Zero-Shot Reinforcement Learning via Function Encoders

Tyler Ingebrand! Amy Zhang' Ufuk Topcu '

Abstract

Although reinforcement learning (RL) can solve
many challenging sequential decision making
problems, achieving zero-shot transfer across re-
lated tasks remains a challenge. The difficulty
lies in finding a good representation for the cur-
rent task so that the agent understands how it re-
lates to previously seen tasks. To achieve zero-
shot transfer, we introduce the function encoder,
a representation learning algorithm which repre-
sents a function as a weighted combination of
learned, non-linear basis functions. By using a
function encoder to represent the reward func-
tion or the transition function, the agent has in-
formation on how the current task relates to pre-
viously seen tasks via a coherent vector represen-
tation. Thus, the agent is able to achieve trans-
fer between related tasks at run time with no ad-
ditional training. We demonstrate state-of-the-
art data efficiency, asymptotic performance, and
training stability in three RL fields by augment-
ing basic RL algorithms with a function encoder
task representation.

1. Introduction

While deep reinforcement learning (RL) has demonstrated
the ability to solve challenging sequential decision making
problems, many real-life applications require the ability to
solve a continuum of related tasks, where each task has a
fixed objective and dynamics function. For example, an
autonomous robot operating in a kitchen needs the ability
to achieve various cooking and cleaning objectives, each of
which has a separate reward function. Likewise, if the robot
is operating outside during winter, it must be able to operate
in various slippery conditions, each of which has a separate
transition function. However, it is not possible to learn a
policy using standard RL algorithms for every possible task

"University of Texas at Austin. Correspondence to: Tyler In-
gebrand <tyleringebrand @utexas.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

Code: https://github.com/tyler-ingebrand/FunctionEncoderRL

Function data

Function representations

RL Alg.
(:) @\~ Function (s, ¢r)
i : Encoder

@/ Qs.a,¢5)

Figure 1. A diagram representing the workflow of function en-
coders. The set of functions is converted into a set of represen-
tations via a function encoder. Those representations are passed
into the RL algorithm as input to the policy and value functions.
The represented functions can be reward functions and/or transi-
tion functions, depending on the setting.

because there are conceivably infinite variations of reward
and transition functions for a given system.

A key desiderata for learning systems is zero-shot transfer,
the ability to solve any problem from the task continuum
at run time with no additional training. Zero-shot trans-
fer would allow the robot to solve all of its kitchen objec-
tives without retraining by reusing information from simi-
lar tasks. Likewise, the robot would be able to walk on a
slippery surface by slightly modifying policies capable of
walking on similar surfaces. In order for an autonomous
robot to achieve zero-shot transfer, it must know which re-
ward function it should be optimizing and the properties
of its current transition function. In other words, the au-
tonomous system needs an informative task description that
uniquely identifies the current task and describes how an
unseen task relates to prior tasks.

Prior works in zero-shot RL identify the task through a con-
text variable, which is either given (Andrychowicz et al.,
2017) or calculated from data (Touati & Ollivier, 2021;
Benjamins et al., 2022; Jaderberg et al., 2017). Such con-
text variables are often domain specific (Borsa et al., 2018;
Killian et al., 2017) and lack out-of-distribution guarantees
with respect to related but unseen tasks. In contrast, we
seek an algorithm that is applicable to many domains, and
a context representation that can provably generalize to un-
seen but related contexts. Recent works have also described
the task via natural language, and trained a policy through
imitation learning (Brohan et al., 2022; 2023). However,
this approach requires an enormous amount of data which
is impractical for most use cases.

In this paper, we introduce the function encoder, a repre-

https://github.com/tyler-ingebrand/FunctionEncoderRL

Zero-Shot Reinforcement Learning via Function Encoders

sentation learning algorithm which can be seamlessly com-
bined with any RL algorithm to achieve zero-shot transfer
in sequential decision making domains. Our algorithm first
learns a set of non-linear basis functions which span the
space of tasks, where a given task is represented by a func-
tion. New tasks are described as a linear combination of
these basis functions, thus identifying how the current task
relates to previously seen tasks. Once we have found the
basis function coefficients for a new task, we pass those co-
efficients as a context variable into the policy. This allows
the policy to transfer to new tasks because similar tasks
often have similar optimal policies, and the function en-
coder represents similar tasks with similar coefficients by
design. Thus, a basic RL algorithm which is augmented
with a function encoder task representation as an additional
input is able to adapt its policy to the given task.

To demonstrate the broad applicability of our approach, we
perform a diverse set of experiments in hidden-parameter
system identification, multi-agent RL, and multi-task RL.
In a challenging hidden-parameter version of the Half-
Cheetah environment, our approach shows a 37.5% de-
crease in the mean square error of dynamics prediction rela-
tive to a transformer baseline. In a multi-agent tag environ-
ment, our approach shows significantly better asymptotic
performance, stability, and data efficiency than comparable
baselines, achieving an average distance from the runner
which is half of the nearest baseline. In a multi-task version
of Ms. Pacman, our approach shows a 20% higher success
rate relative to multi-task algorithms and better data effi-
ciency than a transformer baseline.

Additional qualitative analysis shows the similarity be-
tween learned task representations directly reflects the sim-
ilarity between the tasks themselves. For example, Half-
Cheetah environments with similar hidden variables will
have similar representations (as measured by cosine sim-
ilarity), while environments with large differences will
have dissimilar representations. Our representation learn-
ing algorithm successfully encapsulates the relationships
between tasks, allowing basic RL algorithms to achieve
zero-shot transfer.

Contributions

e We introduce a novel, general-purpose representation
learning algorithm which finds representations for ev-
ery function in a space of functions.

* We show that the algorithm achieves state-of-the-art
performance in a supervised learning setting despite
being computationally simple.

* We demonstrate that the learned representations are
widely applicable and can be combined with any RL
algorithm for zero-shot RL.

2. Related Works

Zero-shot R There are three typical approaches to zero-
shot RL, where each episode is modeled as a related but
unique Markov decision process (MDP). We define context
as the information needed to adapt a policy to the current
episode’s underlying MDP. In some works, the context is
known (Andrychowicz et al., 2017). We consider the case
where the context is unknown but it may be implicitly de-
scribed by data.

