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ABSTRACT
Multi-view clustering (MVC) methods based on non-negative ma-

trix factorization (NMF) have gained popularity owing to their

ability to provide interpretable clustering results. However, these

NMF-based MVC methods generally process each view indepen-

dently and thus ignore the potential relationship between views.

Besides, they are limited in the ability to capture the nonlinear

data structures. To overcome these weaknesses and inspired by

deep learning, we propose a multi-view clustering method based on

deep non-negative tensor factorization (MVC-DNTF). With deep

tesnor factorization, our method can well exploit the spatial struc-

ture of the original data and is capable of extracting more deep and

nonlinear features embedded in different views. To further extract

the complementary information of different views, we adopt the

weighted tensor Schatten 𝑝-norm regularization term. An optimiza-

tion algorithm is developed to effectively solves the MVC-DNTF

objective. Extensive experiments are performed to demonstrate the

effectiveness and superiority of our method.

CCS CONCEPTS
• Computing methodologies → Machine learning; Artificial
intelligence.

KEYWORDS
Multi-view clustering, Multi-view learning, Non-negative tensor

factorization, Schatten 𝑝-norm

1 INTRODUCTION
In recent years, the advancement of information technology has

led to an exponential increase in data generated across various

domains. This data usually comes from different sources [1]. Multi-

view data processing have demonstrated significant applications in

scenarios such as image processing, social network analysis, and

bioinformatics. As an unsupervised learning method, multi-view

clustering gains increasing attention due to its ability to utilize

the multiple data views to improve the clustering performance by

exploiting the consistent and complementary information among

them [15]. So far, numerous multi-view clustering methods are

proposed, which can be roughly divided in four categories [41]: Co-

training based methods [20], multi-kernel learning [34], multi-view

graph clustering [39], and multi-view subspace clustering [45].
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Among these methods, the co-training approach [22] leverages

the co-training framework to ensure consistency in either prior

knowledge or clustering outcomes. Furthermore, Tzortzis et al [34]

proposed a multi-view clustering technique based on kernel func-

tions, whichweights all views using kernel functions. This approach

assigns different weights to various views, achieving improved clus-

tering results. Pan et al [30] proposed a generalized framework

for clustering multi-view attribute graph data and introduced the

Multi-view Comparison Graph Clustering (MCGC) method, which

enhances graph clustering by filtering noise and learning consensus

graphs with contrast loss.Additionally, some approaches focus on

individually optimizing each view to identify the most informa-

tive subspaces, enabling clustering within these subspaces. This

strategy enhances the handling of high-dimensional data and noise,

thereby improving the robustness and effectiveness of clustering

algorithms [6, 35].

Notably, non-negative matrix factorization (NMF) has received

widespread attention owing to its outstanding clustering perfor-

mance and interpretability [8, 23], and many improved methods

were developed based on NMF [3, 7, 9, 10, 37, 38], etc. For example,

Cai et al [4] proposed a graph-regularized NMF (GNMF) method,

which mines the flow structure of NMF data for effective clustering.

Its effectiveness motivates researchers to extend NMF to multi-view

NMF [46]. For example, Ou et al [29] introduced NMF into multi-

view clustering by considering the geometric structure of each view

to mine the potential information of each view; Semi-supervised

multi-view clustering method based on NMF was proposed in [28],

which adopts semi-supervised approach for clustering, and the

effectiveness of the method is verified by several sets of experi-

ments. Effective as they, these methods are incapable of extracting

nonlinear features.

To overcome this weakness, Zhao et al. proposed a multi-view

clustering via deep matrix factorization, which fully explores the po-

tential attributes of the data in a layer-wise fashion and explore the

geometrical structure with a graph-based regularizer [43]. Similarly,

Zhang et al. developed a deep NMF based multi-view clustering

method with partition alignment (MVC-DMF-PA), which employs

deep NMF to learn the clustering partition matrix for each view

and then fuse them into the final partition result with a partition

algiment [42]. These deep NMF-basedMVCmethods exhibit impres-

sive feature extraction ability. Besides, they realize better efficiency

when compared with other MVC methods (e.g., graph-based meth-

ods or deep methods). Nonetheless, they essentially apply NMF on

each single view and then integrate them into a consistent clus-

tering assignment matrix, resulting in the the loss of the original

inter-view spatial information [24]. For another, since they directly

decompose the original data, their efficiency decreases dramatically

when the original data dimensions are large.

Kilmer et al. introduced the factorization of nonnegative ten-

sors [21], which has been proven to be an effective to learn the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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inter-view information from multi-view data and numerious ten-

sorial MVC methods are developed [24, 27, 31, 44]. Inspired by

their impressive performance, we in this paper extend deep NMF

for multi-view clustering to deep non-negative tensor factorization

(DNTF) and propose a novel multi-View clustering with deep tensor

factorization (MVC-DTF). MVC-DTF not only takes into account

the differences and complementarities between views but also en-

ables the learning of deeper representations of the data through

the deep tensor factorization method, so as to capture and utilize

the complex structural information in the multi-view data in a

more effective way. In addition to this, we use weighted tensor

Schatten 𝑝-norm to describe the clustering structure of the view

data, which fully utilizes the complementary information between

views and avoids the problem that the use of Schatten 𝑝-norm in

[24] leads to the same contribution of singular values across views.

