
Generative Occupancy Fields for 3D Surface-Aware
Image Synthesis

(Supplementary Material)

Here we provide implementation details, additional results on CARLA dataset, and proof of the
equivalence between two rendering schemes when ∆min → 0. A brief discussion on the future works
and broader impacts is also included. Our code and models are available at https://github.com/
SheldonTsui/GOF_NeurIPS2021.

A Model Details

Following StyleGAN [1], the mapping network is an MLP with three hidden layers of 256 units each.
Besides, we leverage the FiLMed-SIREN [2] module as the backbone for the generator Gθ [3]. On
the head of predicting α(x, z), a sigmoid function is included to ensure the value range.

Similar to pi-GAN [3], our discriminator Dθ grows progressively as training goes. The resolution
of training images is initially set as 32 × 32 and doubled twice during training, up to 128 × 128.
Apart from discriminating the generated images, the discriminator Dθ will additionally predict
the corresponding latent code ẑ and the camera pose ξ̂, which will be used to compare with the
ground-truth values as additional losses.

B Additional Training Details

For all datasets used in the experiments, we assume a pinhole perspective camera with a field of view
of 12◦. During training, we sample camera poses ξ from a Gaussian distribution pξ for BFM and
CelebA dataset. For Cats dataset, a uniform distribution is leveraged as the setting in pi-GAN [3].
During training, the opacity coefficient λopacity will grow monotonically with an exponential rate γopac
following λopacity = min(λopac_init · exp(nγopac), 10). When computing the surface normals, we set
the Euclidean norm of the small random 3D perturbation ε as 0.01. Besides, we find the hierarchical
sampling is still effective in our method. For a fair comparison with baseline methods, we uniformly
set the number of bins in root-finding M to 9, set the number of coarse samples Ncoarse to 9 and set
the number of fine samples Nfine to 6 in our method. In Table 1 we include the values of important
dataset-dependent hyperparameters of GOF.

Table 1: The setting of several important dataset-dependent hyperparameters.

dataset γ tn tf ∆min λnormal λopac_init γopac σv σh

BFM 4.0× 10−5 0.88 1.12 0.01 0.002 0.1 4.0× 10−5 0.155 0.3
CelebA 1.0× 10−5 0.88 1.12 0.03 0.05 0.01 0.5× 10−5 0.155 0.3
Cats 2.0× 10−5 0.8 1.2 0.1 0.05 0.02 1.0× 10−5 0.4 0.5

Our models are trained on 8 TITAN XP GPUs on all datasets. The whole training process on BFM,
CelebA and Cats takes about 26 hours, 66 hours and 12 hours respectively. To avoid the hollow
face illusion [4], the training of all models starts from an early (about 2K iterations) pretrain model
with the correct outward-facing faces. Owing to the change of image resolution during training, the
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corresponding batch size and learning rate will be adjusted accordingly. In Table 2 we list the values
of these hyperparameters across different datasets.

Table 2: The setting of several hyperparameters to be adjusted during training.

Training Stage (iterations)

BFM CelebA Cats batch size resolution lr(Gθ) lr(Dθ)

0 ∼ 10K 0 ∼ 20K 0 ∼ 5K 128 32 5.0× 10−5 2.0× 10−4

10K ∼ 60K 20K ∼ 160K 5K ∼ 30K 64 64 5.0× 10−5 2.0× 10−4

60K ∼ 80K 160K ∼ 200K 30K ∼ 40K 32 128 4.0× 10−6 2.0× 10−5

Due to the absence of root-finding [5], baseline methods such as GRAF [6] and pi-GAN [3] have
to regard the weighted depth in the cumulative rendering process as the final predicted depth. For a
specific ray r = o+ td with N sampled points {xi = o+ tid}, the depth t̄s is estimated as follows:

t̄s =
N∑
i=1

witi =

N∑
i=1

exp
(
−
∑
j<i

σθ(xj , z)δj
)(

1− exp(−σθ(xi, z)δi)
)
ti. (1)

C Equivalence Proof

As mentioned in Sec. 3.2, we include two different rendering schemes during inference. We here
demonstrate the equivalence of these two schemes when ∆min → 0. For each ray r = o + td, the
surface point xs = o + tsd will be firstly determined via root-finding. For the rendering with Eq.
4 of the main paper, we will sample N points {xi = o + tid; i = 1, 2, ..., N} within the minimal
region around the surface [ts −∆min, ts + ∆min]. Therefore, the cumulative color on the ray r can be
represented as follows:

Ĉc(r) =

N∑
i=1

αθ(xi)
∏
j<i

(
1− αθ(xj)

)
cθ(xi,d), (2)

where the latent code z is omitted for brevity.
In the implementation, we force the sum of color weights wi = αθ(xi)

∏
j<i

(
1− αθ(xj)

)
to be 1

by letting wN = 1−
∑N−1
j=1 wj . Hence, Eq. 2 can be reformulated to:

Ĉc(r) =

N−1∑
i=1

αθ(xi)
∏
j<i

(
1− αθ(xj)

)(
cθ(xi,d)− cθ(xN ,d)

)
+ cθ(xN ,d). (3)

For the rendering only with surface points, we have rendered color as Ĉs(r) = cθ(xs,d). Without
loss of generality, we just consider the case of single color channel, i.e., cθ(x,d) ∈ R.