The first approach is to find a policy which maximizes the
worst-case performance under any context. This approach
is required when there is no data to identify the current
episode’s context. Robust RL (Moos et al., 2022) and most
multi-agent RL algorithms (Vinyals et al., 2019; Bansal
et al., 2017) follow this approach. Many of these algo-
rithms train a RL algorithm on numerous contexts simul-
taneously, such as an agent playing against an adversary
randomly drawn from a league of adversaries.

The second approach is to compute a context representation
from data, and adapt the policy via the context representa-
tion. Many works in multi-task RL and hidden-parameter
RL take this approach (Konidaris & Doshi-Velez, 2014;
Benjamins et al., 2022; Touati & Ollivier, 2021; Borsa
et al., 2018; Barreto et al., 2016; Rakelly et al., 2019; Shaj
et al., 2022). Prior works lack guarantees about how rep-
resentations will transfer to related but unseen tasks. In
contrast, our approach guarantees a good representation for
unseen tasks so long as they are a linear combination of the
learned basis functions.

The third approach is to directly include data on the cur-
rent episode or task as input to the policy, often through a
sophisticated architecture like a transformer (Melo, 2022;
Duan et al., 2016; Chen et al., 2021; Brohan et al., 2022).
This strategy is motivated by the fact that transformers
have proven to be effective in natural language processing
(Brown et al., 2020; Devlin et al., 2018) and in sequential
decision making problems (Brohan et al., 2022; Chen et al.,
2021), where a large amount of data is processed simulta-
neously. However, transformers have increased costs with
respect to memory usage, training time, data efficiency, and
training stability compared to other approaches (Tay et al.,
2020; Liu et al., 2020). All transformer baselines in our
experiments fall into this category.

Basis Functions Prior works, such as the Fourier series
or Taylor series, describe basis functions which can approx-
imate functions with arbitrary precision. The correspond-
ing coefficients can in principle be used as representations
for functions. However, these analytical approaches suf-
fer from the curse of dimensionality and perform poorly
on high-dimensional function spaces. Additionally, high-
dimensional function spaces, such as images or sensor

Zero-Shot Reinforcement Learning via Function Encoders

data, are theorized to occupy low-dimensional manifolds
(Tenenbaum, 1997). Learned basis functions can fit only
this manifold without representing every possible function
in that space. In other words, learned basis functions may
better fit the data with a relatively small number of basis
functions compared to analytical approaches.

There are prior works from transfer learning which investi-
gate learned basis functions. One approach specifies basis
functions in the same form as a function encoder but com-
putes the coefficients via a deep neural network (Loo et al.,
2019). In contrast, the function encoder computes the co-
efficients through the inner product, which is computation-
ally efficient and ensures the function encoder is a linear
operator. Another work learns basis functions as a space
of features for classification problems (Snell et al., 2017).
Our work involves similar basis function design, but is ap-
plicable to regression problems. This is motivated by the
continuous nature of our setting where classification algo-
rithms are ill-suited.

3. Preliminaries

We denote the reals as R and expectation as E[-]. Calli-
graphic characters such as R indicate sets.

A Markov decision process (MDP) m is a tuple
(8, A, T,R) where S is the state space, A is the action
space, T' : S x A +— § is the transition function and
R : S x A+ Ris the reward function. The initial state
at time zero is sampled from a set of initial states Sp C S,
and the next state is determined by the transition function.
The agent receives reward according to the reward function
(Sutton & Barto, 1998).

The objective for the agent is to find the optimal policy
7 : 8§ — A which maximizes E[Y ;2 7 R(s, ar)],
the expectation of accumulated discounted reward for fu-
ture states according to some discount factor . The func-
tion V™(s;) = E[> .7, v R(sn,an)] with a; ~ m(s;)
is the state-value function for policy =, and the func-
tion Qﬂ(St, at) =K [R(St, at) + ’YVW(StJ’_l)} is the state-
action-value function (Sutton & Barto, 1998). There is a
rich literature for how to find the optimal policy via RL
(Mnih et al., 2013; Lillicrap et al., 2019; Barth-Maron et al.,
2018; Schulman et al., 2017; Haarnoja et al., 2018). In or-
der to take advantage of these prior works, we will describe
an algorithm which is generally applicable.

4. The Function Encoder
4.1. Motivation

Many fields of RL solve a modified MDP where each
episode varies with respect to a function. We define a func-
tion which varies every episode and affects the optimal pol-

icy as a perturbing function. The perturbing function view
of RL is widely applicable. In multi-task RL, the reward
function r is sampled from a set of reward functions, and a
change in reward function causes a change in the optimal
policy. Thus, the reward function is a perturbing function in
multi-task RL. In hidden-parameter RL, the transition func-
tion varies every episode due to the hidden parameters. A
change in transition function affects the optimal policy and
therefore the transition function is a perturbing function.

In general, there is no closed form solution for either the
optimal policy or the value function in terms of a perturb-
ing function. A small change in the perturbing function
can sometimes lead to abrupt and discontinuous changes
in the optimal policy. However, it is often the case that a
change in the perturbing function leads to a small, continu-
ous change in the optimal policy. In other words, the rela-
tionship between perturbing functions and optimal policies
tends to be piece-wise continuous with sparse discontinu-
ities. See A.4 for an example of how this arises even in
simple settings. It is possible to contrive an example where
this is not the case, but we do not observe this in practice.

Since the perturbing function affects the optimal policy,
the RL algorithm must have rich information on this func-
tion to calculate the optimal policy. Therefore, we give the
RL algorithm information on the perturbing function via a
learned representation which is sufficient to distinguish be-
tween perturbing functions. Thus, we represent every per-
turbing function in a space of perturbing functions, where
we are given some data to calculate this representation.
Section 4.2 describes how to find a representation for ev-
ery function in a space of perturbing functions. Section 4.4
describes how to use this representation for zero-shot RL.

