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ABSTRACT

One of the most practical and challenging types of black-box adversarial attacks
is the hard-label attack, where only the top-1 predicted label is available. One
effective approach is to search for the optimal ray direction from the benign image
that minimizes the ℓp norm distance to the adversarial region. The unique advan-
tage of this approach is that it transforms the hard-label attack into a continuous
optimization problem. The objective function value is the ray’s radius, which can
be obtained via binary search at a high query cost. Existing methods use a “sign
trick” in gradient estimation to reduce the number of queries. In this paper, we
theoretically analyze the quality of this gradient estimation and propose a novel
prior-guided approach to improve ray search efficiency both theoretically and em-
pirically. Specifically, we utilize the transfer-based priors from surrogate models,
and our gradient estimators appropriately integrate them by approximating the
projection of the true gradient onto the subspace spanned by these priors and ran-
dom directions, in a query-efficient manner. We theoretically derive the expected
cosine similarities between the obtained gradient estimators and the true gradient,
and demonstrate the improvement achieved by incorporating priors. Extensive
experiments on the ImageNet and CIFAR-10 datasets show that our approach
significantly outperforms 11 state-of-the-art methods in terms of query efficiency.

1 INTRODUCTION

Adversarial attacks represent a major security threat to deep neural networks (DNNs), where subtle,
imperceptible perturbations are crafted to cause misclassifications. To assess DNN robustness and
uncover vulnerabilities, the research community has developed various adversarial attack strategies.
As a result, adversarial attacks and defenses have become a focal point in AI security research.

Based on the available information about the target model, adversarial attacks can be broadly classified
into white-box and black-box attacks. White-box attacks, such as those proposed by Madry et al.
(2018); Moosavi-Dezfooli et al. (2016), rely on the target model’s gradients with respect to the input,
making them less practical in real-world applications. Black-box attacks, by contrast, are often more
feasible, as they do not require knowledge of model parameters or gradients. As a subset of black-box
attacks, transfer-based attacks generate adversarial examples using white-box models with the aim of
generalizing to other models. While transfer-based attacks do not involve querying the target model,
their success rate is inconsistent. Alternatively, query-based black-box attacks iteratively interact with
the target model to achieve higher success rates. These attacks can be categorized into two subtypes:
score-based and decision-based (also known as hard-label) attacks. Score-based attacks (Ma et al.,
2021a) utilize the model’s output logits to guide the attack, whereas hard-label attacks rely solely on
top-1 predicted labels, making them particularly practical when only label information is accessible.
In this work, we focus on the problem of reducing query complexity in hard-label attacks.

The difficulty of hard-label attacks is that the labels can only be flipped near the classification decision
boundary, and thus the objective function is discontinuous. As a result, the attack requires solving a
high-dimensional combinatorial optimization problem, which is challenging. Common approaches
(Chen et al., 2020; Brendel et al., 2018) start with a sample containing large adversarial perturbations
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and iteratively reduce the distortion by moving along the decision boundary towards a benign image.
However, these methods lack convergence guarantees. To reformulate the problem as a continuous
optimization task, ray-search methods have been introduced. Typical approaches such as OPT (Cheng
et al., 2019), Sign-OPT (Cheng et al., 2020), and RayS (Chen & Gu, 2020) aim to minimize an
objective function g(θ), which is defined as the shortest ℓp norm distance along the ray direction θ
from the benign image to the adversarial region. This function value can be evaluated using a binary
search method. Leveraging the smooth and continuous nature of decision boundaries, g(θ) is locally
continuous, making it amenable to zeroth-order (ZO) optimization with a gradient estimator. OPT
employs a random gradient-free (RGF) estimator, but it incurs high query cost due to the binary search
in finite differences. Sign-OPT reduces the query complexity by using the sign of the directional
derivative in gradient estimation, but it significantly sacrifices gradient accuracy.

To solve this problem and improve query efficiency, we employ the same objective function g(θ) and
propose incorporating the transfer-based priors into gradient estimation. An ideal prior is the gradient
of g(θ) from a surrogate model, but it cannot be easily obtained since g(θ) is non-differentiable due
to the binary search. Instead, we propose a surrogate loss, whose gradient is proportional to that of
g(θ), to obtain the prior. Once the transfer-based priors are obtained, we must design better gradient
estimators that effectively integrate these priors. This is particularly challenging under the hard-label
restriction, as accurately determining the value of g(θ) is costly. As a result, previous prior-guided
methods for score-based attacks such as PRGF (Cheng et al., 2021; Dong et al., 2022) are not suitable
in this context. Thus, we need to explore how to improve the gradient estimator with additional
priors while minimizing queries. To achieve this, we propose two algorithms: Prior-Sign-OPT and
Prior-OPT. They estimate the gradient in a query-efficient manner by approximating the projection of
the true gradient onto a subspace spanned by priors and randomly sampled vectors. We provide a
thorough theoretical analysis to validate their effectiveness and offer theoretical comparisons between
Sign-OPT and our approach. In particular, Prior-OPT achieves a better approximation of the subspace
projection with only slightly more queries, and can adaptively adjust the weight of each prior based
on its quality, striking a balance between gradient accuracy and query efficiency. While several
methods (Brunner et al., 2019; Shi et al., 2023) attempt to combine transfer- and decision-based
attacks, they lack theoretical guarantees and often perform poorly. Crucially, in the hard-label setting,
these approaches fail to effectively address the challenge of appropriately weighing the prior when it
deviates significantly from the true gradient. Our approach resolves this issue and naturally scales to
priors from multiple surrogate models, demonstrating further improvement in attack performance.

To summarize, our main contributions are as follows.

1. Novelty in hard-label attacks. We address the problem of introducing the transfer-based
priors into hard-label attacks by employing the subspace projection approximation, which
significantly improves the accuracy of gradient estimation with slightly more queries. Our
approach not only strikes a balance between gradient estimation and query efficiency, but also
elegantly integrates priors from multiple surrogate models to further improve performance.

2. Novelty in theoretical analysis. We analyze the quality of our gradient estimators and that
of the orthogonal variant of Sign-OPT, enabling theoretical comparisons. To our knowledge,
this is the first work to derive the expected cosine similarities between estimators of the Sign-
OPT family and the true gradient, theoretically guaranteeing performance improvement.

3. Extensive experiments. Extensive experiments conducted on the ImageNet and CIFAR-10
datasets show that our approach outperforms 11 state-of-the-art methods significantly.

2 RELATED WORK

Hard-label attacks can be categorized into boundary-search and ray-search approaches.

The boundary-search approaches start from a large perturbation or an image of the target class
and then reduce distortions by iteratively moving along the decision boundary towards the original
image. Boundary Attack (BA) (Brendel et al., 2018) is an early representative method, and its query
efficiency is relatively low. HopSkipJumpAttack (HSJA) (Chen et al., 2020) estimates the gradient
at the decision boundary to update the sample and then finds the next boundary point by moving it
towards the benign image. Tangent Attack (TA) and Generalized Tangent Attack (G-TA) (Ma et al.,
2021b) find an optimal tangent point on a virtual hemisphere or semi-ellipsoid to efficiently generate
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the adversarial example. CGBA (Reza et al., 2023) conducts a boundary search along a semicircular
path on a restricted 2D plane to find the boundary point. To avoid gradient estimation, SurFree
(Maho et al., 2021) and Triangle Attack (Wang et al., 2022) find the adversarial example in a DCT
subspace to improve query efficiency. Evolutionary (Dong et al., 2019) adopts the (1+1)-CMA-ES,
a simple yet effective variant of Covariance Matrix Adaptation Evolution Strategy, to efficiently
generate adversarial examples. Adaptive History-driven Attack (AHA) (Li et al., 2021) gathers data
of previous queries as the prior for current sampling, which improves the random walk optimization.

The ray-search approaches aim to find an optimal direction θ that reaches the nearest adversarial
region. As mentioned in Section 1, it is challenging to address both the high query complexity issue
of OPT and the low estimation accuracy issue of Sign-OPT. RayS (Chen & Gu, 2020) avoids gradient
estimation and employs a hierarchical search step to efficiently find the optimal direction. However,
RayS only supports untargeted ℓ∞-norm attacks. Since the query efficiency of previous ray-search
approaches has not surpassed that of boundary-search methods, they have attracted less research
interest and remain insufficiently studied. We note that the mechanisms of OPT and Sign-OPT remain
poorly understood, and their inefficiency stems from the limited precision in gradient estimation.

Several methods attempt to combine transfer- and decision-based attacks, but the critical issue,
namely how to weigh the prior when it deviates significantly from the true gradient, has not been well
addressed. For example, Biased Boundary Attack (BBA) (Brunner et al., 2019), Customized Iteration
and Sampling Attack (CISA) (Shi et al., 2023) and Small-Query Black-Box Attack (SQBA) (Park
et al., 2024) set the prior’s coefficient empirically rather than through theoretical analysis. In contrast,
our approach dynamically calculates optimal coefficients, improving gradient estimation accuracy.

3 THE PROPOSED APPROACH

3.1 THE GOAL OF HARD-LABEL ATTACKS

Given a k-class classifier f : Rd → Rk and a benign image x ∈ [0, 1]d which is correctly classified
by f , the adversary aims to find an adversarial example xadv with the minimum perturbation such
that f(xadv) outputs an incorrect prediction. Formally, we formulate the attack goal as:

min
xadv

d(xadv,x) s.t. Φ(xadv) = 1, (1)

where d(xadv,x) := ∥xadv − x∥p is the ℓp norm distortion, and Φ(·) is a success indicator function:

Φ(xadv) :=

⎧⎨⎩
1 if ŷ = yadv in the targeted attack,

or ŷ ̸= y in the untargeted attack,
0 otherwise,

(2)

where ŷ = argmaxi∈{1,...,k} f(xadv)i is the top-1 predicted label of f , y ∈ R is the true label of x,
and yadv ∈ R is a target class label. In this study, we follow Cheng et al. (2019; 2020) to reformulate
the problem (1) as the problem of finding the ray direction of the shortest distance from x to the
adversarial region:

min
θ∈Rd\{0}

g(θ) where g(θ) := inf
{︂
λ : λ > 0,Φ

(︁
x+ λ

θ

∥θ∥
)︁
= 1
}︂
. (3)

Note that g(θ) = +∞ when the set is empty, since inf ∅ = +∞ by convention. Finally, the
adversarial example is x∗ = x+ g(θ∗) θ∗

∥θ∗∥ , and θ∗ is the optimal solution of problem (3).