To further improve the efficiency, we perform tensor factorizaton

on the anchor graph instead of the original data tensor. The main

contributions of this paper are as follows:

• We extend deep non-negative matrix factorization to deep

tensor factorization , based on which we propose a novel

multi-view clustering method, called MVC-DTF. By further

introducing a Schatten 𝑝-norm based regularizer, MVC-DTF

can better exploit the inter-view spatial relationship and the

complementary information of differentviews.

• We adopt anchor graph to construct the tensor to be factor-

ized to reduce the computational complexity. Besides, we

develop an optimization algorithm to solve the MVC-DTF

optimization problem.

• Extensive experiments are conducted on several multi-view

datasets to evaluate the prformance of our method, and the

comparison with existing MVC methods demonstrate its

effectiveness and superiority.

2 RELATEDWORK
In this section, we introduce the concepts and formulas of multi-

view clustering using non-negative matrix factorization and non-

negative tensor factorization respectively, which is tightly related

to our method.

2.1 Non-negative Matrix Factorization (NMF)
NMF has become an important feature dimensionality reduction

tool in clustering. NMF provides an intuitive way to explore the

low-dimensional structure of the data by decomposing the non-

negative data matrix X into a weight matrix W and an indicator

matrix H. Its formula is expressed as follows:

min

H,W
∥X − HW∥2𝐹 , s.t.W ≥ 0,H ≥ 0 (1)

where X ∈ R𝑛×𝑑 , H ∈ R𝑛×𝑘 and W ∈ R𝑘×𝑑 . Furthermore, Semi-

NMF improvies NMF by relaxing the non-negative constraint ofW,

which has been proven to be a relaxation of the K-means clustering

approach [10]. Specifically, Semi-NMF can be expressed as follows:

min

H,W
∥X − HW∥2𝐹 , s.t. H ≥ 0 (2)

2.2 Tensor Factorization
Kilmer et al [21] extended NMF to third-order tensors. Specifically,

they present a new third-order tensors representation and intro-

duce a closed tensor multiplication operation, based on which they

defined tensor transpose, inverse, and unit tensor.

Definition 1 ( [21]). For a 3-way tensor 𝒜 ∈ R𝑛1×𝑛2×𝑛3 , the

Frobenius norm of 𝒜 is defined as ∥𝒜∥𝐹 =

√︃∑
𝑖 𝑗𝑘

��𝑎𝑖 𝑗𝑘 ��2, and the

conjugate transpose of𝒜 ∈ R𝑛1×𝑛2×𝑛3 is𝒜𝑇 ∈ R𝑛2×𝑛1×𝑛3 .

Definition 2 ( [21]). For a 3-way tensor 𝒜 ∈ R𝑛1×𝑛2×𝑛3 , we
denote A as a block diagonal matrix with each block on the diagonal

as the frontal slice A
(𝑖 )

of𝒜. A has the following form:

A = bdiag(𝒜) =


A
(1)

A
(2)

. . .

A
(𝑛3 )


Definition 3 (T-Product [21]). : The 𝑡-product between two 3

-order tensors with matched dimensions, ℳ ∈ R𝑛1×𝑚×𝑣 and 𝒩 ∈
R𝑚×𝑛2×𝑣 , is defined asℳ ∗𝒩 ∈ R𝑛1×𝑛2×𝑣 , i.e.,

ℳ ∗𝒩 = ifft(bdiag(𝑀𝑁 ))

where ℳ is the discrete Fourier transform of ℳ along the third di-
mension,ℳ = fft(ℳ, [], 3) ,𝑀 = bdiag(ℳ) and bdiag(·) denotes
the block diagonal matrix.

Figure 1: Tensor Construction andWeighted Tensor Schatten
𝑝-norm

3 THE PROPOSED METHOD
In this section, we first present the motivation for our proposed

scheme. After that, we present the details of our proposed multi-

view clustering scheme based on deep tensor factorization and the

optimization method of the scheme. Finally, we summarize our

scheme and give the time complexity analysis of the scheme. We

show some key notations used in the scheme in Table 1 for easier

presentation.

3.1 Objective
In recent years, tensor factorization has emerged as a powerful

tool for multi-view data processing, since it can better explore
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Table 1: Notations

Notations Description

M Matrix with upper bold case letters

ℳ Tensor with bold calligraphy letters

ℳ Discrete Fourier transform ofℳ along

the third dimension

ℳ(𝑣) 𝑣-th frontal slice of ℳ
𝑡𝑟 (𝑀), 𝑀𝑇

Transpose and trace of matrix𝑀

∥ℳ∥𝐹 The F-norm of tensor𝑀

𝒮 ∈ R𝑛×𝑚×𝑣
Data tensor after anchor processing

ℋ𝑖 ∈ R𝑛×𝑙𝑖×𝑣 Indication tensor for layer 𝑖

𝒲1 ∈ R𝑙1×𝑚×𝑣
Weight tensor for layer 1

𝒲𝑖 ∈ R𝑙𝑖×𝑙𝑖−1×𝑣 Weight tensor for layer 𝑖 > 1

𝜓𝑖 Short for 𝒲𝑖−1 ∗𝒲𝑖−2 ∗ . . . ∗𝒲1

∥𝒳 ∥𝝎,𝑆𝑝 Weighted tensor Schatten 𝑝-norm

ℳ,𝒩 Auxiliary Variables

𝒴1,𝒴2 Lagrange multipliers

the relationship between different views and the spatial structure

within the view, which provides the possibility to deal with the

correlation between multiple views. Similar to NMF, the objective

function of tensor factorization can be described as follows:

min

ℋ,𝒲
∥𝒳 −ℋ ∗𝒲 ∥2𝐹

s.t. ℋ ⩾ 0,ℋT ∗ℋ = ℐ
(3)

where 𝒳 ∈ R𝑛×𝑑×𝑣 is the original data tensor obtained by com-

bining the data matrices of the different views. ℋ ∈ R𝑛×𝑘×𝑣 is the
cluster indicator tensor. 𝒲 ∈ R𝑘×𝑑×𝑣 is the cluster weight tensor.
This fusion of data from different views into a tensor for factoriza-

tion can naturally leverage the relationships between views [24].