4.2. Training a Function Encoder

Consider a set of functions F = {f|f : X — R} where the
input space X C R” has finite volume. This function set
represents the set of perturbing functions. Note that when
there are m > 1 output dimensions, we apply the same
procedures m times independently. Suppose F is a Hilbert
space with the inner product (f,g) = [, f(z)g(x)dz,
then there exists a set of k orthonormal basis functions
{91, 92, ---, g} such that for any f € F,

k
fa) =Y cigi(), (1)
=1

where ¢; is the coefficient for basis function ¢ and k£ may
be infinite. (Kreyszig, 1978). Given f, there is only a sin-
gle sequence of coefficients that satisfy the equation due to
the orthonormality of the basis functions. Given the coeffi-
cients, one can recover f(z) via (1). Therefore, the coeffi-
cients are a unique representation of the function.

Zero-Shot Reinforcement Learning via Function Encoders

Given the basis functions {g1, ga, ...
coefficients as

, gk }» we compute the

¢ = {frg)) = /X F(@)gs(x)da, @

which comes from the definition of the inner product.
See A.1 for a derivation. For high-dimensional f, this
integral is intractable. However, given a dataset D =
{(zj, f(z;))l7 = 1,2,...}, the coefficients are approxi-
mated using Monte-Carlo integration as

%ngz 3)

z,f(x)eD

where V' is the volume of the input space. Monte Carlo
integration requires the input data points {z;[j = 1,2,...}
to be uniformly distributed throughout the input space. If
the data set is not uniformly distributed, it can be cor-
rected with importance sampling (Sobol, 1994). Addition-
ally, as | D| approaches infinity, the error in the approxima-
tion approaches zero (Sobol, 1994). Since the coefficients
uniquely identify the function, we find a unique represen-
tation for a function f given basis functions {g1, g2, .-, g }
and data on the function f.

This approximation is an important aspect of the function
encoder. The representation for a function is calculated
using a sample mean (scaled by V'), which can be com-
puted efficiently on a GPU. A large batch of data can be
used to compute a representation in only milliseconds. It
is also possible to iteratively update this sample mean as
new data arrives, such that a low-compute embedded sys-
tem could calculate this representation in real-time with
constant memory usage. Lastly, once we have computed
the coefficients from data, we can compute f via (1) with-

Algorithm 1 Function Encoder

1: Input: Step size «, set of data sets D =
{{(SL’Z‘, fj(l'l)ll = 1, 2, ceey I}‘j = 1, 2, ceey J}
2: Output: Basis functions {1, go, ..., Jv }
3: Initialize {§1, g2, ..., G» } parameterized by 6
: while not converged do
loss =0

4
5

6: for{(ml,fj(Jli=1,2,..}in D do

7 (Cr)e =T Zml,f])fg(fvz)gk(x;) Vk >Eq. 4
8 fj(xz) = Zk:l(cfj)kgk(xl) Vi >Eq. 5
9: loss += (fj(x;) — fi(z:))?/1 Vi >Eq. 6
10: end for

11: 6 =0—aVyloss
12: end while
13: return {g1, go, ..., gn }

out any form of retraining. Thus, the function encoder is
extremely useful for online settings.

The only remaining challenge is how to find the basis func-
tions for a space of unknown functions. To do so, we first
initialize b basis function approximations {g1, g2, ..., Js}
using neural networks (or one multi-headed neural net-
work). Initially, these basis functions neither span the func-
tion set nor capture any relevant information. Nonetheless,
we compute the coefficients using a dataset D,

= > [“)

z,f(x)eD

Once we have computed the coefficients, we approximate
f using the basis function approximations,

flz) = Z &gi(x). (5)

Lastly, we define a loss function for the function approxi-
mation, such as the mean squared error

B Y (@1t ®

x,f(x)eD

which is minimized via gradient descent. Following this
process in a iterative fashion yields Algorithm 1. The re-
sult is a set of learned, non-linear basis functions which
span the set of functions. We call the set of learned ba-
sis functions a function encoder, since the basis functions
encode any function f € F into a vector representation
¢y = {c1,¢a,...,cp}. See Figure 2 for a graphical repre-
sentation of how example data is used to predict f(z).

Theorem 1. The function encoder’s mapping from func-
tions to representations is a linear operator.

Proof. Consider a function f3 = af; + bfs where a € R
and b € R. The i-th coefficient for function f3 can be
computed using (2):

(cts)i = ([f3,9:)
(er5)i = (af1 +bfa, 9i)
(cps)i = alf1, 9i) + b(f2,9:)

(Cfs)i = a(cfl)i + b(cfz)i

This is true for every basis function g;, so therefore it is
true for the vector representation. Thus, the linear relation-
ship between functions is preserved as a linear relationship
between representations, ¢y, = acy, + bey,. O

Zero-Shot Reinforcement Learning via Function Encoders

This implies if f5 is not a function in the training dataset,
but f; and f, are, then f35 can be well represented. If the
function encoder can represent every function in the train-
ing set, then it can also represent unseen functions so long
as they are a linear combination of functions in the train-
ing set. Furthermore, this implies it possible to increase
the dimensionality of the learned space by incorporating di-
verse training functions. Thus, the function encoder yields
unique representations with predictable and generalizable
relationships.

4.3. Orthonormality

This algorithm does not enforce orthonormality. Empiri-
cally, we observe that the basis functions converge towards
orthonormality, where an orthonormal basis spanning the
function space has zero loss. See A.5 for a discussion.

4.4. Zero-Shot RL via Function Encoders

To achieve zero-shot transfer in a RL domain, we first en-
code the perturbing function using a function encoder. The
representation uniquely identifies the perturbing function
and its relationship to previously seen functions. The rep-
resentation is passed into a RL algorithm as an additional
input, which yields a policy of the form 7 (s, ¢s) and value
functions of the form V™ (s, cy) and Q7 (s, a, cy) where c;
is the encoding of the perturbing function. Because poli-
cies and value functions are common components in all RL
algorithms, this approach is widely applicable. Providing
the representation allows the RL algorithm to successfully
adapt its actions depending on the current episode’s per-
turbing function, as we demonstrate in Section 5.

Example data

T %—.

r {00}
| o

Figure 2. A block diagram representing the flow of information in
a function encoder. The top segment of the diagram shows how to
use example data to compute the representation cy. The bottom
segment shows how to use c; to predict f (z) for a given input .

A Key Assumption Data on the perturbing function is
needed to compute its representation. This data has the
form of input-output pairs, but no further information is
needed on the perturbing function neither during training
nor execution. This also implies some exploration must be
done each episode, to collect data, before exploitation can
occur. This paper does not address the exploration problem
and assumes access to data on the perturbing function.