3.2 THE OPTIMIZATION OF SEARCHING RAY DIRECTIONS

The previous works (Cheng et al., 2019; 2020) attempt to optimize the problem (3) by using ZO
methods. However, the restriction of hard-label access results in a high query cost of the gradient
estimation, because obtaining a single value of g(θ) requires performing a binary search with
multiple queries, and the gradient estimation with finite difference requires multiple computations
of g(θ). Sign-OPT (Cheng et al., 2020) replaces the finite-difference term g(θ + σu)− g(θ) with
sign(g(θ + σu) − g(θ)), which improves query efficiency by only using a single query (Eq. (8)).
However, it significantly reduces the accuracy of the gradient estimation. We propose to incorporate
transfer-based priors to enhance accuracy without significantly increasing query complexity, thus
achieving an optimal balance between query complexity and estimation accuracy.
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adversarial region

non-adversarial region
with label y

h(θ0 + ∆θ2, gf̂ (θ0))
= f̂y − maxj ̸=y f̂j > 0 h(θ0 + ∆θ1, gf̂ (θ0)) = f̂y − maxj ̸=y f̂j < 0

∆θ1
∆θ2

h(θ0, gf̂ (θ0)) = 0

x

gf̂ (θ0 + ∆θ1) − gf̂ (θ0) < 0gf̂ (θ0 + ∆θ2) − gf̂ (θ0) > 0

With λ0 = gf̂ (θ0) fixed as the radius,
h(θ, λ0) is defined on a spherical surface.

(1) When gf̂ (θ) ↓ with ∆θ1, h(θ, λ) ↓ as well.

(2) When gf̂ (θ) ↑ with ∆θ2, h(θ, λ) ↑ as well.

Figure 1: Geometrical explanation of ∇gf̂ (θ0) ∝
∇θh(θ0, λ0) by taking an untargeted attack as an exam-
ple. When gf̂ (θ) reduces/increases with a small ∆θ, h(θ, λ)
changes at a similar rate. The formal proof is in Appendix A.

The first challenge is how to obtain
a transfer-based prior ∇gf̂ (θ) from a

surrogate model f̂ , where gf̂ (θ) rep-
resents the shortest distance along the
direction θ to the adversarial region of
f̂ . This is challenging because gf̂ (θ)
is typically evaluated using binary
search, making it non-differentiable.
To address this, for any non-zero vec-
tor θ0 ∈ Rd such that gf̂ (θ0) < +∞,
we define a surrogate function h(θ, λ)
such that∇gf̂ (θ0) = c · ∇θh(θ0, λ0),
where λ0 = gf̂ (θ0) is treated as a con-
stant during differentiation. Here, λ
is a scalar, and c is a non-zero con-
stant. The surrogate function h(θ, λ)
is defined as the negative Carlini &
Wagner (C&W) loss function of f̂ :

h(θ, λ) :=

{︄
f̂y −maxj ̸=y f̂ j , if untargeted attack,
maxj ̸=ŷadv

f̂ j − f̂ ŷadv
, if targeted attack,

(4)

where f̂ i := f̂
(︁
x+ λ · θ

∥θ∥
)︁
i

is an abbreviation for the i-th element of the output of f̂ , and x is the
original image. Any non-zero scalar can be used as λ, but the specific value λ0 = gf̂ (θ0) yields a
gradient proportional to ∇gf̂ (θ0). The value λ0 is obtained through binary search, where h(θ0, λ0)

represents the negative C&W loss at the decision boundary of the surrogate model f̂ . The geometric
explanation and formal proof of∇gf̂ (θ0) = c · ∇θh(θ0, λ0) are presented in Fig. 1 and Appendix A.

In targeted attacks, determining an appropriate λ0 value becomes a challenging task. This is because
the spatial distribution of classification regions, along with the shape and extent of the decision
boundaries, varies across different models. Although we can locate the region corresponding to the
predefined target class yadv along the θ direction in the target model f , the same direction may not
lead to the region of the class yadv in a surrogate model f̂ . Therefore, we must set a new target class
ŷadv before determining λ0 and computing Eq. (4). See Appendix B for detailed steps.

Given s non-zero vectors k1, . . . ,ks representing transfer-based priors from s surrogate models and
q − s randomly sampled vectors ri ∼ N (0, I) for i = 1, . . . , q − s, our objective is to estimate
a gradient v∗ ≈ ∇g(θ) as accurately as possible using these q vectors. In the score-based attack
setting, there is a subspace projection estimator theory (Meier et al., 2019; Cheng et al., 2021) that
can solve this problem. Based on this theory, the optimal estimated gradient v∗ that maximizes its
similarity with the true gradient is given by Proposition 3.1 in the score-based setting1.
Proposition 3.1. (Optimality of the subspace projection estimator) Let k1, . . . ,ks and r1, . . . , rq−s

be defined above; let S := span{k1, . . . ,ks, r1, . . . , rq−s} denote the subspace spanned by these

vectors. Then the optimal v∗ in S that maximizes∇g(θ)
⊤
v subject to ∥v∥ = 1 is the ℓ2-normalized

projection of∇g(θ) onto S, denoted as v∗ := ∇g(θ)S .

According to Proposition 3.1, finding the optimal approximate gradient is equivalent to finding a
projection of the true gradient onto a low-dimensional subspace S spanned by all available vec-
tors. The projection of a vector onto a subspace S can be calculated by summing its projections
onto the orthonormal basis of S. To achieve this, we construct an orthonormal basis of S via
Gram-Schmidt orthonormalization, which transforms k1, . . . ,ks, r1, . . . , rq−s into an orthonormal
basis p1, . . . ,ps,u1, . . . ,uq−s. Note that p1, . . . ,ps correspond to k1, . . . ,ks, and u1, . . . ,uq−s

correspond to r1, . . . , rq−s. Then, we can compute the projection of∇g(θ) onto S by Eq. (5):

v∗ =

s∑︂
i=1

∇g(θ)⊤pi · pi +

q−s∑︂
i=1

∇g(θ)⊤ui · ui. (5)

1Throughout this paper, for any vector x, we denote its ℓ2-normalized version by x, where x := x/∥x∥.
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Given the queried function values,∇g(θ)⊤u for the unit ℓ2-norm vector u can be approximated by
the finite-difference method, without requiring backpropagation:

∇g(θ)⊤u ≈ g(θ + σu)− g(θ)

σ
, (6)

where σ is a small positive number. By plugging Eq. (6) into Eq. (5), we can easily calculate v∗ in
the score-based setting as v∗ =

∑︁s
i=1

g(θ+σpi)−g(θ)
σ ·pi+

∑︁q−s
i=1

g(θ+σui)−g(θ)
σ ·ui. However, in the

hard-label setting, the finite-difference requires a large number of queries due to the binary search of
g(·). We propose two algorithms to reduce query cost by computing the approximate projection, i.e.,
Prior-Sign-OPT and Prior-OPT. With s priors, Prior-Sign-OPT uses Eq. (7) to improve performance:

v∗ =

s∑︂
i=1

sign(g(θ + σpi)− g(θ)) · pi +

q−s∑︂
i=1

sign(g(θ + σui)− g(θ)) · ui. (7)

Eq. (7) is similar to the formula of Sign-OPT, benefiting from using only a single query to calculate
the sign of the directional derivative (Cheng et al., 2020):

sign(g(θ + σui)− g(θ)) =

{︄
+1, f

(︂
x+ g(θ) θ+σui

∥θ+σui∥

)︂
= y,

−1, otherwise.
(8)

The accuracy of the estimated gradient is crucial in optimization. A natural way to assess accuracy is
via the following metrics: E[γ] and E[γ2], where γ is the cosine similarity between the estimated and
true gradients. We propose a novel approach to compute E[γ] and E[γ2] for Sign-OPT, Prior-Sign-
OPT, and Prior-OPT. Our baseline extends Sign-OPT (Cheng et al., 2020) by employing orthogonal
random vectors, while retaining the original name to maintain consistency within the method family.
Theorem 3.2. For the Sign-OPT estimator approximated by Eq. (6) (defined as Eq. (44)), we let
γ := v⊤∇g(θ) be its cosine similarity to the true gradient, where v := v

∥v∥ , then

E[γ] =
√
q

Γ( d
2
)

Γ( d+1
2

)
√
π
, (9)

E[γ2] =
1

d

(︃
2

π
(q − 1) + 1

)︃
. (10)

The proof of Theorem 3.2 is included in Appendix C.1. For Prior-Sign-OPT, we have Theorem 3.3.
Theorem 3.3. For the Prior-Sign-OPT estimator approximated by Eq. (6) (defined as Eq. (82)), we
let γ := v∗⊤∇g(θ) be its cosine similarity to the true gradient, where v∗ := v∗

∥v∗∥ , then

E[γ] = 1
√
q

⎡⎣ s∑︂
i=1

|αi|+ (q − s)

⌜⃓⃓⎷1−
s∑︂

i=1

α2
i ·

Γ( d−s
2

)

Γ( d−s+1
2

)
√
π

⎤⎦ , (11)

E[γ2] =
1

q

[︄(︄
s∑︂

i=1

|αi|

)︄2

+
q − s

d− s

(︃
2

π
(q − s− 1) + 1

)︃(︄
1−

s∑︂
i=1

α2
i

)︄

+ 2

(︄
s∑︂

i=1

|αi|

)︄
(q − s)

⌜⃓⃓⎷1−
s∑︂

i=1

α2
i ·

Γ( d−s
2

)

Γ( d−s+1
2

)
√
π

]︄
, (12)

where αi := p⊤
i ∇g(θ) is the cosine similarity between the i-th prior and the true gradient.

The proof of Theorem 3.3 is presented in Appendix C.2. Now we can compare E[γ] of Sign-OPT
(Eq. (9)) and Prior-Sign-OPT (Eq. (11)). In Sign-OPT, applying Jensen’s inequality yields the bound
E[γ] ≤

√︁
E[γ2] =

√︁
(2(q − 1) + π) /(πd). When q ≪ d, E[γ] becomes very small, resulting in

poor performance. In contrast, Prior-Sign-OPT with a single prior can improve performance. For
instance, when attacking an image of size 32× 32× 3, and using parameters q = 200 and s = 1, if
0.01422 ≤ |α1| ≤ 0.611, E[γ] of Prior-Sign-OPT surpasses that of Sign-OPT. However, Prior-Sign-
OPT may underperform Sign-OPT in certain cases, such as when |α1| ≥ 0.612 in the example above,
because it applies sign-based multipliers to both random vectors and priors. Intuitively, random
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r1
r2

r3

r4
r6

r7

r9

r11

r12

r13

r14prior k1

r5

r10r8

. .
.