Fig. 1 depicts the construction of tensor by taking ℋ as an exmple.

However, despite tensor factorization’s theoretical superiority, its

ability to handle nonlinear structures and learn deep representa-

tions is still limited. Inspired by deep learning, this paper presents

an innovative deep tensor factorization framework to overcome the

above challenges. By incorporating the concepts of deep learning

into the tensor factorization process, our approach is able to not

only capture the multidimensional structure of data but also learn

deep and nonlinear representations of data.

min

ℋ𝑙 ,𝒲𝑖

∥𝒳 −ℋ𝑙 ∗𝒲𝑙 ∗𝒲𝑙−1 ∗ . . . ∗𝒲1∥2𝐹

s.t. ℋ𝑙 ⩾ 0,ℋT

𝑙
∗ℋ𝑙 = ℐ

(4)

The deep tensor factorization method enables us to more effectively

process multi-view data by extracting the deep and potential corre-

lations between different views. The following experiments section

proves that our method can significantly improve the performance

of multi-view clustering.

Considering that directly performing deep tensor factorization

on the original data matrix incurs high computational complex-

ity, we choose to construct a anchor graph for each view, and a

anchor tensor 𝒮 ∈ R𝑛×𝑚×𝑣
constructed from the anchor graphs

of different views to replace the original data tensor𝒳 ∈ R𝑛×𝑑×𝑣

as the input to the tensor factorization, and 𝑚 is the number of

anchors. Since the number of anchors is much smaller than the

original data dimension (i.e.,𝑚 << 𝑑), it can effectively reduce the

computational overhead.

To further exploit the complementary information of different

views, we further minimize the tensor schatten 𝑝 norm of the ten-

sorial form of the cluster indicator matrix, and Eq. (4) becomes:

min

ℋ𝑙 ,𝒲𝑖

∥𝒮 −ℋ𝑙 ∗𝒲𝑙 ∗𝒲𝑙−1 ∗ . . . ∗𝒲1∥2𝐹 + 𝜆∥ℋ𝑙 ∥𝜔,𝑆𝑝

s.t. ℋ𝑙 ⩾ 0,ℋT

𝑙
∗ℋ𝑙 = ℐ

(5)

The second term of objective function is regularization term based

on weighted tensor Schatten 𝑝-norm of ℋ𝑙 , and 𝜆 is a balancing

hyperparameter. The weighted tensor Schatten 𝑝-norm is defined

as follows

Definition 4 (Weighted tensor Schatten 𝑝-norm [16]). Given
𝒳 ∈ R𝑛1×𝑛2×𝑛3 , Weighted tensor Schatten 𝑝-norm of 𝒳 is defined
as

∥𝒳 ∥𝝎,𝑆𝑝 =

(
𝑛3∑︁
𝑖=1




𝒳 (𝑖 )


𝑝
𝝎,𝑆𝑝

) 1

𝑝

=
©­«
𝑛3∑︁
𝑖=1

𝑚𝑖𝑛 (𝑛1,𝑛2 )∑︁
𝑗=1

𝜔 𝑗 ∗ 𝜎 𝑗
(
𝒳 (𝑖 ) )𝑝ª®¬

1

𝑝

.

(6)

where 0 ≤ 𝑝 ≤ 1, 𝜎 𝑗 (𝒳
(𝑖 ) ) is the 𝑗-th singular value of𝒳 (𝑖 )

, 𝜔 𝑗 is

the weight of 𝜎 𝑗 (𝒳
(𝑖 ) ).

It is worth noting that the aim of weighted tensor Schatten 𝑝-

norm for the regularization is to avoid the problem of all singular

values contributing equally in ordinary tensor Schatten 𝑝-norm,

which provides better robustness to data noise or outliers. Based

on [27], we update the weights by

(
𝜔𝑘
𝑗

)𝑡+1
= 1(

𝛿
𝑝

𝑗

(
X𝑘
𝑓

))𝑡
+𝜀
, where 𝑡

and 𝜀 denote the number of iteration and a small constant.

3.2 Initialization
Before optimizing the objective equation, following the work on

deep non-negative matrix factorization for multi-view clustering

[42, 43], we first initialize layer after layer of views. We first get

𝒲 (𝑣)
1

by 𝒮 (𝑣) = ℋ(𝑣)
1

∗𝒲 (𝑣)
1

and then factorize ℋ(𝑣)
1

= ℋ(𝑣)
2

∗
𝒲 (𝑣)

2
layer by layer up to 𝒲𝑙 . Besides, We initialize 𝒴1 = 𝒴2 = 0

and 𝑁 as the unit matrix.

