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1 EXPERIMENT AND DISCUSSION

1.1 Structure of backbone network

In our method, we divide ResNet50 into five layer blocks (e.g., Blocks
1, 2, 3, 4, 5 represent convl, conv2_x, conv3_x, conv4_x, conv5_x in
the ResNet50 structure,respectively.). Our backbone network com-
prises a shared image encoder (denoted as Fg, (-)) composed of the
first four layer blocks, and two parts without shared parameters: an
identity feature extractor (denoted as Fi4(-)) and a specific feature
extractor (denoted as Fint(+)), both consisting of the fifth layer block.
We compared the performance of the models with different num-
bers of layer blocks in (F¢ (+)) under the cloth-changing setting on
the LTCC dataset. The overall experimental results are reported in
Table 1. As shown in Table 1, as the structure of the ¥, () expands
from Block 1 to Block 1-4, the model develops more robust feature
representations. This improvement occurs because our % (-) more
accurately extracts interference factors from identity features as the
number of shared layer blocks increases. However, when %, () is
increased to Block 1-5, there is a significant decline in performance.
This decline is due to the overlap between interference factor ex-
traction and pedestrian discrimination processes, which fails to
disentangle identity features from interference factors.

Table 1: Ablation study of the different structural models
under cloth-changing setting on LTCC.

LTCC
Fsn()  Fia(-) / Fint(-) Rank-1 mAP
Block 1 Block 2-5 48.2 24.1
Block 1-2 Block 3-5 49.0 23.5
Block 1-3 Block 4-5 48.2 23.8
Block 1-4 Block 5 50.5 25.1
Block 1-5 - 42.1 22.0

1.2 Hyper-Parameter Sensitivity analysis

Influence of 1: We analyze the sensitivity of the parameter (i.e.,
the weight # in Eq. (15)) in our method. We tune the values of each
parameter, keeping the others fixed, on the LTCC and PRCC. The
results are shown in Fig. 1. When 7 is set to a small value (e.g.,
from 0.01 to 1.0), the experimental results exhibit an upward trend.
However, when 7 is set to a too large value (e.g., 10), the model
results show a significant decline. Based on these experiments, we
set the hyper-parameter 1 = 1.0 across all datasets (PRCC, VC-
Clothes, LTCC).

Influence of a: We analyze the sensitivity of the parameter in
our method, (i.e., the weight « in Eq. (15)). The results are shown
in Fig. 2. When « is set to a small value, the model cannot extract
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Figure 1: Parameter sensitivity analysis on 5 in Eq. (15) on
PRCC and LTCC.
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Figure 2: Parameter sensitivity analysis on « in Eq. (15) on
PRCC and LTCC under cloth-changing setting.

accurate interference factors, resulting in a reduced decoupling
effect. When « is set to a large value, the model focuses more on
extracting interference factors and ignore the extraction of identity
features, resulting in a declined effect. Based on these experiments,
we set a to 0.1 and 1.0 for the PRCC and LTCC datasets, respectively.

Influence of f: We analyze the sensitivity of the parameter in
our method, (i.e., the weight f in Eq. (8)). The results are shown
in Fig. 4. The model is very sensitive to the changes in the value
of . As shown in the results of Fig. 4 a), when f is set to a small
value (e.g., 0.01 ~ 0.1), the model has insufficient ability to match
pedestrian images and cloth-erased images. When f is set to a
large value (e.g., 10), the model overly focuses on identical parts of
the pedestrian and clothes-erased images, introducing background
interference into the identity feature. When the value of f is set
within the appropriate range(e.g., 0.5 ~ 1.0), the model benefits from
the learned identity features to be discriminative among different
pedestrians while irrelevant to diversified cloth texture. Based on
these experiments, we set f to 1.0 and 0.05 for the PRCC and LTCC
datasets, respectively.
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Figure 3: According to the top 10 retrieval results of baseline and our method on the LTCC dataset under the cloth-changing
setting. Images in green and red boxes are positive and negative results, respectively.
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Figure 4: Parameter sensitivity analysis on f in Eq. (8), on
PRCC and LTCC under cloth-changing setting.

1.3 Visualization

To intuitively demonstrate the effect of our model on CC-RelD,
we visualize the top-10 ranked retrieval results for both the base-
line method and our approach on the LTCC dataset, under the
cloth-changing setting. As defined in a previous article, the baseline
method (Fig. 3) involves training the dual-stream backbone network
using Lce from Eq. (1) and Ly from Eq. (2). As shown in Fig. 3, it
can be observed that the baseline will return incorrectly matched
pedestrian images due to the interference of lighting, viewpoint
and clothes. For example, as shown in query 1, the retrieval results
of the baseline method incorrectly match different pedestrians with
similar lighting and clothes. The retrieval results of our method
shows robustness to richer backgrounds and lighting, and largely
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overcome the interference from cloth factors. These results con-
firm that our method can effectively resist the influence of these
interference factors and shows better robustness than the baseline.
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