(a) Get prior k1 and sample ri.

u1

u2

prior p1

. .
.

uq−1

u3

(b) Orthonormal basis.

adversarial region

non-adversarial region

+−θ

x

sign(g(θ + σui) − g(θ))

for i ∈ {1, . . . , q − 1}
one query for each ui

(c) Estimate a sign-based v⊥.

adversarial region

non-adversarial region

g(θ + σp1)

binary search

g(θ + σv⊥)
θ

binary search

x

(d) Estimate v∗ with v⊥ and p1.

Figure 2: Simplified two-dimensional illustration of the gradient estimation of Prior-OPT with a single
transfer-based prior. In Fig. 2a, we first sample random vectors ri ∼ N (0, I) for i = 1, . . . , q − 1
and obtain a transfer-based prior k1 using ∇θh(θ, λ), where h(θ, λ) is defined in Eq. (4). Then,
as shown in Fig. 2b, we perform Gram-Schmidt orthonormalization on these vectors to obtain an
orthonormal basis p1,u1, . . . ,uq−1, where p1 = k1. Next, we estimate v⊥ based on Eq. (14) with
u1, . . . ,uq−1 (Fig. 2c), where each sign(g(θ + σui)− g(θ)) requires only a single query (Eq. (8)).
Finally, as shown in Fig. 2d, we estimate a gradient v∗ based on Eq. (13) with p1 and v⊥, where the
values of g(θ + σp1) and g(θ + σv⊥) are obtained via the binary search with multiple queries.

vectors u1, . . . ,uq−s have relatively consistent cosine similarities with the true gradient as they are
identically distributed, allowing for efficient sign-based estimation. In contrast, the cosine similarities
between the priors p1, . . . ,ps and the true gradient differ, requiring more precise estimation. To
address this, we propose Prior-OPT that treats priors and random vectors differently. Fig. 2 illustrates
the process of gradient estimation in Prior-OPT, which is based on the following formula:

v∗ =

s∑︂
i=1

g(θ + σpi)− g(θ)

σ
· pi +

g(θ + σv⊥)− g(θ)

σ
· v⊥, (13)

where v⊥ is the ℓ2 normalization of v⊥, and v⊥ is obtained by:

v⊥ :=

q−s∑︂
i=1

sign(g(θ + σui)− g(θ)) · ui. (14)

Since random vectors u1, . . . ,uq−s poorly align with∇g(θ), we aggregate them into a single vector
v⊥ using a less accurate estimator in Eq. (14), which is orthogonal to all priors. Compared with Eq.
(7), Eq. (13) provides a more accurate projection approximation. We now present Theorem 3.4.
Theorem 3.4. For the Prior-OPT estimator approximated by Eq. (6) (defined as Eq. (114)), we let
γ := v∗⊤∇g(θ) be its cosine similarity to the true gradient, where v∗ := v∗

∥v∗∥ , then

E[γ] ≥

⌜⃓⃓⎷ s∑︂
i=1

α2
i +

(q − s)(1−
∑︁s

i=1 α
2
i )

π

(︄
Γ( d−s

2
)

Γ( d−s+1
2

)

)︄2

, (15)

E[γ] ≤

⌜⃓⃓⎷ s∑︂
i=1

α2
i +

1

d− s

(︃
2

π
(q − s− 1) + 1

)︃(︄
1−

s∑︂
i=1

α2
i

)︄
, (16)

E[γ2] =

s∑︂
i=1

α2
i +

1

d− s

(︃
2

π
(q − s− 1) + 1

)︃(︄
1−

s∑︂
i=1

α2
i

)︄
, (17)

where αi := p⊤
i ∇g(θ) is the cosine similarity between the i-th prior and the true gradient.

The proof of Theorem 3.4 is included in Appendix C.3. E[γ2] is the second-order moment, which
reflects the magnitude of γ in a statistical sense. Under certain assumptions, E[γ2] directly affects the
convergence rate of optimization algorithms (Cheng et al., 2021). Intuitively, a larger γ indicates more
accurate gradient estimation, leading to faster optimization and improved query efficiency. Next, we
compare E[γ2] for Prior-OPT (Eq. (17)) and Sign-OPT (Eq. (10)). Under the reasonable assumption
that q ≪ d, Prior-OPT outperforms Sign-OPT if

∑︁s
i=1 α

2
i > 2s

πd (where 2s
πd is an approximate value),

which is easily satisfied for large d. See Appendix D for details.

Algorithm 1 summarizes our attack procedure. The initialization of θ0 has two options in untargeted
attacks: (1) θRND

0 : we select the best direction with the smallest distortion from 100 random directions
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Algorithm 1 Prior-Sign-OPT and Prior-OPT attack

Input: benign image x, objective function g(·), attack success indicator Φ(·) defined in Eq.
(2), iteration T , method m ∈ { Prior-OPT, Prior-Sign-OPT}, the initialization strategy
of untargeted attacks init ∈ {θPGD

0 , θRND
0 }, the maximum gradient norm gmax, attack norm

p ∈ {2,∞}, surrogate models S = {f̂1, . . . , f̂s}.
Output: adversarial example x∗ that satisfies Φ(x∗) = 1.
x̃0 ← PGD(x, f̂1) if init = θPGD

0 , otherwise a random x̃0 that satisfies Φ(x̃0) = 1 is selected
for the θRND

0 strategy; ▷ the targeted attack selects an image from the target class as x̃0.
θ0 ← x̃0−x

∥x̃0−x∥2
, d0 ← ∥x̃0 − x∥p;

for t in 1, . . . , T do
for f̂ i in S do
λt−1 ← BinarySearch(x, θt−1, f̂ i,Φ);
ki ←∇θh(θt−1, λt−1) on f̂ i with λt−1 treated as a constant in differentiation; ▷ obtain s
transfer-based priors.

end for
ri ∼ N (0, I) for i = 1, . . . , q − s;
p1, . . . ,ps,u1, . . . ,uq−s ← Gram-Schmidt orthonormalization({k1, . . . ,ks, r1, . . . , rq−s});
Estimate a gradient v∗ using Eq. (7) if m = Prior-Sign-OPT, otherwise using Eq. (13);
v∗ ← ClipGradNorm(v∗, gmax);
η∗ ← LineSearch(x, v∗, Φ, dt−1, θt−1); ▷ search step size.
θt ← θt−1 − η∗v∗, θt ← θt

∥θt∥2
;

dt ← ∥g(θt) · θt∥p;
end for
return x∗ ← x+ g(θT )

θT
∥θT ∥2

;

as θ0; (2) θPGD
0 : we apply PGD (Madry et al., 2018) to attack a surrogate model f̂1 to initialize

θ0, which uses the transfer-based attack as initialization. In targeted attacks, we initialize θ0 with
an image x̃0 selected from the target class in the training set. In each iteration, the algorithm first
calculates the gradient of Eq. (4) on each surrogate model f̂ i in S to obtain the priors k1, . . . ,ks. Then,
we combine these priors and the randomly sampled vectors r1, . . . , rq−s into a list L, where the priors
are positioned ahead of the random vectors. After performing Gram-Schmidt orthonormalization
on L, the orthonormal vectors p1, . . . ,ps,u1, . . . ,uq−s are obtained, representing an orthonormal
basis of the subspace. With these orthonormal vectors, we estimate the gradient v∗ using Eq. (7)
for Prior-Sign-OPT or Eq. (13) for Prior-OPT, respectively. Then, we employ the gradient clipping
technique to address the large-norm gradient problem caused by finite difference. Finally, we use line
search to find the optimal step size η∗ and perform a gradient descent step to minimize g(θ).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. All experiments are conducted on two datasets, i.e., CIFAR-10 (Krizhevsky & Hinton,
2009) and ImageNet (Deng et al., 2009). The image sizes are 32× 32× 3 for CIFAR-10, and either
299× 299× 3 or 224× 224× 3 for ImageNet. We randomly select 1,000 images from the validation
sets for experiments. In targeted attacks, for the same target class, we use the same image x̃0 as the
initialization for all methods. We set the target label as yadv = (y + 1) mod C, where y is the true
label and C is the number of classes. Results of the CIFAR-10 dataset are presented in Appendix G.5.

Method Setting. The hyperparameter settings of all methods are listed in Appendix F. In the
experiments, surrogate models are denoted as subscripts in the method names. For instance, Prior-
OPTResNet50&ConViT means using ResNet-50 and ConViT as the surrogate models for Prior-OPT, and
Prior-OPTθPGD

0 + ResNet50 applies PGD attack on the surrogate model ResNet-50 to initialize θ0.

Compared Methods. To provide a comprehensive comparison, we select 11 state-of-the-art hard-
label attacks, including Sign-OPT, SVM-OPT (Cheng et al., 2020), HSJA (Chen et al., 2020),
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Triangle Attack (Wang et al., 2022), TA, G-TA (Ma et al., 2021b), SurFree (Maho et al., 2021),
GeoDA (Rahmati et al., 2020), Evolutionary (Dong et al., 2019), BBA (Brunner et al., 2019), and
SQBA (Park et al., 2024). SQBA, Triangle Attack, GeoDA, and our θPGD

0 initialization strategy (e.g.,
Prior-OPTθPGD

0 + ResNet50) only support untargeted attacks. Both BBA and SQBA use a single surrogate
model, denoted as a subscript in the method name (e.g., SQBAResNet50).

Target Models and Surrogate Models. In the ImageNet dataset, we select 8 neural network
architectures as the target models, including Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs). The selected target models are Inception-v3 (Szegedy et al., 2016), Inception-v4
(Szegedy et al., 2017), ResNet-101 (He et al., 2016), SENet-154 (Hu et al., 2018), ResNeXt-101
(64× 4d) (Xie et al., 2017), Vision Transformer (ViT) (Dosovitskiy et al., 2021), Swin Transformer
(Liu et al., 2021), and Global Context Vision Transformer (GC ViT) (Hatamizadeh et al., 2023). The
Inception-v3 and Inception-v4 require a resolution of 299× 299 for the input images, and we select
Inception-ResNet-v2 (IncResV2) and Xception as the surrogate models. ResNet-50 (He et al., 2016)
and ConViT (D’Ascoli et al., 2021) are selected as the surrogate models for the remaining target
models. In the attacks on defense models, we use the adversarially trained (AT) surrogate models (e.g.,
AT(ResNet110)), which are marked as subscripts in the method names, such as Prior-OPTAT(ResNet110).

