across experiments and found this to slightly improve performance.
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J PERFORMANCE IMPROVEMENT WITH TEMPORAL ABSTRACTION

We provided empirical evidence for improvement in performance as we increase temporal abstrac-
tion or horizon H for the kitchen-mixed-v0 environment. We see similar trends for the other long-
horizon tasks as well (Figure 11). The performance in general improves with increasing temporal
abstraction but beyond a certain point, it drops possibly because of the limited capacity of the policy
decoder.

For the locomotion tasks, we did not observe any noticeable difference with increase in temporal
abstraction, so we ended up using a moderate sequence length H = 10. This could be due to the
high frequency periodicity of these tasks that does not require much look-ahead.

Figure 11: D4RL score for LDCQ with varying sequence horizons H .

K Q LEARNING TD ERRORS

We found Q learning with these skill latents to be very stable. This, alongside strong empirical
performance in these tasks indicates that the skill latents learnt with the β-VAE contain useful
information, and that the Q function is able to extract this information easily. We show the training
graphs for antmaze-large, kitchen-partial, halfcheetah-medium, and Adroit door-human below.
Each X-axis tick corresponds 3000 updates from minibatches sampled from the PER buffer. The
Y-axis is the average TD error for those 3000 minibatches.
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(a) antmaze-large

(b) kitchen-partial

(c) halfcheetah-medium

(d) door-human

Figure 12: Q learning curves for different tasks. X axis is number of epochs of size 3000 from PER
buffer, Y axis is average TD error over last 3000 minibatches.
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