5. Experiments

To evaluate our approach, we first ensure that a function
encoder can be accurately trained in a supervised setting.
In Section 5.1, we demonstrate faster convergence and bet-
ter asymptotic performance, relative to a transformer base-
line, on a supervised hidden-parameter system identifica-
tion problem. Next, we evaluate the quality of the repre-
sentations created by a function encoder. In Sections 5.2
and 5.3, we demonstrate zero-shot RL by passing the repre-
sentation of the perturbing function into the RL algorithm.
In order for a policy to perform well in these settings, it
requires rich information on the perturbing function, and
thus the results indicate that the representations carry this
rich information. See A.2 for implementation details. We
use b = 100 basis functions for all experiments. See A.6
for an ablation on how the hyper-parameters affect perfor-
mance.

5.1. Hidden-Parameter System Identification

Hidden-parameter MDPs differ from MDPs in that the tran-
sition function depends on an additional hidden parameter
0. The hidden parameter 6 varies every episode and is un-
known to the agent. From the agent’s perspective, the tran-
sition function is different every episode and this affects the
optimal policy. Thus, the transition function is a perturbing
function in this setting.

We compare function encoders against two other deep
learning baselines for system identification in hidden-
parameter MDPs. The testing environment is a modified
Half-Cheetah environment (Towers et al., 2023) where the
segment lengths, friction coefficient, and control authority
are randomized within a range each episode, which leads
to variance in the transition function. The goal is for the
system identification algorithm to accurately predict tran-
sitions given 5, 000 example data points on previous tran-
sitions. The training dataset includes 200 transition func-
tions. Figure 3 plots the results.

MLP cannot incorporate example data, so its lowest MSE
estimator would be to predict the average transition func-
tion in its data set. Its performance stalls because it is not
possible to accurately predict the transition function with-
out using information on the hidden parameters.

Zero-Shot Reinforcement Learning via Function Encoders

Transformer can incorporate the example data by pass-
ing it as input into the encoder side of the transformer. Un-
like the function encoder, the transformer is memory in-
efficient so it is not able to use all of the example data.
The state-action pair, for which we want to predict the next
state, is input to the decoder side of the transformer. Note
that transformers are computationally expensive, and suffer
a 194% increase in training time relative to MLP.

FE is able to use all example data by converting it into a
function encoder representation. This representation can
then be used to estimate the function, as shown in (5). We
observe that the function encoder shows better performance
relative to the two baselines, with a 19.7% decrease in MSE
relative to the transformer. Additionally, the function en-
coder is computationally efficient and only incurs a 5% in-
crease in training time relative to MLP.

FE + MLP is an extension where the function is repre-
sented as f(z) = f(z) + faur(x), where f is the av-
erage transition function and fg;; is the difference be-
tween the current function and the average function. f(z)
is a MLP trained via a typical gradient-based approach,
whereas fq;¢(z) is a function encoder. This approach has
better data efficiency than a standalone function encoder
because the data is only needed to predict how the current
function differs from the average function, which is an eas-
ier task than identifying the function itself. FE + MLP
achieves a 37.5% decrease in MSE relative to the trans-
former baseline. However, there is a gradient calculation
for both f(z) and f4;¢(x), which leads to a moderate 75%
increase in training time relative to MLP. We would like
to highlight that this approach achieves good performance
with as little as 50 data points. See A.6.

T T
g s MLP s Transformer
FE + MLP

— FE

Oracle

Test MSE

| | | |
0 200 400 600 800
Gradient Step

1,000

Figure 3. Comparison of MLPs, transformers, and function en-
coders on system identification of a hidden-parameter MDP. Each
algorithm is run for three seeds, with the shaded areas represent-
ing minimum and maximum values.

Oracle is a MLP baseline with access to the hidden pa-
rameters as a input variable. The oracle is an approximate
upper bound on the performance of an end-to-end system
identification algorithm because it is provided with all of
the information needed to accurately predict the dynamics.

Function encoders also allow us to compare the represen-
tations across environments with different hidden parame-
ters. An ideal representation algorithm would show a high
cosine similarity between two environments with similar
hidden parameters, and a low cosine similarity between two
environments with divergent hidden parameters. Figure 5
shows the cosine similarity between environments that vary
along a single hidden parameter dimension for the Half-
Cheetah experiment. We observe the desired relationship
for the function encoder’s representation, and we can ad-
ditionally use the representation to study the environment.
By analyzing which hidden parameters have the most effect
on the representation, we can learn which hidden parame-
ters have the most effect on the transition function itself
since the representation directly corresponds to the tran-
sition function. The learned representation suggests that
torso length is the most influential factor on system dynam-
ics, followed by control authority (gears).

5.2. Multi-Agent Reinforcement Learning

Multi-agent RL models an environment where an adversary
takes actions which affect the transitions and rewards. We
assume the adversary’s policy changes every episode, but
remains fixed for a given episode. This assumption reflects
an agent playing against a random opponent every episode.
The adversary’s policy affects the agent’s policy. For exam-

i vt"u‘,w‘tﬂ
_5 [‘\
I
£
5 —10 ’
5 I
R~
5] i
s PPO + FE =~ s PPO
PPO + OHE == PPO + Trans
_20 | | | |
0 0.2 0.4 0.6 0.8 1.0

Env Step (-10°)

Figure 4. Training curves for four algorithms on multi-agent tag.
The adversary is randomly sampled from a pre-trained league of
runners. Each algorithm is run for five seeds, with shaded areas
indicating first and third quartiles.