Evaluation Metric. All methods are evaluated using the mean distortion over 1,000 images as
1

|X|
∑︁

x∈X(∥xadv−x∥p) under different query budgets, where X is the test set and p ∈ {2,∞} is the
attack norm. We also report the attack success rate (ASR) under the specific query budget, which is
defined as the percentage of samples with distortions below a threshold ϵ. In ℓ2-norm attacks, we set
the threshold ϵ =

√
0.001× d on the ImageNet dataset, where d is the image dimension. Following

Li et al. (2021), we calculate the area under the curve (AUC) of ℓ2 distortions versus queries.

4.2 COMPARISON WITH STATE-OF-THE-ART ATTACKS

Table 1: Mean ℓ2 distortions of different query budgets on the ImageNet dataset.

Target Model Method Untargeted Attack Targeted Attack
@1K @2K @5K @8K @10K @1K @2K @5K @8K @10K @15K @20K

Inception-v4

HSJA (Chen et al., 2020) 75.392 44.530 20.567 14.194 11.645 95.876 79.001 52.176 39.190 32.951 24.546 19.522
TA (Ma et al., 2021b) 67.496 42.233 20.352 14.175 11.694 78.883 61.990 40.669 31.506 27.111 21.079 17.319
G-TA (Ma et al., 2021b) 67.842 41.946 19.962 13.865 11.448 79.297 62.291 40.529 30.941 26.427 20.268 16.569
Sign-OPT (Cheng et al., 2020) 86.716 48.233 18.258 11.067 8.786 80.366 65.200 42.866 32.104 27.526 20.394 16.281
SVM-OPT (Cheng et al., 2020) 89.863 47.914 18.297 11.091 8.839 79.807 65.590 43.426 33.090 28.797 22.354 18.795
GeoDA (Rahmati et al., 2020) 29.157 20.119 12.487 11.010 9.688 - - - - - - -
Evolutionary (Dong et al., 2019) 61.966 42.665 20.815 13.382 10.839 81.761 65.060 43.021 32.120 27.385 19.942 15.610
SurFree (Maho et al., 2021) 51.685 38.482 22.845 16.374 13.818 84.925 74.887 55.991 44.475 39.004 29.354 23.153
Triangle Attack (Wang et al., 2022) 27.217 25.853 23.743 22.581 22.132 - - - - - - -
SQBAIncResV2 (Park et al., 2024) 26.134 19.035 11.189 8.432 7.417 - - - - - - -
SQBAXception (Park et al., 2024) 23.672 17.424 10.502 8.036 7.115 - - - - - - -
BBAIncResV2 (Brunner et al., 2019) 38.782 28.437 18.757 15.474 14.191 66.746 56.283 41.324 34.066 30.942 25.757 22.630
BBAXception (Brunner et al., 2019) 43.317 31.519 20.504 16.712 15.282 63.069 53.363 39.740 33.166 30.221 25.438 22.561
Prior-Sign-OPTIncResV2 81.991 42.403 12.835 7.365 5.842 74.597 55.421 31.856 22.958 19.513 14.361 11.665
Prior-Sign-OPTIncResV2&Xception 77.683 37.099 9.058 5.195 4.199 69.526 49.368 26.882 19.324 16.697 12.821 10.769
Prior-Sign-OPTθPGD

0 + IncResV2 23.596 15.347 8.074 5.729 4.863 - - - - - - -
Prior-OPTIncResV2 49.279 18.135 5.718 4.451 4.027 67.300 49.842 33.477 27.602 25.281 21.837 19.800
Prior-OPTIncResV2&Xception 42.541 13.418 3.919 3.321 3.119 60.211 42.631 27.547 23.011 21.441 19.193 17.983
Prior-OPTθPGD

0 + IncResV2 22.852 12.194 6.568 5.114 4.548 - - - - - - -

ViT

HSJA (Chen et al., 2020) 37.813 19.386 9.031 6.604 5.637 61.491 44.853 23.947 16.926 14.152 10.791 8.922
TA (Ma et al., 2021b) 37.923 19.867 9.078 6.636 5.674 52.110 36.455 20.536 15.145 12.885 10.158 8.609
G-TA (Ma et al., 2021b) 37.425 19.347 8.948 6.496 5.643 52.550 36.720 20.857 15.436 13.255 10.490 8.933
Sign-OPT (Cheng et al., 2020) 51.120 25.290 8.559 5.482 4.572 55.941 41.867 23.784 16.541 13.873 10.129 8.267
SVM-OPT (Cheng et al., 2020) 55.802 26.580 9.242 5.988 5.070 56.002 41.899 23.909 17.273 14.848 11.739 10.320
GeoDA (Rahmati et al., 2020) 18.880 12.904 8.039 7.153 6.313 - - - - - - -
Evolutionary (Dong et al., 2019) 40.382 25.709 11.925 7.974 6.719 57.141 40.187 21.782 15.191 12.795 9.677 8.311
SurFree (Maho et al., 2021) 28.228 19.016 10.194 7.321 6.303 70.337 53.129 30.054 20.595 16.908 11.794 9.204
Triangle Attack (Wang et al., 2022) 12.789 12.144 11.064 10.411 10.097 - - - - - - -
SQBAResNet50 (Park et al., 2024) 21.741 14.004 7.738 5.861 5.201 - - - - - - -
SQBAConViT (Park et al., 2024) 12.886 9.762 6.240 4.947 4.452 - - - - - - -
BBAResNet50 (Brunner et al., 2019) 29.755 20.053 12.580 10.375 9.567 43.231 33.365 21.889 17.635 16.046 13.726 12.463
BBAConViT (Brunner et al., 2019) 22.716 16.153 10.893 9.193 8.595 45.588 35.227 22.865 18.325 16.614 14.028 12.623
Prior-Sign-OPTResNet50 50.161 27.953 9.474 5.872 4.850 55.095 40.480 22.354 15.626 13.201 9.789 8.048
Prior-Sign-OPTResNet50&ConViT 46.196 23.869 7.327 4.694 3.967 53.925 38.418 20.673 14.422 12.153 9.090 7.544
Prior-Sign-OPTθPGD

0 + ResNet50 29.912 18.425 7.848 5.175 4.331 - - - - - - -
Prior-OPTResNet50 42.838 22.704 8.848 6.024 5.195 54.348 40.930 24.408 18.117 15.803 12.638 11.070
Prior-OPTResNet50&ConViT 26.495 11.287 4.929 3.937 3.609 53.369 40.002 24.706 19.148 17.116 14.114 12.650
Prior-OPTθPGD

0 + ResNet50 29.099 17.754 8.208 5.782 5.009 - - - - - - -
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Table 2: Mean ℓ2 distortions of the different numbers of priors on the ImageNet dataset.

Method Priors Target Model: ResNet-1011 Target Model: Swin Transformer2 Target Model: GC ViT2

@1K @2K @5K @8K @10K @1K @2K @5K @8K @10K @1K @2K @5K @8K @10K

Sign-OPT no prior 37.248 21.235 8.982 5.811 4.754 86.373 53.399 20.686 12.406 9.899 57.903 35.762 14.763 9.047 7.185

Prior-Sign-OPT

1 prior 34.150 18.733 6.111 3.718 3.019 84.124 52.882 20.344 11.880 9.254 57.171 36.949 14.963 8.931 6.899
2 priors 32.848 17.548 5.121 3.136 2.593 77.459 43.062 13.614 7.903 6.331 54.896 32.418 11.012 6.651 5.342
3 priors 31.156 15.455 4.074 2.527 2.122 73.110 37.852 10.264 5.939 4.778 52.744 28.939 8.707 5.245 4.215
4 priors 29.984 14.707 3.698 2.333 1.989 70.246 34.470 8.526 5.066 4.169 50.256 26.027 6.435 3.804 3.212
5 priors 29.601 14.195 3.573 2.275 1.951 67.616 32.225 7.321 4.219 3.467 48.935 24.821 6.123 3.601 2.893

Prior-OPT

1 prior 18.355 7.100 2.840 2.324 2.158 69.432 39.447 16.536 11.241 9.625 50.467 29.091 11.537 7.311 5.948
2 priors 17.373 6.465 2.454 2.096 1.979 41.152 17.977 7.289 5.453 4.896 36.055 16.176 6.094 4.413 3.747
3 priors 15.373 5.350 1.919 1.714 1.653 36.636 13.877 5.166 4.008 3.687 33.181 13.005 4.702 3.644 3.264
4 priors 15.422 5.220 1.849 1.654 1.596 38.343 12.650 3.784 3.027 2.850 34.396 10.994 3.047 2.356 2.171
5 priors 15.556 5.395 1.881 1.672 1.605 37.712 12.070 3.488 2.747 2.577 33.351 10.369 2.921 2.329 2.159

1 Five surrogate models: ResNet-50, SENet-154, ResNeXt-101 (64× 4d), VGG-13, SqueezeNet v1.1
2 Five surrogate models: ResNet-50, ConViT, CrossViT, MaxViT, ViT
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Figure 3: Mean distortions of untargeted attacks on the defense models equipped with the ResNet-50.