3.3 Optimization
We use the Augmented Lagrange Multiplier (ALM) to optimize

the objective Eq. (5), To perform an alternating direction min-

imization strategy, we introduce two auxiliary tensor variables

ℋ𝑙 = 𝒩 ,ℋ𝑙 = ℳ where 𝒩 ⩾ 0 are used, and then, the objec-

tive function can be reformularized to the following unconstrained

optimization problem:
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minℒ(ℋ𝑙 ,𝒲1,𝒲2, . . . ,𝒲𝑙 ,𝒩 ,ℳ)
= min

𝒩⩾0,ℋT

𝑙
ℋ𝑙=ℐ

∥𝒮 −ℋ𝑙 ∗𝒲𝑙 ∗𝒲𝑙−1 ∗ . . . ∗𝒲1∥2𝐹

+𝜆∥ℳ∥𝜔,𝑆𝑝 + 𝜇

2





ℋ𝑙 −𝒩 + 𝒴1
𝜇





2
𝐹

+ 𝜌

2





ℋ𝑙 −ℳ + 𝒴2
𝜌





2
𝐹

(7)

where the tensors 𝒴1 ∈ R𝑛×𝑘×𝑣 and 𝒴2 ∈ R𝑛×𝑘×𝑣 are Lagrange
multipliers and 𝜇, 𝜌 are the penalty parameters. The optimization

process can therefore be separated into five steps:

𝒲𝑖 -subproblem: By fixing𝒲1,𝒲2, . . . ,𝒲𝑖−1,𝒩 ,ℋ𝑖 ,ℳ, the

optimization Eq.( 7) becomes:

min ∥𝒮 −ℋ𝑖 ∗𝒲𝑖 ∗𝜓𝑖−1∥2𝐹 (8)

where 𝜓𝑖−1 = 𝒲𝑖−1 ∗ 𝒲𝑖−2 ∗ . . . ∗ 𝒲1. First, implement the

discrete Fourier transform (DFT) along the third dimension, the

equivalent representation of Eq.(8) in the frequency domain be-

comes:

min

𝑉∑︁
𝑣=1

∥𝒮 (𝑣) −ℋ𝑖
(𝑣)𝒲𝑖

(𝑣)
𝜓𝑖−1

(𝑣) ∥2𝐹

where 𝒲 = ftt(𝒲, [], 3), and the others in the same way. So

Making the equation zero gets the solution of Eq.(8 )is:

𝒲𝑖
(𝑣)

= ℋ𝑙
(𝑣)†𝒮 (𝑣)

𝜓𝑖−1
(𝑣)†

(9)

where ℋ𝑙
(𝑣)†

denotes MP inverse ofℋ𝑙
(𝑣)

[10].

ℋ𝑖 -subproblem: By fixing𝜓𝑖 ,𝒩 ,ℳ,the optimization Eq.(7 )be-

comes:

min ∥𝒮 −ℋ𝑖 ∗𝜓𝑖 ∥2𝐹 (10)

Same as 𝒲𝑖 . First, perform the DFT of the equivalent represen-

tation of Eq.(10) in the frequency domain becomes:

min

𝑉∑︁
𝑣=1

∥𝒮 (𝑣) −ℋ𝑖
(𝑣)
𝜓𝑖

(𝑣) ∥2𝐹

According to [10] the update rule forℋ𝑖
(𝑣) (𝑖 < 𝑙) is

ℋ𝑖
(𝑣)

= ℋ𝑖
(𝑣)

⊙

√√√√√√√ [
𝜓𝑖

(𝑣) (𝒮 (𝑣) )𝑇
]+

+
[
𝜓𝑖

(𝑣) (𝜓𝑖
(𝑣) )𝑇 (ℋ𝑖

(𝑣) )𝑇
]−

[
𝜓𝑖

(𝑣) (𝒮 (𝑣) )𝑇
]−

+
[
𝜓𝑖

(𝑣) (𝜓𝑖
(𝑣) )𝑇 (ℋ𝑖

(𝑣) )𝑇
]+ (11)

Where [𝐴]+ = ( |𝐴| +𝐴)/2, [𝐴]− = ( |𝐴| −𝐴)/2.
ℋ𝑙 -subproblem: By fixing𝒩 ,𝜓𝑙 ,ℳ Eq.(7) becomes:

min

ℋT

𝑙
ℋ𝑙=ℐ

∥𝒮 −ℋ𝑙𝜓𝑙 ∥2𝐹+
𝜇

2





ℋ𝑙 −𝒩 + 𝒴1

𝜇





2
𝐹

+𝜌
2





ℋ𝑙 −ℳ + 𝒴2

𝜌





2
𝐹

(12)

Eq.(12) can be reduced to

max(
ℋ𝑙

(𝑣) )Tℋ𝑙
(𝑣)

=I

tr

((
ℋ𝑙

(𝑣) )Tℬ (𝑣)
)

(13)

whereℬ (𝑣)
= 2𝒮 (𝑣) (

𝜓𝑙
(𝑣) )T+𝜇𝒬(𝑣)

1
+𝜌𝒬(𝑣)

2
,𝒬(𝑣)

1
= 𝒩 (𝑣) −

𝒴 (𝑣)
1

𝜇 and𝒬(𝑣)
2

= ℳ(𝑣) − 𝒴 (𝑣)
2

𝜌

According to [24], the solution of Eq.(13 )is

ℋ𝑙
(𝑣)

= 𝚲

(𝑣) (
𝑽
(𝑣) )T

(14)

where𝚲

(𝑣)
and 𝑽

(𝑣)
can be obtained by SVDℬ (𝑣)