Zero-Shot Reinforcement Learning via Function Encoders

Friction Torso Length Back Thigh Length Back Shin Length

Front Thigh Length Front Shin Length Front Foot Length Back Thigh Gear

Front Shin Gear Front Foot Gear

Back Foot Gear

2.00 2.00 2.00 2.00
1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00
0.00 1.00 2.00 0.00 1.00 2.00 0.00 1.00 2.00 0.00 1.00 2.00

Front Thigh Gear

Back Foot Length

2.00 1.50 1.50 1.50 1.50
1.25 1.00 1.00 1.00 1.00
0.50 0.50 0.50 0.50 0.50
0.50 1.25 2.00 0.50 1.00 1.50 0.50 1.00 1.50 0.50 1.00 1.50 0.50 1.00 1.50

Back Shin Gear

1.50 1.50 1.50 2.00 2.00
1.00 1.00 1.00 1.00 1.00
0.50 0.50 0.50 0.00 0.00
0.50 1.00 1.50 0.50 1.00 1.50 0.50 1.00 1.50 0.00 1.00 2.00 0.00 1.00 2.00

1.00

0.98

0.96

0.94

0.88

Figure 5. A plot of cosine similarity between function encoder representations for hidden-parameter environments. Axes show the
hidden parameter value as a ratio of its default value in the Half-Cheetah environment. This figure shows that the function encoder
representations directly relate to the underlying hidden parameters in a consistent fashion, where an increasing change in a given hidden
parameter leads to an increasing change in the representation.

ple, an adversary may take actions which can be exploited,
and thus the optimal policy of the agent changes to ex-
ploit those weaknesses. Therefore, the adversary’s policy
is a perturbing function. At execution time, we assume ac-
cess to 10, 000 data points on each adversary. The training
dataset includes data on 10 adversaries.

We compare function encoders against three baselines for
multi-agent RL in a tag environment (Terry et al., 2021),
where one agent tries to catch the other. We first train a
league of both taggers and runners to ensure policy diver-
sity. Then, we train a new agent to tag the runners. The
agent plays against a random runner each episode and the
goal is to perform well against every adversary. We plot the
results in Figure 4.

PPO does not have access to any information on which
agent it is playing against in the current episode. PPO +
Trans uses data on the adversary’s policy as input to the
encoder side of a transformer and the current state as in-
put to the decoder side of the transformer. PPO + OHE
gets access to a one-hot encoding of the index of its current
adversary. Thus, it has access to information about which
adversary it is playing against. Lastly, PPO + FE uses ad-
versary data to generate a representation of the adversary’s
policy, which is passed into the state-value function and the
agent’s policy.

PPO + Trans shows poor data efficiency and asymptotic
performance, which we conjecture is due to the on-policy
nature of both PPO and adversarial game play. In con-
trast to the multi-task example in Section 5.3, the trans-

former cannot reuse transitions to compute a temporal loss
for multiple adversaries because those transitions are ad-
versary dependent, thus limiting data reuse. Transform-
ers are sensitive to this data inefficiency. Although PPO +
OHE can distinguish between adversaries, it achieves poor
asymptotic performance. Since there is a separate opti-
mal policy for every adversary, this approach must learn
N different optimal policies, one for each adversary, and
it must be conditioned on the OHE. The results suggests
that this conditioning is hard to learn and that a represen-
tation should identify the relationship between adversaries
to improve performance. PPO initially improves, but even-
tually the difference between adversaries begins to signifi-
cantly affect the value of a given state. Since PPO is blind
to these differences, this effectively injects noise into the
Bellman backup, which disrupts learning. PPO + FE is
both sufficient to distinguish between adversaries, and to
describe the relationships between them. It shows the same
data-efficiency as PPO, but stably converges because it can
distinguish the value of a given state based on its adversary.

5.3. Multi-Task Reinforcement Learning

In multi-task RL, the reward function is sampled from a
set of reward functions each episode. The sampled reward
function affects the optimal policy. Therefore, the reward
function is a perturbing function. In this section, we show
that a function encoder can use data on the reward function
to generate a representation. Then, this representation is
passed into a RL algorithm to achieve zero-shot RL.

Zero-Shot Reinforcement Learning via Function Encoders

1
08} VAW |2
N I3
§o 6f i 1 E
A . M“v o 40
b I\ =]
Q /A
el | 2
[Z 20
0.2 /“ “(r A
A
0 : : 0

0 0.5 1.0 1.5 2.0 2.5
Env Step (-10°)

=2
o

=== DOQN + FE

e DQN + Trans
= FB

=== DQN + HER
=== DQN + FE (abl.)

0 0.5 1.0 1.5 2.0 2.5

Env Step (-10°)

Figure 6. Comparison of forward-backward (FB) learning and various versions of DQN on the Ms. Pacman environment. Left shows
the fraction of episodes that terminate with Ms. Pacman at the goal location. Right shows the average distance to the goal location at the
end of the episode. Shaded areas indicate the first and third quartiles over five seeds.

Function Encoder Function Encoder Ablation

Forward-Backward Transformer 3
Similar

Inbetween

Dissimilar

Figure 7. Cosine similarity between representations for reward functions of different goal locations. Similarity is shown between every
goal location relative to the goal in the top left corner marked with a star. Cosine similarity scores are normalized for each algorithm. This
figure shows that function encoders and transformers learn representations which maintain the relationships between goal locations.

We evaluate function encoders on a challenging multi-task
version of Ms. Pacman (Touati & Ollivier, 2021). The ob-
jective in this environment is to reach a goal location with-
out being captured by a ghost. However, the goal location
is not given directly and instead the algorithm must infer
the goal location from reward data. At execution time, we
provide 10,000 data points on the reward function to the
algorithms. The training set includes all reward functions.

We compare against multi-task baselines, shown in Figure
6. Forward-backward representation learning (FB) learns a
representation of possible trajectories, and uses reward data
to compute what the optimal trajectory should be (Touati
& Ollivier, 2021). Note that FB uses no reward data during
training, but uses the same reward information at execu-
tion time. DON + Trans uses the reward data as input
to the encoder side and the current state as input to the
decoder side of a transformer. DON + HER is a multi-
task algorithm which assumes access to the goal loca-
tions and the reward function (Andrychowicz et al., 2017).
DON + FE uses reward data to compute a representation,
which is then passed into the state-action-value function.
DON + FE (abl.) is an ablation where the representa-
tion ¢y is calculated according to (4), but instead of us-

ing (5), the reward function approximation is calculated
as 7#(s,a) = 7g(s,a,cy), where ry is a MLP. This repre-
sentation is empirically not sufficient to accurately predict
r(s,a), and thus acts as a baseline with imperfect function
representations.