0 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Number of Queries

0

10

20

30

40

50

60

70

80

90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

TA
G-TA
GeoDA
HSJA
Sign-OPT
SVM-OPT
Evolutionary
SurFree
BBAAT(ResNet110)

BBAAT(WRN28)
SQBAAT(ResNet110)
SQBAAT(WRN28)
Triangle Attack
Prior-Sign-OPTAT(ResNet110)&AT(WRN28)
Prior-Sign-OPTAT(ResNet110)
Prior-OPTAT(ResNet110)&AT(WRN28)
Prior-OPTAT(ResNet110)

(a) TRADES (CIFAR-10)

0 2K 4K 6K 8K 10K 12K 14K 16K 18K 20K
Number of Queries

0

10

20

30

40

50

60

70

80

90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

TA
G-TA
GeoDA
HSJA
Sign-OPT
SVM-OPT
Evolutionary
SurFree
BBA3rd AT

BBA1st AT
SQBA3rd AT
SQBA1st AT
Triangle Attack
Prior-Sign-OPTdouble ATs
Prior-Sign-OPT1st AT
Prior-OPTdouble ATs
Prior-OPT1st AT

(b) ATϵ∞=4/255 (ImageNet)1

0 2K 4K 6K 8K 10K 12K 14K 16K 18K 20K
Number of Queries

0

10

20

30

40

50

60

70

80

90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

TA
G-TA
GeoDA
HSJA
Sign-OPT
SVM-OPT
Evolutionary
SurFree
BBA3rd AT

BBA2nd AT
SQBA3rd AT
SQBA2nd AT
Triangle Attack
Prior-Sign-OPTdouble ATs
Prior-Sign-OPT2nd AT
Prior-OPTdouble ATs
Prior-OPT2nd AT

(c) ATϵ∞=8/255 (ImageNet)2

Figure 4: Attack success rates of untargeted attacks with ℓ2-norm constraint against defense models.

Results of Attacks against Undefended Models. Table 1 shows the results of attacks against
undefended models on the ImageNet dataset. Additional results are in Appendix G.5. In summary:

(1) In untargeted attacks (Table 1 and Fig. 7), the performance of Prior-OPT significantly surpasses
that of all methods, and using multiple surrogate models yields better performance than using a
single surrogate model. In addition, the PGD initialization (θPGD

0 ) proves effective in early iterations,
because it establishes a high-quality initial attack direction θ0 through transfer-based attacks.

(2) In targeted attacks, Prior-OPT outperforms Prior-Sign-OPT when the query budget is below 5,000,
while Prior-Sign-OPT performs better in later iterations with more queries.

(3) Table 2 and Fig. 5c demonstrate that using more surrogate models (priors) can boost performance.

11st AT: AT(ResNet-50, ϵℓ∞ = 8/255), 3rd AT: AT(ResNet-50, ϵℓ2 = 3), double ATs: combination of both
22nd AT: AT(ResNet-50, ϵℓ∞ = 4/255), 3rd AT: AT(ResNet-50, ϵℓ2 = 3), double ATs: combination of both
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Results of Attacks against Defense Models. We conduct untargeted attack experiments against two
types of defense models, i.e., adversarial training (AT) (Madry et al., 2018) and TRADES (Zhang
et al., 2019). Figs. 3 and 4 show that Prior-OPT with two surrogate models (Prior-OPTdouble ATs)
achieves the best performance on the ImageNet dataset and the CIFAR-10 dataset.

4.3 COMPREHENSIVE UNDERSTANDING OF PRIOR-OPT

In the ablation studies, we conduct control experiments based on theoretical analysis results and
attacks on real images (Fig. 5). In Figs. 5a, 5b, and 5c, we set the image dimension to d = 3,072 and
use E[γ] (Eq. (9) for Sign-OPT, Eq. (11) for Prior-Sign-OPT, Eq. (15) and Eq. (16) for the lower and
upper bound of Prior-OPT) as the metric for gradient estimation accuracy, where γ = v∗⊤∇g(θ).
Figs. 5a and 5c are based on q = 50. Fig. 5a uses one prior and shows that Prior-OPT and Prior-
Sign-OPT outperform Sign-OPT with different values of α. Fig. 5a also shows that Prior-Sign-OPT
performs well when α is small and E[γ] decreases when α is close to 1. This is because when we set
α = 1, E[γ] = 1/

√
q in Eq. (11). Fig. 5b shows that E[γ] monotonically increases with q for each

method, and Prior-Sign-OPT performs worse than Sign-OPT when q > 500. Fig. 5c validates that
the performance can be improved when more priors are available, and prioritizing surrogate models
with larger α values outperforms random selection. Fig. 5c is consistent with the conclusion of the
experimental results in Table 2. Fig. 5d shows the untargeted attack results of Prior-OPT against
Swin Transformer with varying q on ImageNet. A smaller q achieves better performance in the early
iterations, but becomes less effective in the late stage of iterations with a higher number of queries.
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Figure 5: Results of ablation studies. Figs. 5a, 5b, and 5c are based on Eqs. (9), (11), (15), and (16).

5 CONCLUSION

In this paper, we propose novel hard-label attacks (i.e., Prior-OPT and Prior-Sign-OPT) that incor-
porate transfer-based priors into the gradient estimation of the ray direction and significantly boost
the attack performance. Through theoretical analysis, we prove the effectiveness of our approach:
we derive expressions for the expected cosine similarities between the estimated and true gradients,
enabling theoretical comparison against the baseline. Therefore, our analysis offers a comprehensive
understanding of Prior-OPT and Prior-Sign-OPT. Lastly, we evaluate our approach through extensive
experiments, demonstrating superior performance compared to state-of-the-art methods.
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Stéphane D’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent
Sagun. ConViT: improving Vision Transformers with soft convolutional inductive biases. In

11

https://github.com/machanic/hard_label_attacks
https://openreview.net/forum?id=rJlk6iRqKX
https://openreview.net/forum?id=rJlk6iRqKX
https://openreview.net/forum?id=SklTQCNtvS


Published as a conference paper at ICLR 2025

International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 2286–2296, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: a large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and Jun Zhu. Efficient
decision-based black-box adversarial attacks on face recognition. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7714–7722, 2019.

Yinpeng Dong, Shuyu Cheng, Tianyu Pang, Hang Su, and Jun Zhu. Query-efficient black-box
adversarial attacks guided by a transfer-based prior. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(12):9536–9548, 2022. doi: 10.1109/TPAMI.2021.3126733.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5927–5935, 2017.

Ali Hatamizadeh, Hongxu Yin, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Global Context Vi-
sion Transformers. In International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 12633–12646, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7132–7141, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
4700–4708, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, 2009. URL https://www.cs.toronto.edu/
˜kriz/learning-features-2009-TR.pdf.

Jie Li, Rongrong Ji, Peixian Chen, Baochang Zhang, Xiaopeng Hong, Ruixin Zhang, Shaoxin Li,
Jilin Li, Feiyue Huang, and Yongjian Wu. Aha! Adaptive history-driven attack for decision-based
black-box models. In IEEE/CVF International Conference on Computer Vision, pp. 16168–16177,
2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin Transformer: hierarchical vision transformer using shifted windows. In IEEE/CVF
International Conference on Computer Vision, pp. 10012–10022, 2021.

Chen Ma, Li Chen, and Jun-Hai Yong. Simulating unknown target models for query-efficient
black-box attacks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11835–11844, 2021a.

Chen Ma, Xiangyu Guo, Li Chen, Jun-Hai Yong, and Yisen Wang. Finding optimal tangent points for
reducing distortions of hard-label attacks. In Advances in Neural Information Processing Systems,
volume 34, pp. 19288–19300, 2021b.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

12

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=rJzIBfZAb


Published as a conference paper at ICLR 2025

Thibault Maho, Teddy Furon, and Erwan Le Merrer. SurFree: a fast surrogate-free black-box attack.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10430–10439, 2021.

Florian Meier, Asier Mujika, Marcelo Matheus Gauy, and Angelika Steger. Improving gradient
estimation in evolutionary strategies with past descent directions. arXiv preprint arXiv:1910.05268,
2019.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: a simple and
accurate method to fool deep neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2574–2582, 2016.

Jeonghwan Park, Paul Miller, and Niall McLaughlin. Hard-label based small query black-box
adversarial attack. In IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
3986–3995, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763,
2021.

Ali Rahmati, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Huaiyu Dai. GeoDA: a
geometric framework for black-box adversarial attacks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8446–8455, 2020.

Md Farhamdur Reza, Ali Rahmati, Tianfu Wu, and Huaiyu Dai. CGBA: curvature-aware geometric
black-box attack. In IEEE/CVF International Conference on Computer Vision, pp. 124–133, 2023.

Oswaldo Rio Branco de Oliveira. The implicit and the inverse function theorems: easy proofs. arXiv
preprint arXiv:1212.2066, 2012.

Yucheng Shi, Yahong Han, Qinghua Hu, Yi Yang, and Qi Tian. Query-efficient black-box adversarial
attack with customized iteration and sampling. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):2226–2245, 2023. doi: 10.1109/TPAMI.2022.3169802.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the Inception architecture for computer vision. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2818–2826, 2016.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-v4,
Inception-ResNet and the impact of residual connections on learning. In AAAI Conference
on Artificial Intelligence, pp. 4278––4284, 2017.

Michail Tsagris, Christina Beneki, and Hossein Hassani. On the folded normal distribution. Mathe-
matics, 2(1):12–28, 2014. ISSN 2227-7390. doi: 10.3390/math2010012.

Xiaosen Wang, Zeliang Zhang, Kangheng Tong, Dihong Gong, Kun He, Zhifeng Li, and Wei Liu.
Triangle Attack: a query-efficient decision-based adversarial attack. In European Conference on
Computer Vision, pp. 156–174, 2022.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1492–1500, 2017.

Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and Koichi Kise. Shakedrop regularization
for deep residual learning. IEEE Access, 7:186126–186136, 2019. doi: 10.1109/ACCESS.2019.
2960566.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference, pp. 87.1–87.12, 2016. doi: 10.5244/C.30.87.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 7472–7482,
2019.

13



Published as a conference paper at ICLR 2025

APPENDIX

A PROOF FOR SURROGATE GRADIENT COMPUTATION

For a surrogate model f̂ , we define f as the negative C&W loss function as follows.

f(x′) :=

{︄
f̂(x′)y −maxj ̸=y f̂(x

′)j , if untargeted attack,
maxj ̸=ŷadv

f̂(x′)j − f̂(x′)ŷadv
, if targeted attack,

(18)

where f̂(x′)i denotes the i-th element of the output of f̂(x′). Note that h(θ, λ) defined in Eq. (4)
of the main text equals f

(︂
x+ λ · θ

∥θ∥

)︂
. Now we consider g(θ), the distance from the benign

image x to the adversarial region along the ray direction θ, as defined in Eq. (3). For any x′,
Φ(x′) = 1⇔ f(x′) ≤ 0, so we have

g(θ) = inf

{︃
λ : λ > 0, f

(︁
x+ λ

θ

∥θ∥
)︁
≤ 0

}︃
, (19)

where inf(·) denotes the infimum of a subset of R. We define g(θ) = +∞ when no valid λ exists,
since inf ∅ = +∞ by convention. Now we can prove the following proposition.
Proposition A.1. If f is continuous, f(x) > 0, then given any θ ̸= 0 s.t. g(θ) < +∞, we have

g(θ) > 0 and f
(︂
x+ g(θ) θ

∥θ∥

)︂
= 0.