= 𝚲

(𝑣)
X

(
𝑽
(𝑣) )T

𝒩 -subproblem: By fixing ℋ,𝒢,ℳ. Eq.(7) becomes:

min

𝒩⩾0

𝜇

2





𝒩 −
(
ℋ + 𝒴1

𝜇

)



2
𝐹

(15)

According to [40], the solution of Eq.(15 ) is:

𝒩 =

(
ℋ + 𝒴1

𝜇

)
+

(16)

ℳ-subproblem: By fixing𝒩 ,ℋ,𝒢. Eq.(7) becomes:

min 𝜆∥ℳ∥𝜔,𝑆𝑝 + 𝜌

2





ℋ −ℳ + 𝒴2

𝜌





2
𝐹

A simple transformation gives us

ℳ∗ = argmin

1

2

∥ℋ +𝒵 ∥2𝐹 + 𝜆

𝜌
∥ℳ∥𝜔,𝑆𝑝 , (17)

where 𝒵 =
𝒴2

𝜌 −ℳ. According to [17], the following lemma can

give the solution of Eq.(17)

Lemma 1. Let 𝒵 ∈ R𝑛1×𝑛2×𝑛3 satisfy an increasing sequence of
0 ≤ 𝜔1 ≤ 𝜔2 ≤ · · · ≤ 𝜔min and have a t-SVD𝒵 = 𝒰 ∗𝒮 ∗𝒱𝑇 . For
the following optimization model:

argmin

𝒳

1

2

∥𝒳 −𝒵 ∥2𝐹 + 𝜏 ∥𝒳 ∥𝑝
𝜔,𝑆𝑝

. (18)

a global optimal solution to the 18 is

𝒳 ∗ = Υ𝜏∗𝜔 (𝒵) = 𝒰 ∗ 𝑖 𝑓 𝑓 𝑡
(
P𝜏∗𝜔 (𝒵)

)
∗𝒱𝑇 ,

where, P𝜏∗𝜔 (𝒵) is a tensor and P𝜏∗𝜔
(
𝒵 (𝑖 ) )

is the i-th frontal slice

of P𝜏∗𝜔 (𝒵) = diag (𝛾1, 𝛾2, . . . , 𝛾𝑙 ) and 𝛾𝑖 = 𝑇𝐺𝑆𝑇
𝑝

(
𝜎𝑖 (𝒵), 𝜏∗ 𝜔𝑖 ),

the introduction of GST can be found in [17].

Through Lemma1, we get the solution of Eq.( 17) as

ℳ∗ = Υ𝜆
𝜌
∗𝜔

(
ℋ + 𝒴2

𝜌

)
(19)

The optimization of our multi-view clustering method based on

deep tensor factorization can be summarized as Algorithm 1. It is

worth noting that we need to optimize ℋ𝑖 and ℳ𝑖 layer by layer

before obtaining ℋ𝑙 .

3.4 Computational Complexity
To simplify the analysis, we set the dimension of each layer to

be uniformly 𝑑 and assume that the number of iterations of the

Initialization process and training process are 𝑡𝑝𝑟𝑒 and 𝑡𝑡𝑟𝑎𝑖𝑛 . The

computational complexity of constructing the anchor data ten-

sor from the original data tensor is 𝒪(𝑣𝑛𝑚𝑑 + 𝑣𝑛𝑚𝑙𝑜𝑔(𝑚)). The
computational complexity of is𝒪(𝑣𝑡𝑝𝑟𝑒𝑛𝑚𝑑2𝑙) after approximate

simplicity. The computational complexity of the update process for

𝒲𝑖 ,ℋ𝑖 ,ℋ𝑙 ,ℳ,𝒩 are𝒪(𝑣𝑙𝑡𝑡𝑟𝑎𝑖𝑛 (𝑑𝑛𝑚+𝑑2𝑚+𝑑2𝑛)),𝒪(𝑣𝑙𝑡𝑡𝑟𝑎𝑖𝑛𝑑2𝑛+
𝑣𝑙𝑡𝑡𝑟𝑎𝑖𝑛𝑑𝑛𝑚),𝒪(𝑡𝑡𝑟𝑎𝑖𝑛𝑣 (𝑚2𝑘+𝑚𝑘2)),𝒪(𝑡𝑡𝑟𝑎𝑖𝑛𝑣𝑛𝑘),𝒪(𝑡𝑡𝑟𝑎𝑖𝑛 (2𝑣𝑛𝑘𝑙𝑜𝑔(𝑣𝑘)+
𝑣2𝑘𝑛)). As these parameters are small constants and𝑚 < 𝑛, 𝑘 < 𝑑,
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Algorithm 1 Multi-view Clustering based on Deep Non-negative

Tensor Factorization (MVC-DNTF)

input: multi-view data {X(𝑣) }𝑉
𝑣=1

; anchor number𝑚; cluster num-

ber 𝑘 ; number of layers and dimension for each layer;

output: Cluster labels Y of each sample.

1: Initialize:ℋ(𝑣)
𝑖
,𝒲 (𝑣)

𝑖
, 𝜇 = 10

−5, 𝜌 , 𝜂,𝒴1,𝒴2,N
(𝑣)

according

to section 3.2.

2: Compute anchor graph matrix S(𝑣) of each view.

3: while not convergence do
4: for 𝑖 < 𝑚 do
5: Update𝒲𝑖

(𝑣)
by solving Eq.(9)

6: Updateℋ𝑖
(𝑣)

by solving Eq. (11).