Theorem 1. Assuming the color is predicted by the Multilayer Perceptrons with SIREN or ReLU
activation functions, we have

lim
∆min→0

Ĉc(r) = Ĉs(r). (4)

Proof. Note that, Linear layers, SIREN and ReLU activation functions as well as encoding function
in the positional encoding are all Lipschitz continuous thus:

|cθ(xi,d)− cθ(xs,d)| ≤ k′c||xi − xs||2 ≤ kc∆min. (5)
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Moreover, we further omit d in cθ(x,d) and have:

∣∣∣Ĉc(r)− Ĉs(r)
∣∣∣ =

∣∣∣∣∣∣
N−1∑
i=1

αθ(xi)
∏
j<i

(
1− αθ(xj)

)(
cθ(xi)− cθ(xN )

)
+ cθ(xN )− cθ(xs)

∣∣∣∣∣∣ (6)

≤
N−1∑
i=1

αθ(xi)
∏
j<i

(
1− αθ(xj)

)
|cθ(xi)− cθ(xN )|+ |cθ(xN )− cθ(xs)| (7)

≤ (N − 1)|cθ(xi)− cθ(xN )|+ |cθ(xN )− cθ(xs)| (8)
< 2kcN∆min. (9)

where inequality 8 holds by 0 ≤ αθ(x) ≤ 1. Therefore, for any ε > 0, we set ∆min = ε/2kcN and
have: ∣∣∣Ĉc(r)− Ĉs(r)

∣∣∣ < 2kcN∆min = ε.

�

D Additional Results on CARLA

As presented in GRAF [6] and pi-GAN [3], baselines have already demonstrated remarkable results
for both synthesized images and corresponding shapes on CARLA dataset. We also implement our
approach GOF on this synthetic dataset and achieve comparable performance in terms of the image
quality as provided in Table 3. Despite the satisfying images, baseline methods sometimes generate
nasty car shapes with dents on the bonnet. Fig 1 shows such shape artifacts in the normal and depth
maps. By contrast, our method can not only synthesize realistic images but also learn good shapes. In
the experiments, the aforementioned shrinking process will lead to undesirable occupancy outside the
cars and thus be removed here.

Table 3: Quantitative results on CARLA dataset, on five different metrics, FID(128× 128 px), IS,
Σti(×10−4), MC and MGD.

FID↓ IS↑ Σti ↓ MC↓ MGD↓
GRAF [6] 37.2 3.89 0.93 13.11 0.866
pi-GAN [3] 29.6 4.35 1.74 13.07 0.874
Ours 29.3 4.29 0.61 12.49 0.831

G
R
A
F 

pi
-G
A
N

 
G
O
F(

ou
rs

) 

Image Normal Depth Image Normal Depth 

Figure 1: Qualitative comparison on CARLA dataset. Baseline methods predict dents on the car
bonnets while ours avoids this issue successfully.
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E Future Works

In the experiments, we discover the trade-off between the FID score and shapes. Following the
official code1 of pi-GAN, we can increase the learning rate and gradient clip range, decrease the
R1 regularization on the discriminator, and replace the progressive discriminator to achieve a lower
FID score. However, the corresponding shapes will degenerate under this circumstance. We identify
exploring how to get rid of such a trade-off as promising future work. Moreover, baseline methods
including ours struggle to recover the eyes geometry especially on CelebA dataset. Firstly, the light
field of the eyes is more complicated than in other regions. More importantly, the dataset is biased,
where people always gaze at the camera when taking photos, the biased eye poses are inadequate to
provide multi-view information for modeling eyes accurately. It’s also an interesting problem to be
mitigated in the future.

F Broader Impacts

Our work aims at generating images in a 3D consistent manner and simultaneously learn compact and
smooth object surfaces. Its application lies mainly in entertainment industries such as AR/VR or video
games. However, our framework may be potentially used in the face forgery like DeepFake. Also,
computational cost as well as energy consumption should also be considered during the development
of such systems for environmental protection.

G Additional Qualitative Results

In Fig. 2 we include more qualitative results generated by the proposed GOF. Fig. 3 shows that
GOF can render high-quality images using only the surface points. In Fig. 4 we present the linearly
interpolating results between two latent codes on CelebA [7] and Cats [8] respectively. Moreover, we
provide a demo video to demonstrate that the proposed GOF is capable of generating realistic images
in a 3D-consistent manner and simultaneously capturing compact object surfaces.
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Figure 2: More qualitative results from our model GOF trained on BFM (top), CelebA (middle), and
Cats (bottom) datasets.
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BFM CelebA Cats
Figure 3: Rendering only with surface points. We provide more images rendered only with surface
points (right), which are almost indistinguishable from those obtained with cumulative rendering
(left).
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Figure 4: Linearly interpolating between two latent codes on CelebA and Cats datasets.
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