Proof. We first prove that g(θ) > 0. We begin by defining the function fθ(λ) := f
(︂
x+ λ · θ

∥θ∥

)︂
.

Note that fθ is continuous (w.r.t. λ) because f is continuous. Since fθ(0) = f(x) > 0, there
exists δ > 0 such that ∀0 < λ < δ, fθ(λ) > 0. Since g(θ) < +∞, by the definition we have
g(θ) = inf({λ : λ > 0, fθ(λ) ≤ 0}) ≥ δ > 0.

Next, we want to prove f
(︂
x+ g(θ) θ

∥θ∥

)︂
= 0, i.e., fθ(g(θ)) = 0. To simplify notation in the proof,

let us denote Aθ := {λ : λ > 0, fθ(λ) ≤ 0}.
If fθ(g(θ)) < 0, then since fθ is continuous and g(θ) > 0, there exists ϵ > 0 such that fθ(g(θ)−ϵ) <
0 and g(θ) − ϵ > 0. Therefore, we have g(θ) − ϵ ∈ Aθ, which implies that g(θ) > inf(Aθ). This
contradicts the definition g(θ) = inf(Aθ).

If fθ(g(θ)) > 0, then there exists ϵ > 0 such that fθ(λ) > 0 holds for all g(θ) ≤ λ ≤ g(θ) + ϵ. This
means that [g(θ), g(θ) + ϵ] ∩ Aθ = ∅. Noting that g(θ) is a lower bound of Aθ, this implies that
g(θ) + ϵ is also a lower bound of Aθ, which contradicts the definition g(θ) = inf(Aθ).

Therefore fθ(g(θ)) = 0.

Next, we show how to calculate∇g(θ) based on some weak assumptions.

Theorem A.2. Suppose f is continuously differentiable2 and f(x) > 0. Let h(θ, λ) = f
(︂
x+ λ θ

∥θ∥

)︂
.

For any θ0 ̸= 0 s.t. g(θ0) < +∞, let λ0 = g(θ0), and assume that ∂h
∂λ (θ0, λ0) ̸= 0, then we conclude

that g is differentiable at θ0, and

∇g(θ0) = −
1

∂h
∂λ (θ0, λ0)

∇θh(θ0, λ0). (20)

Remark A.3. The assumptions in the theorem are rather weak. f(x) > 0 (the unperturbed sample can
be successfully classified) is a standard assumption; g(θ0) < +∞ is a common assumption, necessary
for ray search procedure to work; f is continuously differentiable almost everywhere under common
network architectures. The only special condition required here is that ∂h

∂λ (θ0, λ0) ̸= 0, which is
generally satisfied unless a specific function f is explicitly constructed to violate it. Intuitively, as λ
increases, the function value decreases from a positive value to a non-positive value, and the derivative
w.r.t. λ is typically non-zero when the function value crosses zero.

2A function f is said to be continuously differentiable if all partial derivatives of f exist and are continuous.
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Proof. Since (θ, λ) ↦→ x+ λ θ
∥θ∥ is continuously differentiable at {(θ, λ) : θ ∈ Rd, λ ∈ R, θ ̸= 0}

and f is continuously differentiable everywhere, h is continuously differentiable when θ ̸= 0 by
the chain rule. By Proposition A.1, h(θ0, λ0) = 0. Since ∂h

∂λ (θ0, λ0) ̸= 0, by the Implicit Function
Theorem (see Theorem 1 in Rio Branco de Oliveira (2012)), there exists a neighborhood Θ ⊆ Rd

of θ0 and an open interval Λ := (λ0 − η, λ0 + η) such that for each θ ∈ Θ, there is a unique
λ ∈ Λ satisfying h(θ, λ) = 0. Since θ uniquely determines λ, we define g̃ : Θ → Λ satisfying
h(θ, g̃(θ)) = 0 for all θ ∈ Θ. Moreover, the Implicit Function Theorem tells us that g̃ is continuously
differentiable, and

∇g̃(θ0) = −
1

∂h
∂λ (θ0, λ0)

∇θh(θ0, λ0). (21)

Now it suffices to prove g is differentiable at θ0 and ∇g(θ0) = ∇g̃(θ0). We shall prove that there
exists a neighborhood of θ0 in which g and g̃ are equal. Since h(θ, g̃(θ)) = 0, from the definition of
g, we have g(θ) ≤ g̃(θ) < +∞ for all θ ∈ Θ. By Proposition A.1, h(θ, g(θ)) = 0, so the uniqueness
in Implicit Function Theorem tells us that ∀θ ∈ Θ, if λ0 − η < g(θ) < λ0 + η, then g(θ) = g̃(θ).
Since g(θ) ≤ g̃(θ) < λ0 + η, it suffices to prove that g(θ) > λ0 − η.

Now we prove that there exists a neighborhood Θ′ of θ0 such that ∀θ ∈ Θ′, ∀λ ∈ [0, λ0 − η],
h(θ, λ) > 0 (this would imply that ∀θ ∈ Θ′, g(θ) > λ0−η, since h(θ, g(θ)) = 0 by Proposition A.1).
To prove that, we first note that ∀λ ∈ [0, λ0 − η], h(θ0, λ) > 0 since g(θ0) = λ0 > λ0 − η. Since
h(θ0, λ) is continuous w.r.t. λ, by the Extreme Value Theorem, h(θ0, λ) on λ ∈ [0, λ0−η] could attain
the minimum h(θ0, λ

∗) which is positive, so there exists ϵ > 0 such that ∀λ ∈ [0, λ0−η], h(θ0, λ) ≥ ϵ.
We pick a bounded closed neighborhood of θ0, denoted by Θ′′ such that 0 /∈ Θ′′. h is continuous
on the compact set {(θ, λ) : θ ∈ Θ′′, λ ∈ [0, λ0 − η]}, so by Heine-Cantor Theorem, h is uniformly
continuous on the same set. This implies that there exists δ > 0 such that for all θ ∈ Θ′′ satisfying
∥θ − θ0∥ < δ, we have |h(θ, λ) − h(θ0, λ)| < ϵ and hence h(θ, λ) > 0 for all λ ∈ [0, λ0 − η].
Setting Θ′ = Θ′′ ∩ {θ : ∥θ − θ0∥ < δ}, we have ∀θ ∈ Θ′, ∀λ ∈ [0, λ0 − η], h(θ, λ) > 0, and thus
the proposition at the beginning of this paragraph is proven, i.e., ∀θ ∈ Θ′, g(θ) > λ0 − η.

Therefore, we have proven that there exists a neighborhood of θ0, Θ∩Θ′, in which g and g̃ are equal.
Since the differentiability at θ0 and the gradient only rely on the function value in a neighborhood of
θ0, g is differentiable at θ0 and ∇g(θ0) = ∇g̃(θ0). By Eq. (21), the proof is completed.

B ACQUISITION OF TRANSFER-BASED PRIORS IN TARGETED ATTACKS

adversarial region of
original target class yadv

initial adv image x̃0

non-adversarial region

direction θ0
direction θ ∆θ

original image x

λf

(a) The θ direction in the target model f .

adversarial region of
original target class yadv

initial adv image x̃0

The θ direction never
intersects the region of yadv .

the adversarial region of
the new target class ŷadv ,
denoted as Radv

non-adversarial region

direction θ0direction θ

original image x

∆θ

λ0

(b) The θ direction in the surrogate model f̂ .

Figure 6: Illustration of setting the new target class ŷadv and λ0 before obtaining priors.

In targeted attacks, obtaining transfer-based priors is more challenging. Fig. 6 illustrates that θ0
is initialized as the direction from the original image x to an initial adversarial image x̃0, which is
selected from the target class yadv. The θ0 direction is used as the initial direction in both the surrogate
model and the target model. If both models classify x̃0 correctly, the θ0 direction leads to the region
of the target class yadv in both models. During the optimization process, a small perturbation ∆θ
is added to θ0, resulting in a new direction θ. Although the θ direction may successfully guide the
attack towards the adversarial region of the target class yadv in the target model f , it may not lead to
the same region in the surrogate model f̂ . This is a result of the varying decision boundaries between
the two models, which differ in both shape and extent. Therefore, gf̂ (θ) becomes infinitely large in
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this case, as shown in Fig. 6b. To address this issue, we set a new target class ŷadv and λ0 before
computing the transfer-based priors. The procedure is as follows:

(1) Starting at the original image x, we move along the θ direction in the surrogate model f̂ . The
region located at a distance of λf + 1 along θ is defined as the new adversarial region Radv with label
ŷadv, where λf represents the shortest distance from x along θ to the adversarial region of the original
target class yadv in the target model f . The shortest distance from x to Radv along the θ direction is
denoted as λ0, as shown in Fig. 6b.

(2) If no adversarial region with the label ŷadv different from the true label y is found in the previous
steps, we then search for the first adversarial region Radv along the θ direction in the surrogate model
f̂ , within a distance range of 0 to 200. The label of Radv is denoted as ŷadv, and the shortest distance
from x to Radv along the θ direction is denoted as λ0.

C THEORETICAL ANALYSIS OF SIGN-OPT, PRIOR-SIGN-OPT, AND
PRIOR-OPT

Lemma C.1. Suppose u ∼ U(Sd−1) where U(Sd−1) denotes the uniform distribution on the unit
hypersphere in Rd. Suppose g is a fixed vector in Rd with ∥g∥ = 1. Let β := u⊤g. Then

E[|β|] =
Γ(d2 )

Γ(d+1
2 )
√
π
, (22)

E[β2] =
1

d
, (23)

where Γ is the gamma function.