7: end for
8: Update 𝒲𝑙

(𝑣)
by solving Eq.(9).

9: Update ℋ𝑙
(𝑣)

by solving Eq.(14).

10: Update 𝒩 (𝑣)
by solving Eq.(16).

11: Update ℳ by using Eq.(19).

12: Update 𝒴1,𝒴2, 𝜇 and 𝜌 : 𝒴1 = 𝒴1 + 𝜇 (ℋ −𝒩 ), 𝒴2 = 𝒴2 +
𝜇 (ℋ −ℳ), 𝜇 = min(𝜂𝜇, 1013), 𝜌 = min(𝜂𝜌, 1013).

13: end while
14: Calculate the 𝐾 clusters by using H =

∑𝑉
𝑣=1ℋ

(𝑣)/𝑉 .
15: return Clustering result (In the resulting indicator matrix, the

index of the largest element in each row corresponds to the

cluster label of the respective sample. ).

and in general 𝑛 is the largest number among them, the final com-

putational complexity of our proposed scheme is𝒪(𝑣𝑡𝑝𝑟𝑒𝑛𝑚𝑑2𝑙 +
𝑣𝑙𝑡𝑡𝑟𝑎𝑖𝑛𝑑𝑛𝑚 + 𝑡𝑡𝑟𝑎𝑖𝑛𝑣𝑚2𝑘)

4 EXPERIMENTS
4.1 Dataset
We evaluate the performance of the proposed method on eight

widely adapted multi-view learning benchmark datasets, which are

3-sources, BBCSport [18],HW [12], Sonar [32], Yale, Vehicle
Sensor [11], Caltech-5V [14],SentencesNYU v2(RGB-D) [33].
Details of these datasets are shown in Table 2.

4.2 Compared Method
All experiments were conducted on a desktop computer equipped

with a 13th Gen Intel(R) Core(TM) i5-13400 processor at 2.50 GHz,

and 32 GB RAM. The experiments were executed using MATLAB

2023a (64-bit) as the primary software environment. For experimen-

tal setup, we have selected the following nine representative multi-

view clustering algorithms to compare with our proposed method:

Two multi-view clustering methods based on graph learning GMC
[36] and UDBGL [13], Three sub-space multi-view learning meth-

ods DiMSC [5],MvLRSSC [2] and RMSL [26], a fast calculation

method FastMICE [19] and two non-negative matrix factorization

methods MvDGNMF [25] and MVC-DMF-PA [42], and a method

for orthogonal non-negative tensor factorization Orth-NTF [24].

4.3 Experimental Setup
Before performing clustering, for all the methods including the pro-

posed method and all the comparison methods, we first preprocess

the data of all the datasets, i.e., we normalize the data of different

views. For the method we proposed, 𝜆 and 𝑝 are hyper-parameters.

According to [42], when performing a two-layer tensor factoriza-

tion the layer size is [𝑙1, 𝑘],where 𝑙1 is chosen from [4𝑘, 5𝑘, 6𝑘],
when performing a three-layer tensor factorization the layer size

is [𝑙1, 𝑙2, 𝑘], where 𝑙1 is chosen from [8𝑘, 10𝑘, 12𝑘] and 𝑙2 is chosen
from [4𝑘, 5𝑘, 6𝑘] and so on. We used three widely used metrics to

evaluate clustering performance i.e., 1) Accuracy (ACC); 2)Normal-

ized Mutual Information(NMI); 3) Purity(PUR). For all the metrics

mentioned previously, a higher value indicates better clustering

outcomes. For each experiment to avoid the effect of random ini-

tialization, we repeated each experiment 10 times.

4.4 Experiment Results
The experimental results in Tables 3 and 4 demonstrate the per-

formance of our method MVC-DNTF on eight datasets and are

compared with several benchmark algorithms. The best results are

bolded and the second best results are underlined. The main results

of our analysis of these results are as follows:

(1) Our method performs better than the benchmark methods

on most of the datasets. We believe that this superior per-

formance is largely attributable to the unique design of our

proposed method, which performs deep factorization based

on a data tensor consisting of multi-view data anchor graphs.

This design allows our method to effectively utilize spatial

structure information and depth and hidden features from

different views. Meanwhile the imposition of orthogonal

and non-negative constraints enhances the interpretability

of our clustering, and each row of the metrics matrix for

each view is explicitly mapped to a cluster without the need

for post-processing for label determination.

(2) Compared with DMVC and AwDMVC methods that rely on

the deep semi-NMF framework, our method achieves supe-

rior results. This demonstrates that the tensor factorization

method we adopt better preserves the structural information

of the data in multiple dimensions and effectively captures

the complementary information and intrinsic connections

among different views. Compared to Orth-NTF, which also

employs tensor factorization, our method also achieves su-

perior performance, which suggests that our proposed deep

tensor factorization can automatically learn deeper feature

representations from multi-view data, and thus better cap-

ture the essential properties and intrinsic structure of the

data.

In conclusion, the experimental results highlight the effective-

ness of our multi-view clustering method based on deep tensor

factorization.

