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1. Introduction
Accurate and rapid identification of structural de-

fects in materials using atomically resolved scan-
ning transmission electron microscopy (STEM) is
essential for understanding structure-property rela-
tionships. While deep learning models have been
applied to classify atomic defects from atomic-
resolution STEM images [1, 2], they often struggle
to generalize across different materials. Specifically,
deep neural networks (DNNs) trained on one mate-
rial frequently underperform when applied to un-
seen structures from other materials due to out-of-
distribution challenges, limiting their practical util-
ity.
What limits the generalizability of current models? A

major factor is their failure to explicitly incorporate
essential contextual information—such as chemical
composition and experimental conditions—into the
training process. Although this information is often
available, models relying solely on pixel-based in-
puts are prone to misclassification, as images from
distinctmaterials can appear visually similar despite
having fundamentally different chemical composi-
tions. For instance, simulated [3] high-angle annu-
lar dark field (HAADF) images of monolayer WTe2
and NbSe2 at 80 keV exhibit nearly indistinguishable
contrast, as shown in Figure 1. This highlights the ill-
posed nature of classification based purely on pixel
intensities. Directly integrating contextual informa-
tion is therefore crucial for achieving accurate and
reliable defect identification across diverse material
systems.

Methodology
To overcome these limitations, we integrate con-

textual information directly into our classification
process, as shown in Figure 2a. Each image patch
is associated with chemical composition, electron
beam energy, and detector type that will be en-
coded into a feature vector via a context encoder. In
this process, chemical composition is transformed
into normalized electron shell configuration counts,
while electron beam energy and detector type are
represented as one-hot vectors. This engineered
representation captures essential non-visual data,
enabling the model to consider both chemical com-
position and imaging conditions that affect defect
identification.
In parallel, we transform the image patches us-

ing a contrast encoder that converts them into a set
of Zernike vectors [4]. Here, each patch is approxi-
mated as a linear combination of Zernike polynomi-

Fig. 1: Image contrast alone is insufficient to reli-
ably distinguish atomic defects in materials. a
and b, Simulated HAADF images of monolayer
WTe2 and NbSe2 using an electron beam at 80 keV.
c, The images in panels a and b exhibit indistin-
guishable contrast.

als, with the resulting coefficients forming a vector
representation. These coefficients capture rotation-
ally invariant features, effectively summarizing pixel
intensity patterns while preserving critical struc-
tural details. This approach ensures that the encoder
extracts robust geometric and contrast-based fea-
tures from atomic-resolution images, complement-
ing the contextual information for improved classi-
fication performance.
The outputs fromboth the context and contrast en-

coders are then concatenated to form a combined
representation. This combined feature set inte-
grates both visual and contextual information, al-
lowing the classifier to identify atomic defect types
across a wide range of materials.

Results and Discussion
Wedemonstrate the effectiveness of our proposed

method by training an attention model [5] on sim-
ulated images [3] of 96 distinct cases of 1H MX2
monolayer transitionmetal dichalcogenides (TMDs)
with various dopants, where M denotes the transi-
tion metal and X the chalcogen. Themodel achieves
96% accuracy on both training and testing datasets.
Figure 2b shows the accuracy curves throughout
the training process. Notably, the test accuracy
marginally surpasses training accuracy as a result of
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Fig. 2: The architecture of the multimodal learning framework and classification results on experimental
data. a, The context encoder processes experimental context data, while the contrast encoder processes
image data, converting both into one-dimensional feature vectors. These vectors are concatenated and input
into the classification model, which categorizes them into one of five atomic column types: metal, dopant,
X2, single vacancy, or double vacancy. b, Accuracy curves of the defect attention model throughout the
training process. c, Classification result of monolayer WSe2 doped with Cr.

the stochastic regularization introduced by dropout
during training [6].
We also developed an interactive graphical user

interface (GUI) to streamline data labeling from ex-
perimental images. To establish trusted labels, we
implemented a consensus-based voting system that
aggregated annotations from domain experts. With
these verified labels, our trainedmodel was then ap-
plied to high-angle annular dark-field (HAADF) im-
ages of monolayer WSe2 doped with Cr, V, Mn, and
Co, yielding classification outcomes that align with
expert assessments. A representative example is
shown in Figure 2c. Notably, although our model
was trained exclusively on simulated data, it gener-
alizes effectively to experimental images.
Our results show that integrating domain-

specific context enables a singlemodel to generalize
across diverse materials, overcoming the out-of-
distribution challenges that limit conventional deep
neural networks. This work advances deep learning
for microscopy and microanalysis, shifting from
task-specific models toward a unified framework for
defect classification across varied material systems.
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