Proof. Let a ∼ N (0, I) ∈ Rd, then we let u = a
∥a∥ . Hence β = a⊤g

∥a∥ . Note that a
∥a∥ and ∥a∥ are

independent because the distribution of a
∥a∥ is always the uniform distribution on the unit hypersphere

given any restriction to the value of ∥a∥. Therefore, β = a⊤g
∥a∥ and ∥a∥ are also independent, so |β|

and ∥a∥ are independent. Noting that |β|∥a∥ = |a⊤g|, we have

E[|a⊤g|] = E[|β|]E[∥a∥]. (24)

Since a⊤g is a affine transformation of the multivariate Gaussian variable a, a⊤g also has a Gaussian
distribution with the mean 0 and the variance g⊤Ig = 1, so a⊤g ∼ N (0, 1). Therefore, |a⊤g|
follows the folded normal distribution (actually its special case: the half-normal distribution), and by
the formula in Tsagris et al. (2014),

E[|a⊤g|] =
√
2√
π
. (25)

∥a∥ follows the chi distribution with d degrees of freedom, so by the formula of its mean

E[∥a∥] =
√
2
Γ(d+1

2 )

Γ(d2 )
. (26)

Substituting Eq. (25) and Eq. (26) into Eq. (24), we have proved Eq. (22).

Since β and ∥a∥ are independent, similarly to Eq. (24), we have

E[(a⊤g)2] = E[β2]E[∥a∥2]. (27)

Since a ∼ N (0, I), E[aa⊤] = I. Hence E[(a⊤g)2] = E[g⊤a · a⊤g] = g⊤E[aa⊤]g = ∥g∥2 = 1,
and E[∥a∥2] = E[Tr(aa⊤)] = Tr(E[aa⊤]) = d. By Eq. (27), Eq. (23) has been proved.

Lemma C.2. Suppose g is a fixed vector in Rd with ∥g∥ = 1. Suppose p is another fixed vector in
Rd with ∥p∥ = 1, and let βp := g⊤p. Let u be a random vector uniformly sampled from the unit
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hypersphere in the (d− 1)-dimensional subspace orthogonal to p. Specifically, u can be constructed
as u = ξ − ξ⊤p · p where ξ ∼ U(Sd−1). Let β⊥ := g⊤u, then

E[|β⊥|] =
Γ(d−1

2 )

Γ(d2 )
√
π

√︂
1− β2

p . (28)

Proof. To observe the property of β⊥, since u is orthogonal to p, we do the following decomposition
for g:

g = g⊤p · p+ g⊥ = βpp+ g⊥, (29)
where g⊥ := g−g⊤p ·p denotes the projection of g to the (d−1)-dimensional subspace orthogonal
to p. By expanding the inner product, we have

∥g⊥∥2 = 1− 2β2
p + β2

p = 1− β2
p , (30)

so ∥g⊥∥ =
√︂
1− β2

p . Meanwhile,

β⊥ = g⊤u = (g⊤p · p+ g⊥)
⊤u = g⊤

⊥u. (31)
Therefore, β⊥ is essentially the inner product between a random vector uniformly sampled from the
unit hypersphere in a (d− 1)-dimensional subspace and a fixed vector with norm

√︂
1− β2

p in this
subspace. Taking the expectation of the absolute values on both sides of Eq. (31), we have

E[|β⊥|] = E[|g⊤
⊥u|] = ∥g⊥∥E[|g⊥

⊤u|]. (32)
Since both g⊥ and u reside in the (d − 1)-dimensional subspace orthogonal to p, it follows that
E[|g⊥

⊤u|] corresponds to E[|β|] in Eq. (22), with d replaced by d− 1. Therefore,

E[|β⊥|] = ∥g⊥∥E[|g⊥
⊤u|] =

Γ(d−1
2 )

Γ(d2 )
√
π

√︂
1− β2

p , (33)

and the proof is completed.

Lemma C.3. Let β be as defined in Lemma C.1, then the probability density function of β is (note
that −1 ≤ β ≤ 1)

p(β) =

(︂√︁
1− β2

)︂d−3

B
(︁
d−1
2 , 1

2

)︁ , (34)

where B(·, ·) is the beta function.

Proof. We note that when −1 ≤ x ≤ 0, P (β ≤ x) is equal to the ratio of the surface area of the
hyperspherical cap of a hypersphere in Rd to the surface area of the hypersphere. For a hyperspherical
cap with height h on a unit hypersphere, its surface area is 1

2AdI2h−h2

(︁
d−1
2 , 1

2

)︁
, where Ad is the

surface area of the unit hypersphere in Rd and I(·, ·) is the regularized incomplete beta function. To
compute P (β ≤ x) for −1 ≤ x ≤ 0, substituting h = x+ 1 and dividing the area by Ad, we have

P (β ≤ x) =
1

2
I1−x2

(︃
d− 1

2
,
1

2

)︃
, (35)

where I is the regularized incomplete beta function, defined as

Ix(a, b) =

∫︁ x

0
ta−1(1− t)b−1dt

B(a, b)
. (36)

Hence the probability density function is

pβ(x) =
∂

∂x
P (β ≤ x) (37)

=
1

2
· −2x
B
(︁
d−1
2 , 1

2

)︁ (︁1− x2
)︁ d−1

2 −1 (︁
1− (1− x2)

)︁ 1
2−1

(38)

=
−x
|x|
·
(︁√

1− x2
)︁d−3

B
(︁
d−1
2 , 1

2

)︁ (39)

=

(︁√
1− x2

)︁d−3

B
(︁
d−1
2 , 1

2

)︁ . (40)
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Note that the last equality holds because x ≤ 0.

Therefore, we have proven Eq. (34) for β ≤ 0. When β > 0, the formula is the same due to the
symmetry. The proof is completed.

C.1 ANALYSIS FOR SIGN-OPT

We can compute the projection of∇g(θ) onto S with s = 0 by summing over all its projection onto
the orthonormal basis:

v :=

q∑︂
i=1

g(θ + σui)− g(θ)

σ
· ui, (41)

where {u1, . . . ,uq} is a uniformly random orthonormal set of q vectors in Rd, so ui ∼ U(Sd−1) for
any i ≤ q. However, in hard-label attacks the coefficients above for each basis vector are costly to
estimate. In the Sign-OPT estimator, each coefficient is replaced by its sign which is much easier to
obtain using hard-label queries:

v =

q∑︂
i=1

sign(g(θ + σui)− g(θ)) · ui. (42)

In the following analysis, we assume that g is differentiable at θ so that we have g(θ+ σu)− g(θ) =

σ · ∇g(θ)⊤u + o(σ) where limσ→0
o(σ)
σ = 0 for any unit vector u. We further assume that σ is

sufficiently small so that we can omit o(σ). In practice, if the target model is deterministic, picking
a small σ is feasible until the numerical error dominates. Therefore, in the following analysis we
assume that

sign(g(θ + σu)− g(θ)) ≈ sign(∇g(θ)⊤u), (43)

where u is a unit vector in Rd. Now we can write Sign-OPT in the following form:

v =

q∑︂
i=1

sign(∇g(θ)⊤ui) · ui. (44)

Now, we present the proof of Theorem 3.2 for the Sign-OPT estimator defined in Eq. (44).

Proof. Since {ui}qi=1 are orthonormal, we have ∥v∥ =
√︁∑︁q

i=1(sign(∇g(θ)⊤ui))2 =
√
q. We note

that sign(∇g(θ)⊤ui) = sign(∇g(θ)
⊤
ui), so

v =

q∑︂
i=1

sign(∇g(θ)
⊤
ui) · ui. (45)

Hence

γ =
v⊤∇g(θ)
∥v∥

=
1
√
q

q∑︂
i=1

sign(∇g(θ)
⊤
ui) · (∇g(θ)

⊤
ui) (46)

=
1
√
q

q∑︂
i=1

⃓⃓⃓
∇g(θ)

⊤
ui

⃓⃓⃓
. (47)

Since∇g(θ) is a fixed vector w.r.t. the randomness of {ui}qi=1, and the marginal distribution of ui is
U(Sd−1) for any i, by Eq. (22) we have

E[γ] =
1
√
q
q

Γ(d2 )

Γ(d+1
2 )
√
π

=
√
q

Γ(d2 )

Γ(d+1
2 )
√
π
. (48)

Computing E[γ2] is more complicated. First we have

γ2 =
1

q

(︄
q∑︂

i=1

⃓⃓⃓
∇g(θ)

⊤
ui

⃓⃓⃓)︄2

(49)

=
1

q

q∑︂
i=1

(︂
∇g(θ)

⊤
ui

)︂2
+

1

q

∑︂
i ̸=j

⃓⃓⃓
∇g(θ)

⊤
ui

⃓⃓⃓
·
⃓⃓⃓
∇g(θ)

⊤
uj

⃓⃓⃓
. (50)
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For the first part, by Eq. (23) we have

∀i,E[(∇g(θ)
⊤
ui)

2] =
1

d
. (51)

For the second part, let us denote βi := ∇g(θ)
⊤
ui and βj := ∇g(θ)

⊤
uj . Then we need to compute

for i ̸= j:

E[|βi| · |βj |] = Eui
[E[(|βi| · |βj |)

⃓⃓
ui]] (52)

= Eui [|βi|E[|βj |
⃓⃓
ui]]. (53)

Next, we aim to compute E[|βj |
⃓⃓
ui]. Since ui and uj are orthonormal, conditioned on ui, the vector

uj is uniformly distributed on the unit hypersphere in the (d− 1)-dimensional subspace orthogonal
to ui. When calculating the conditional expectation, we consider ui to be fixed and use Lemma C.2.
Specifically, in Lemma C.2 we let g be ∇g(θ) and let p be ui. Then we have

E[|βj |
⃓⃓
ui] =

Γ(d−1
2 )

Γ(d2 )
√
π

√︂
1− β2

i . (54)

Substituting Eq. (54) into Eq. (53), we have

E[|βi| · |βj |] =
Γ(d−1

2 )

Γ(d2 )
√
π
E
[︃
|βi|
√︂
1− β2

i

]︃
. (55)

Here the distribution of βi is the same as that of β in Lemma C.1, and we need to compute
E[|β|

√︁
1− β2]. By Eq. (22) and Eq. (34), we have

Γ(d2 )

Γ(d+1
2 )
√
π

= E[|β|] =
∫︂ 1

−1

p(β)|β|dβ (56)

=

∫︂ 1

−1

|β|

(︂√︁
1− β2

)︂d−3

B
(︁
d−1
2 , 1

2

)︁ dβ, (57)

so ∫︂ 1

−1

|β|
(︂√︁

1− β2
)︂d−3

dβ =
Γ(d2 )

Γ(d+1
2 )
√
π
B

(︃
d− 1

2
,
1

2

)︃
. (58)

Hence

E
[︂
|β|
√︁

1− β2
]︂
=

∫︂ 1

−1

|β|
√︁
1− β2p(β)dβ (59)

=
1

B
(︁
d−1
2 , 1

2

)︁ ∫︂ 1

−1

|β|
(︂√︁

1− β2
)︂d−2

dβ (60)

=
1

B
(︁
d−1
2 , 1

2

)︁ Γ(d+1
2 )

Γ(d+2
2 )
√
π
B

(︃
d

2
,
1

2

)︃
, (61)

where the last equality is obtained by setting d in Eq. (58) to d+ 1. Therefore, by Eq. (55) we have

E[|βi| · |βj |] =
1

π

B
(︁
d
2 ,

1
2

)︁
B
(︁
d−1
2 , 1

2

)︁ Γ(d−1
2 )

Γ(d2 )

Γ(d+1
2 )

Γ(d+2
2 )

(62)

=
1

π

Γ(d2 )Γ(
d
2 )

Γ(d+1
2 )Γ(d−1

2 )

Γ(d−1
2 )

Γ(d2 )

Γ(d+1
2 )

Γ(d+2
2 )

(63)

=
1

π

Γ(d2 )

Γ(d+2
2 )

(64)

=
2

πd
. (65)
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Here, the second equality is due to the identity B(a, b) = Γ(a)Γ(b)
Γ(a+b) , and the last equality is due to the

identity Γ(a+ 1) = aΓ(a).