4.5 Convergence
We performed convergence experiments on four different datasets.

These experiments were aimed at observing the evolution of the

clustering accuracy of the algorithm and the convergence behavior

of the algorithm’s objective function during successive iterations.
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Table 2: Datasets used in our experiments

Dataset Type Views number View Dimension Sample number Cluster number

3-sources text 3 3056/3631/3068 169 3

BBCSport text 2 3283/3183 544 5

HW handwritten 6 216/76/64/6/240/47 2000 10

Sonar signal 3 20/20/20 208 2

Yale image 2 1024/4096 165 11

Vehicle Sensor sensor 4 5/5/7/5 1594 2

Caltech-5V image 5 40/254/1984/512/928 1400 7

SentencesNYU v2 (RGB-D) image 2 2048/300 1449 13

Table 3: Clustering performance comparison in terms of ACC(%), NMI(%), and PUR(%) on 3-sources, BBCSport, HW, and Sonar
datasets.

Datasets 3-sources BBCSport HW Sonar

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DiMSC 69.23 63.13 74.56 85.85 70.62 85.85 24.50 12.19 25.85 55.77 1.25 55.77

MvLRSSC 55.92 49.81 70.59 62.87 40.47 64.63 66.88 68.88 70.56 50.48 3.12 53.37

RMSL 31.95 14.46 41.42 76.63 72.36 76.63 81.38 78.82 81.50 62.02 4.29 62.02

GMC 70.74 65.15 79.29 80.33 73.89 84.01 84.80 89.13 87.25 50.48 4.50 53.37

MvDGNMF 30.77 21.11 33.14 82.54 67.32 82.54 75.60 63.83 75.60 62.50 4.66 62.50

UDGBL 34.91 5.60 35.50 36.40 2.43 36.58 67.10 57.42 80.69 57.21 1.61 57.21

FastMICE 55.62 50.25 71.01 43.93 11.16 45.40 85.65 85.04 85.65 58.00 3.23 58.17

MVC-DMF-PA 53.84 20.02 56.21 73.34 52.68 76.28 86.90 76.58 86.90 53.84 53.27 53.84

Orth-NTF 72.78 72.78 77.50 89.15 79.49 89.52 89.35 86.16 89.35 97.11 83.80 97.11
Ours 83.43 76.66 88.16 94.85 87.85 94.85 97.60 95.24 97.60 97.11 83.80 97.11

Table 4: Clustering performance comparison in terms of ACC(%), NMI(%), and PUR(%) on Yale, Vehicle Sensor, HAR, and RGB-D
datasets.

Datasets Yale Vehicle Sensor Caltech-5V RGB-D

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DiMSC 44.85 52.84 44.85 68.95 22.29 68.95 57.57 39.76 61.43 39.61 32.67 49.76

MvLRSSC 44.06 48.02 45.09 56.78 6.12 56.78 46.15 34.81 46.79 39.00 32.40 50.59

RMSL 78.78 78.23 79.39 67.50 11.90 67.50 55 52.18 59.07 12.63 2.85 26.98

GMC 21.21 27.51 24.24 80.43 28.75 80.43 34.07 48.4 36.07 40.23 33.06 46.51

MvDGNMF 36.36 42.70 38.79 50.06 0.60 50.06 49.57 38.24 53.86 26.50 0.78 27.26

UDGBL 34.91 5.60 35.50 36.40 2.43 36.58 31.8 23.54 19.28 57.21 1.61 57.21

FastMICE 62.42 57.01 65.46 51.49 0.085 51.69 77.58 69.6 79.57 41.81 32.61 49.53

MVC-DMF-PA 15.75 16.10 20.00 50.37 62.76 50.37 71.64 56.49 71.64 16.83 72.25 33.12

Orth-NTF 78.18 81.90 80.00 98.05 86.23 98.05 89.35 81.64 89.35 59.07 65.78 75.56

Ours 84.24 86.39 82.42 99.62 96.79 99.62 94.21 89.08 94.21 63.21 71.28 82.95

Fig 2 illustrates the convergence process of the algorithm on the

four datasets. It is noteworthy that the algorithm converges rapidly

after 60 iterations, with a significant decrease in the difference be-

tween the objective matrices ℋ𝑙 , ℳ, and 𝒩 . At the same time,

the clustering accuracy improves dramatically, which is consistent

with the convergence of the objective values. This proves the ef-

fectiveness of our proposed method since the convergence of the

objective function is equivalent to the improvement of the cluster-

ing performance.

4.6 Parameter Analysis
Our proposed algorithm depends on three key variable parameters:

the number of anchors𝑚, 𝜆 and 𝑝 . 𝜆 and 𝑝 regulate the sparsity and

orthology of the potential representation ℋ𝑙 . The hyperparameter

𝜆 plays an important role in the trade-off between the accuracy



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Multi-View Clustering Based on Deep Non-Negative Tensor Factorization ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) BBCSport (b) Sonar (c) Vehicle Sensor (d) RGB-D

Figure 2: Convergence experiments on BBCSport, RGB-D, Sonar and Vehicle Sensor

(a) 3-sources (b) BBCSport (c) HW (d) Sonar

(e) Yale (f) Vehicle Sensor (g) Caltech-5V (h) RGB-D

Figure 3: The influence of 𝜆 and 𝑝 on clustering results on 3-sources, BBCSport, HW, Sonar, Yale , Vehicle Sensor Caltech-5V
and RGB-D

of the data reconstruction and the sparsity of the representation.

The hyperparameter 𝑝 fine-tunes this sparsity constraint by adjust-

ing the distribution of non-zero values in ℋ𝑙 , thus affecting the

granularity of the representation. In order to study the impact of

these hyperparameters in depth, we employ a grid search strategy

to study values of 𝑝 in the range [0.1, 1.0] and values of 𝜆 in the

range [1, 1000]. We performed systematic experiments on eight

different datasets to ensure the generalizability of our findings. Fig

3 illustrates the results of our experiments, which show that 𝜆 has

a significant effect on the efficacy of the algorithm, probably due to

its key role in preventing overfitting through regularization, while

𝑝 has a relatively stable effect on performance, but tends to perform

better when 𝑝 takes smaller values than when 𝑝 takes larger values.