We observe that DON + FE has better data efficiency and
asymptotic performance compared to the other approaches.
DON + FE uses reward data during training to guide ex-
ploration, unlike FB which samples a reward function from
its internal representation to guide exploration. Directly in-
corporating reward data via a transformer achieves good
performance as well, although its worth noting that the
transformer takes much more time to train (4x in this im-
plementation) and requires hyper-parameter tuning. Lastly,
the ablation shows that the quality of the representation
matters. If the representation is not sufficient to identify r,
then the RL algorithm cannot distinguish what the current
task is and its performance suffers.

Algorithms can also be compared by the landscape of their
representations. We use cosine similarity to compare rep-
resentations learned by each algorithm. An ideal repre-
sentation should maintain the relationships between func-

Zero-Shot Reinforcement Learning via Function Encoders

tions such that similar functions have similar representa-
tions. This property would allow the RL algorithm to use
similar policies for similar reward functions, whereas if the
representations for similar functions are unrelated, the RL
algorithm must memorize a separate policy for each reward
function. We graph the cosine similarity of representations
in Figure 7. This graph indicates that the function encoder
and the transformer learned a representation that reflects
the relationships between reward functions, where similar
goals have similar representations. In contrast, other ap-
proaches do not maintain this relationship.

6. Conclusion

We have introduced the function encoder, a general-
purpose representation learning algorithm capable of en-
coding a function as a linear combination of learned, non-
linear basis functions. The function encoder is a linear op-
erator, meaning the learned representations are generaliz-
able and predictable with respect to previously seen rep-
resentations. Using a function encoder to represent tasks
allows a basic RL algorithm to achieve zero-shot transfer
between a set of related tasks. The representation is simply
passed into the policy and value function as an additional
input without making major modifications to the RL algo-
rithm. This method is stable, data efficient, and achieves
high asymptotic performance relative to prior approaches
while maintaining the simplicity of basic RL algorithms.

7. Acknowledgements

Thank you to my colleagues Cyrus Neary, Sophia Smith,
and Dr. Adam Thorpe for helpful discussions. This work
was supported in part by NSF 2214939, AFOSR FA9550-
19-1-0005, and ARL W911NF-21-1-0009.

8. Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J.,
Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel,
P., and Zaremba, W. Hindsight experience replay. CoRR,
2017.

Bansal, T., Pachocki, J., Sidor, S., Sutskever, 1., and Mor-
datch, I. Emergent complexity via multi-agent competi-
tion. CoRR, 2017.

Barreto, A., Munos, R., Schaul, T., and Silver, D. Suc-

cessor features for transfer in reinforcement learning.
CoRR, 2016.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney,
W., Horgan, D., TB, D., Muldal, A., Heess, N., and Lill-
icrap, T. P. Distributed distributional deterministic policy
gradients. CoRR, 2018.

Benjamins, C., Eimer, T., Schubert, F., Mohan, A.,
Biedenkapp, A., Rosenhahn, B., Hutter, F., and Lin-
dauer, M. Contextualize me - the case for context in
reinforcement learning. CoRR, 2022.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D. J., Munos,
R., van Hasselt, H., Silver, D., and Schaul, T. Universal
successor features approximators. CoRR, 2018.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis,
J., Finn, C., Gopalakrishnan, K., Hausman, K., Herzog,
A., Hsu, J., Ibarz, J., Ichter, B., Irpan, A., Jackson, T.,
Jesmonth, S., Joshi, N. J., Julian, R., Kalashnikov, D.,
Kuang, Y., Leal, I, Lee, K., Levine, S., Lu, Y., Malla, U.,
Manjunath, D., Mordatch, I., Nachum, O., Parada, C.,
Peralta, J., Perez, E., Pertsch, K., Quiambao, J., Rao, K.,
Ryoo, M. S., Salazar, G., Sanketi, P., Sayed, K., Singh,
J., Sontakke, S., Stone, A., Tan, C., Tran, H. T., Van-
houcke, V., Vega, S., Vuong, Q., Xia, F,, Xiao, T., Xu, P.,
Xu, S., Yu, T, and Zitkovich, B. RT-1: robotics trans-
former for real-world control at scale. CoRR, 2022.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen,
X., Choromanski, K., Ding, T., Driess, D., Dubey, A.,
Finn, C., Florence, P., Fu, C., Arenas, M. G., Gopalakr-
ishnan, K., Han, K., Hausman, K., Herzog, A., Hsu, J.,
Ichter, B., Irpan, A., Joshi, N. J., Julian, R., Kalashnikov,
D., Kuang, Y., Leal, L., Lee, L., Lee, T. E., Levine, S.,
Lu, Y., Michalewski, H., Mordatch, I., Pertsch, K., Rao,
K., Reymann, K., Ryoo, M. S., Salazar, G., Sanketi,
P., Sermanet, P., Singh, J., Singh, A., Soricut, R., Tran,
H. T., Vanhoucke, V., Vuong, Q., Wahid, A., Welker, S.,
Wohlhart, P., Wu, J., Xia, F., Xiao, T., Xu, P,, Xu, S., Yu,
T., and Zitkovich, B. RT-2: vision-language-action mod-
els transfer web knowledge to robotic control. CoRR,
2023.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, 1., and Amodei, D.
Language models are few-shot learners. CoRR, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P, Srinivas, A., and Mordatch, I.

Zero-Shot Reinforcement Learning via Function Encoders

Decision transformer: Reinforcement learning via se-
quence modeling. CoRR, 2021.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. CoRR, 2018.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. R1%: Fast reinforcement learning via
slow reinforcement learning. CoRR, 2016.

Haarnoja, T., Zhou, A., Abbeel, P.,, and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. CoRR, 2018.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Rein-
forcement learning with unsupervised auxiliary tasks. In
ICLR, 2017.

Killian, T. W., Konidaris, G. D., and Doshi-Velez, F. Ro-
bust and efficient transfer learning with hidden parame-
ter markov decision processes. In AAAL pp. 4949-4950.
AAAI Press, 2017.

Konidaris, G. D. and Doshi-Velez, F. Hidden parameter
markov decision processes: An emerging paradigm for
modeling families of related tasks. In AAAI Fall Sym-
posia. AAAI Press, 2014,

Kreyszig, E. Introductory Functional Analysis with Appli-
cations. John Wiley & Sons. Inc., 1978.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning, 2019.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. Under-
standing the difficulty of training transformers. CoRR,
2020.