Empirical results from various datasets indicate that the best results

are obtained when 𝜆 is calibrated in the middle range 10 to 100

and 𝑝 is taken to be 0.1. This range allows the algorithm to achieve

sufficient sparsity for generalization without compromising the

ability to capture important data structures.

We set the anchor point rate from 0.1 to 1 with a step size of 0.1,

and conduct experiments on the four datasets 3-sources , BBCSport,

Yale , RGB-D to test the effect of anchor point rate on the clustering

results. As shown in Fig. 4, we can find that the clustering perfor-

mance is improved with the increase of the number of anchors, but

the anchor rate has little effect on the experimental results after

the anchor rate is greater than 0.3. The four datasets achieve the

best clustering results on 1.0, 0.9, 1.0, 0.8 respectively.

4.7 Ablation Study
We primarily focused on exploring how different depths of deep

tensor factorization affect clustering performance for multi-view

data. We executed numerous experiments using eight benchmark

datasets as described in Section 4.1. These experiments varied the

number of layers in the models to examine their influence on clus-

tering results. The depths ranged from one to four layers, with

configurations from [𝑘] to [𝑙1, 𝑙2, 𝑙3, 𝑘]. This setup allowed us to

evaluate the effectiveness of deep tensor factorization at various

layer depths. Results detailing the experimental accuracy rates are

presented in Table 5.
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Table 5: ACC(%) of different layers on eight benchmark datasets.

𝑝 Caltech-5V BBCSport Yale Vehicle Sensor RGB-D Sonar HW 3-sources

[𝑘] 90.64 89.52 79.39 98.05 59.07 97.11 92.80 68.04

[𝑙2, 𝑘] 90.64 89.15 80.00 98.05 61.07 97.11 97.60 76.33

[𝑙1, 𝑙2, 𝑘] 94.21 94.85 81.21 99.62 62.59 97.11 91.60 83.43

[𝑙1, 𝑙2, 𝑙3, 𝑘] 89.57 90.07 84.24 98.05 63.21 97.11 96.35 75.73

(a) 3-sources (b) BBCSport

(c) Yale (d) RGB-D

Figure 4: Clustering results with different anchor rate on
3-sources, BBCSport, Yale, RGB-D

On most datasets, the accuracy rate shows different trends as the

layers deepens. For example, on the Caltech-5V , BBCSport , Vehicle

Sensor 3-sources and HW dataset, the highest correctness rate was

achieved using a three-layer tensor factorization ([𝑙1, 𝑙2, 𝑘]), while
four-layer tensor factorization ([𝑙1, 𝑙2, 𝑙3, 𝑘]) performed best on the

Yale and RGB-D datasets.

However, overfitting may occur as the number of factorization

layers increases . On the Caltech-5V dataset, the accuracy using

two layers was essentially the same as when using only one layer ,

increasing to three layers the accuracy went up but then declined

when going to four layers and the same happens on the BBCSport

and HW datasets.

On the Vehicle Sensor and Sonar datasets, the performance im-

provement with increasing layers is not significant, which we at-

tribute to the simpler structure of these datasets, where the accuracy

of the basic tensor factorization is already close to 100, and thus it is

difficult to achieve a large improvement in the deeper factorization.

In general, the deep tensor factorization method significantly

improves the experimental results, which proves that our proposed

multi-view clustering method with deep tensor factorization can

effectively extract the deep and hidden features of the data.

Besides, We conducted ablation experiments on deep tensor

factorization and weighted tensor Schatten 𝑝-norm in Table 6. case1

indicates whether deep tensor factorization or single-layer tensor

factorization was used. due to the lack of consistency constraints

of the tensor factorization methods alone, it is difficult to learn

consistent cluster representation matrices, and the effect is poor

and difficult to compare, so we set case2 as the use of the weighted

tensor Schatten 𝑝-norm or the use of the ordinary Schatten 𝑝-

norm.It can be found that the weighted Schatten 𝑝-norm is overall

superior to the Schatten 𝑝-norm because the weighted Schatten 𝑝-

norm capitalizes on certain important information corresponding to

larger singular values while portraying complementary information

from different views [27].

Table 6: ACC(%) of ablation experiments

Datasets

case1 case2 BBCSport Yale 3-sources Caltech-5V

× × 89.15 78.18 72.78 89.35

× ✓ 89.52 79.39 68.04 90.64

✓ × 91.91 78.18 81.06 90.00

✓ ✓ 94.85 84.24 83.43 94.21

5 CONCLUSION
We propose an novel multi-view clustering method based on deep

tensor factorization named (MVC-DTF). By extending deem NMF

to deep tensor factorization, MVC-DTF can effectively extract the

deep and nonlinear features as well as the spatial informationof

multi-view data . In addition, by introducing the weighted tensor

Schatten 𝑝-norm of the clustering indicator matrix, the inter-view

correlation and the complementary information of each views are

well explored. We also develop an optimization algorithm for our

proposed method. Extensive experiments and comparison with

several state-of-the-art multi-view clusteirngmethod are conducted,

whose results demonstrate the effectiveness and superiority of the

method.
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