Loo, Y., Lim, S. K., Roig, G., and Cheung, N.-M. Few-shot
regression via learned basis functions. /CLR, 2019.

Melo, L. C. Transformers are meta-reinforcement learners.
CoRR, 2022.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
Playing atari with deep reinforcement learning. CoRR,
2013.

Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever,
D., and Peters, J. Robust reinforcement learning: A re-
view of foundations and recent advances. Mach. Learn.
Knowl. Extr., 4(1):276-315, 2022.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., and Levine,
S. Efficient off-policy meta-reinforcement learning via
probabilistic context variables. CoRR, 2019.

10

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, 2017.

Shaj, V., Buchler, D., Sonker, R., Becker, P., and Neumann,
G. Hidden parameter recurrent state space models for
changing dynamics scenarios. CoRR, 2022.

Snell, J., Swersky, K., and Zemel, R. S. Prototypical net-
works for few-shot learning. CoRR, 2017.

Sobol, I. M. A Primer for the Monte Carlo Method. CRC
Press, 1994.

Sutton, R. S. and Barto, A. G. Reinforcement learning - an
introduction. Adaptive computation and machine learn-
ing. MIT Press, 1998.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. CoRR, 2020.

Tenenbaum, J. B. Mapping a manifold of perceptual obser-
vations. In NIPS, pp. 682—688. The MIT Press, 1997.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari,
A., Sullivan, R., Santos, L. S., Dieffendahl, C., Horsch,
C., Perez-Vicente, R., et al. Pettingzoo: Gym for multi-
agent reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 34:15032-15043, 2021.

Touati, A. and Ollivier, Y. Learning one representation to
optimize all rewards. CoRR, 2021.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G. d., Deleu, T., Goulao, M., Kallinteris, A., KG,
A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schul-
hoff, S., Tai, J. J., Shen, A. T. J., and Younis, O. G.
Gymnasium, 2023.

Vinyals, O., Babuschkin, 1., Czarnecki, W. M., Mathieu,
M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss,
M., Danihelka, 1., Huang, A., Sifre, L., Cai, T., Aga-
piou, J. P, Jaderberg, M., Vezhnevets, A. S., Leblond, R.,
Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y., Molloy,
J., Paine, T. L., Giilcehre, C., Wang, Z., Pfaff, T., Wu,
Y., Ring, R., Yogatama, D., Wiinsch, D., McKinney, K.,
Smith, O., Schaul, T., Lillicrap, T. P., Kavukcuoglu, K.,
Hassabis, D., Apps, C., and Silver, D. Grandmaster level
in starcraft II using multi-agent reinforcement learning.
Nat., pp. 350-354, 2019.

Zero-Shot Reinforcement Learning via Function Encoders

A. Appendix
A.1. Proof for Equation 2

¢ = frg)) = /X f(@)gi(x)dz

This can be shown starting from (1) (converted to vector

2

notation):
k
F=Yc¢g (1)
j=1
k
(f.9:) chgg,gl
k
(f:9:) ch (95 9i)
<f7 gz> =

Note the last step is valid due to the orthogonality of the
basis functions:

Vi # 7 (gi,95) =0
Vi (gi,9i) =1

A.2. Implementation Details

Code is available here:
https://github.com/tyler-ingebrand/FunctionEncoderRL

Hardware All experiments on performed on a 9th gener-
ation Intel i9 CPU and a Nvidia Geforce 2060 with 6 GB
of memory.

Transformers All experiments involving transformers
maximize data input size to use all GPU memory. Further-
more, gradient accumulation is used to improve the input
size, which greatly increases training time. The maximum
input size is 200 — 400 examples, depending on the ex-
periment. Additionally, all transformers are used without
positional embeddings. In principle, a transformer with a
positional embedding can be used as the underlying basis
functions for a function encoder, capturing the benefits of
both approaches.

Volume Equation 4 requires the volume of the input
space, V, to calculate the coefficients for a given function.
However, V' may be hard to calculate depending on the in-
put space. For example, the input space may be a unknown
subset of R™ or even an image. In that case, it is unclear
how to calculate V. To overcome this issue define the in-
ner product as (f,g;) = 1 f v [x)dx. This is still
a valid inner product but V' will cancel out in the result-
ing Monte Carlo integration. This changes the magnitude

11

of the basis functions, since they must either increase or
decrease to compensate depending on the value of V/, but
does not require explicit knowledge of V' and is thus better
in practice. It also affects the magnitude of the gradients.
For this reason, gradient clipping is a useful technique for
function encoders.

Biased Gradients When training a function encoder, it
is important that every gradient update includes gradients
from a large number of functions in the function set. If a
single function is used to compute loss, the resulting gra-
dients are biased to improve the function encoder’s perfor-
mance with respect to that function but at the cost of de-
creased performance for other functions. By calculating
loss using multiple functions, that bias is reduced. Experi-
mental results show that function encoders (and transform-
ers) trained on one function at a time fail to converge, while
using even just five functions at a time will converge. Us-
ing more functions per gradient update further improves
convergence speed.

Additionally, each function used to calculate loss ideally
should use overlapping data points such that the function
can also learn how functions differ for the same input.
Without this information, the function encoder may overfit
a portion of the input space to a particular function instead
of learning how each function fits that space.

A.3. Inductive Biases

Since function encoder representations have known prop-
erties, they allow the algorithm designer to investigate the
inductive biases created by the choice of neural network ar-
chitecture. These inductive biases can either help or hinder
learning, depending on whether or not they align with the
problem setting.

Consider a multi-task environment where only the reward
function differs between episodes. There are known useful
properties between reward functions and value functions
which can be exploited. Suppose the reward function can
be written as a linear combination of basis functions, such
as its function encoder representation. Then a linear change
in reward leads to a linear change in value for a given pol-
icy. This implies a good inductive bias for the state-action-
value function is

Q7 (s,a,¢,) = Q" (s,a) "¢y,

where Q™ (s, a) is a vector-valued function where each en-
try represents the value of the policy with respect to a given
reward function basis. This inductive bias encapsulates the
linear nature of value with respect to a change in reward for
a particular policy. However, the optimal policy is not con-
stant with respect to the reward function, so this inductive
bias is poor for the optimal policy.

https://github.com/tyler-ingebrand/FunctionEncoderRL

Zero-Shot Reinforcement Learning via Function Encoders

State = (x,y)
Reward = cx

i

+1

Figure 8. A diagram depicting example MDPs where the reward
or transition function varies. This diagram is used to illustrate how
policies may vary with respect to changes in their reward (left) or
transition functions (right). In the figure on the right, the box with
arrows in it indicates a treadmill. If the agent is faster than the
treadmill, it can pass over the treadmill. Otherwise, the treadmill
would push the agent backwards.

Since a small change in reward function may lead to an
abrupt, discontinuous change in the optimal policy, it is
necessary that the value function for the optimal policy re-
flects this. A reasonable architecture is

Q™ (s,a,¢,) = Q" (s,a,¢,) er.

This inductive bias directly captures the linear relationship
of value with respect to reward for the case where the opti-
mal policy does not change with respect to a small change
in ¢, while also allowing the value function to make
abrupt, non-linear changes with respect to c, if needed.
Thus, this architecture has a good inductive bias for state-
action-value functions with respect to reward functions be-
cause it naturally captures the expected relationship be-
tween reward and value.

A 4. Piece-Wise Continuous with Sparse
Discontinuities

The following simple examples illustrate how the relation-
ship between reward or transitions functions and optimal
policies may be piece-wise continuous with sparse discon-
tinuities. The environment is a basic grid world where the
agent can move left, right, up, or down at some fixed veloc-

1ty.

Reward Function Consider the environment shown in
Figure 8. Since the reward is cz, if ¢ > 0, the agent should
go right, and if ¢ < 0, the agent should go left. Atc = 0,
there is a discontinuity where the optimal policy changes.
For most of the reward function space, a small change in
c has no affect on the optimal policy. Hence, the optimal
policy is (piece-wise) continuous with respect to a change
in reward. However, around ¢ = 0, a small change in re-
ward leads to a discontinuous change in policy. Thus, there

12

are sparse discontinuities. This example environment illus-
trates how reward functions can affect optimal policies.

Transition Function Consider the environment shown in
Figure 8. The treadmill, shown as a rectangle with arrows,
has a variable speed vireqdmin- If the agent’s speed vogent
exceeds the treadmill’s speed, it can move into the upper
room and collect +10 reward. Otherwise, the treadmill is
too strong and pushes the agent back into the room on the
bottom, so it can only collect the +1 reward. Therefore, the
optimal policy of the agent depends on its max speed. If
Vagent > Vtreadmill, it should go up and collect the +10. If
Vagent < Vtreadmill» it should go down and collect the +1.
For most treadmill speeds, a small change in speed does
not affect the optimal policy. For example, if the agent is
much faster than the treadmill, then making the treadmill
slightly faster will not affect the optimal policy. However,
if the agent is only barely faster than the treadmill, then
making the treadmill slightly faster will lead to a discon-
tinuous change in policy. This example illustrates how the
optimal policy varies with respect to a change in the transi-
tion function.

A.5. Orthonormality
2 02 |
—
2
.T";
g
S 01p =
)
<=
I
o
=== Function Encoder
0 | | |
0 500 1,000 1,500 2,000

Gradient Step

Figure 9. This figure shows the orthonormality of the learned ba-
sis functions throughout training on the hidden-parameter system
identification task. Y axis indicates a measure of how far the basis
functions are from orthonormality. In this example, the orthonor-
mality loss is not used for back-propagation, it is only used to ob-
serve how orthonormal the basis functions are. Plot shows min,
max, and median over 5 seeds.

We empirically observe that the basis functions converge
towards orthonormality during training. We measure or-
thonormality via the following term. For each pair of ba-
sis functions g;, g;, the inner product is approximated via
Monte Carlo integration. For ¢ = j, the inner product
would be 1 if the functions are orthonormal. For i # j, the
inner product would be 0. The orthonormality loss mea-
sures how far the calculated inner products are from these
values via mean square error, where the mean is over all
pairs of basis functions. See Figure 9. Additionally, we

Zero-Shot Reinforcement Learning via Function Encoders

@ 0.15
wn
=
3
g orf .
)
(=]
v
3
b~ 0.05 |- |
5‘} Function Encoder
2 - - — Transformer

0

20 40 60 80 100

Number of Basis Functions

(a) This figure ablates the function encoder’s performance on the
hidden-parameter system identification task from section 5.1. X-
axis indicates the number of basis functions used for training. Y-
axis indicates the MSE after 500 descent steps. The red, dashed
line indicates the performance of a transformer.

experimented with enforcing orthnormality by using the
orthonormality loss as an additional loss component. We
found that while it does improve the convergence speed of
the orthnormality loss, it does not improve accuracy.

A.6. Ablations

We investigate the effects of the number of basis functions
and the number of example data points used to compute the
representation. See Figures 10a and 10b.

The ablation shows that the performance of the function en-
coder is superior to the transformer baseline if more than 10
basis functions are used. For less than 10 basis functions,
the performance degrades significantly for this particular
dataset. Note that the number of basis functions chosen
determines the maximum dimensionality of the space that
can be learned, and so a larger number of basis functions is
better. Furthermore, the number of basis functions needed
depends on the dimensionality of the function space in the
dataset. We would like to highlight that the function en-
coder can efficiently use 100 or more basis functions due
to parameter sharing. Therefore, a user may simply choose
a large number of basis functions to avoid issues.

We perform an ablation on small data settings, ranging
from 50 to 1000 example data points. Results indicate
that the function encoder outperforms the transformer if the
number of data points is greater than 600. We highlight that
the FE + MLP approach is designed for low data settings,
and outperforms the transformer even under low data set-
tings.

13

005 —r=E -
—— FE+MLP

- - — Transformer (200 points)

MSE After 500 Descent Steps

| |
200 400 600 800
Number of Example Data Points

1000

(b) This figure ablates the function encoder’s performance on the
hidden-parameter system identification task from section 5.1. X-
axis indicates the number of example data points. Y-axis indicates
the MSE after 500 descent steps. The red, dashed line indicates
the performance of a transformer, which is limited to 200 example
data points by memory constraints.