Taking the expectation on both sides of Eq. (50) and using Eq. (51) and Eq. (65), we have

E[γ2] =
1

q
· q · 1

d
+

1

q
· q(q − 1) · 2

πd
(66)

=
1

d
+

2(q − 1)

πd
=

1

d

(︃
2

π
(q − 1) + 1

)︃
. (67)

The proof is completed.

C.2 ANALYSIS FOR PRIOR-SIGN-OPT

The Prior-Sign-OPT estimator is defined in Eq. (7). Note that there are s priors {p1, . . . ,ps} (we
assume that they are normalized to have unit norm), and {u1,u2, . . . ,uq−s} is a uniformly random
orthonormal set of q − s vectors in the (d− s)-dimensional subspace orthogonal to {p1, . . . ,ps}.
For convenience we first consider the case of s = 1, and the analysis can easily be generalized to the
case of s > 1.

C.2.1 THE CASE OF s = 1

When s = 1, we rewrite the Prior-Sign-OPT estimator in the following form:

v∗ = sign(∇g(θ)⊤p) · p+

q−1∑︂
i=1

sign(∇g(θ)⊤ui) · ui, (68)

where p is the prior vector with ∥p∥ = 1, and {ui}q−1
i=1 is the random orthonormal basis of the

(d− 1)-dimensional subspace orthogonal to p. Note that the directional derivative approximation is
also employed, as in Eq. (43).

Theorem C.4. For the Prior-Sign-OPT estimator defined in Eq. (68), we let γ := v∗⊤∇g(θ) be
its cosine similarity to the true gradient, where the notation v∗ := v∗

∥v∗∥ is defined to be the ℓ2
normalization of the corresponding vector, then

E[γ] =
1
√
q

[︄
|α|+ (q − 1)

√︁
1− α2

Γ(d−1
2 )

Γ(d2 )
√
π

]︄
, (69)

E[γ2] =
1

q

[︄
α2 +

q − 1

d− 1

(︃
2

π
(q − 2) + 1

)︃
(1− α2) + 2|α|(q − 1)

√︁
1− α2

Γ(d−1
2 )

Γ(d2 )
√
π

]︄
, (70)

where α := p⊤∇g(θ) is the cosine similarity between the prior and the true gradient.

Proof. Note that the property of sign function (e.g., sign(∇g(θ)⊤u) = sign(∇g(θ)
⊤
u)), in Eq. (68),

we denote

v⊥ :=

q−1∑︂
i=1

sign(∇g(θ)⊤ui) · ui =

q−1∑︂
i=1

sign(∇g(θ)
⊤
ui) · ui, (71)

then v∗ = sign(α)p+ v⊥. Now

γ =
(v∗)⊤∇g(θ)
∥v∗∥

(72)

=
1
√
q
(|α|+ v⊤

⊥∇g(θ)). (73)

The following argument is similar to that in the proof of Lemma C.2. Let g := ∇g(θ), and let
g⊥ := g − g⊤p · p denote the projection of g to the (d − 1)-dimensional subspace orthogonal
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to p. It follows that v⊤
⊥g = v⊤

⊥g⊥. Moreover, since {ui}q−1
i=1 are orthogonal to p, we have

v⊥ =
∑︁q−1

i=1 sign(g⊤
⊥ui) · ui. Since {ui}q−1

i=1 are uniformly distributed on the unit hypersphere in
the (d − 1)-dimensional subspace orthogonal to p, and g⊥ also resides in this subspace, v⊥ can
be considered as the Sign-OPT estimator for g⊥ as in Eq. (44), with q replaced by q − 1 and the
effective dimension being d− 1 rather than d. By Eq. (9) we have

E[v⊥
⊤g⊥] =

√︁
q − 1

Γ(d−1
2 )

Γ(d2 )
√
π
. (74)

Noting that ∥g⊥∥ =
√
1− α2 by Eq. (30) and ∥v⊥∥ =

√
q − 1, we have

E[v⊤
⊥g] = E[v⊤

⊥g⊥] = E[v⊥
⊤g⊥∥v⊥∥∥g⊥∥] (75)

= (q − 1)
√︁
1− α2

Γ(d−1
2 )

Γ(d2 )
√
π
. (76)

Taking the expectation on both sides of Eq. (73) and substituting Eq. (76), Eq. (69) has been proved.

Next we derive E[γ2]. By Eq. (73) we have

γ2 =
1

q
(|α|+ v⊤

⊥g)
2 (77)

=
1

q
(α2 + (v⊤

⊥g)
2 + 2|α|v⊤

⊥g). (78)

As discussed in the paragraph preceding Eq. (74), v⊥ can be considered as the Sign-OPT estimator
for g⊥ as in Eq. (44), with q replaced by q − 1 and the effective dimension being d− 1 rather than d.
By Eq. (10) we have

E[(v⊥
⊤g⊥)

2] =
1

d− 1

(︃
2

π
(q − 2) + 1

)︃
. (79)

Noting that ∥g⊥∥ =
√
1− α2 by Eq. (30) and ∥v⊥∥ =

√
q − 1, we have

E[(v⊤
⊥g)

2] = E[(v⊤
⊥g⊥)

2] = E[(v⊥
⊤g⊥)

2∥v⊥∥2∥g⊥∥2] (80)

=
q − 1

d− 1

(︃
2

π
(q − 2) + 1

)︃
(1− α2). (81)

Taking the expectation on both sides of Eq. (78) and substituting Eq. (76) and Eq. (81), Eq. (70) has
been proved.

C.2.2 THE CASE OF s > 1

In the case of s > 1, we rewrite the Prior-Sign-OPT estimator in the following form:

v∗ =

s∑︂
i=1

sign(∇g(θ)⊤pi) · pi +

q−s∑︂
i=1

sign(∇g(θ)⊤ui) · ui. (82)

Now, we present the proof of Theorem 3.3 for the Prior-Sign-OPT estimator defined in Eq. (82).

Proof. The following argument is similar to that in the proof of Theorem C.4. Now we have

v⊥ :=

q−s∑︂
i=1

sign(∇g(θ)⊤ui) · ui =

q−s∑︂
i=1

sign(∇g(θ)
⊤
ui) · ui, (83)

then v∗ =
∑︁s

i=1 sign(αi)pi + v⊥, and

γ =
(v∗)⊤∇g(θ)
∥v∗∥

(84)

=
1
√
q

(︄
s∑︂

i=1

|αi|+ v⊤
⊥∇g(θ)

)︄
. (85)
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Let g := ∇g(θ), and let g⊥ := g −
∑︁s

i=1 g
⊤pi · pi denote the projection of g to the (d − s)-

dimensional subspace orthogonal to {pi}si=1. It follows that v⊤
⊥g = v⊤

⊥g⊥. Using the similar
analysis to that in the case of s = 1, when s > 1 we have

E[v⊥
⊤g⊥] =

√
q − s

Γ(d−s
2 )

Γ(d−s+1
2 )
√
π
. (86)

Similar to the derivation of Eq. (30), we can derive that ∥g⊥∥ =
√︁

1−
∑︁s

i=1 α
2
i . Since ∥v⊥∥ =√

q − s, we have

E[v⊤
⊥g] = E[v⊤

⊥g⊥] = E[v⊥
⊤g⊥∥v⊥∥∥g⊥∥] (87)

= (q − s)

⌜⃓⃓⎷1−
s∑︂

i=1

α2
i

Γ(d−s
2 )

Γ(d−s+1
2 )
√
π
. (88)

Taking the expectation on both sides of Eq. (85) and substituting Eq. (88), Eq. (11) has been proved.

Next we derive E[γ2]. By Eq. (85) we have

γ2 =
1

q

(︄
s∑︂

i=1

|αi|+ v⊤
⊥g

)︄2

(89)

=
1

q

⎛⎝(︄ s∑︂
i=1

|αi|

)︄2

+
(︁
v⊤
⊥g
)︁2

+ 2 ·

(︄
s∑︂

i=1

|αi|

)︄
· v⊤

⊥g

⎞⎠ . (90)

Similar to the case of s = 1, when s > 1 we have

E[(v⊥
⊤g⊥)

2] =
1

d− s

(︃
2

π
(q − s− 1) + 1

)︃
. (91)

Noting that ∥g⊥∥ =
√︁
1−

∑︁s
i=1 α

2
i and ∥v⊥∥ =

√
q − s, we have

E[(v⊤
⊥g)

2] = E[(v⊤
⊥g⊥)

2] = E[(v⊥
⊤g⊥)

2∥v⊥∥2∥g⊥∥2] (92)

=
q − s

d− s

(︃
2

π
(q − s− 1) + 1

)︃(︄
1−

s∑︂
i=1

α2
i

)︄
. (93)

Taking the expectation on both sides of Eq. (90) and substituting Eq. (88) and Eq. (93), Eq. (12) has
been proved.

C.3 ANALYSIS FOR PRIOR-OPT

The Prior-OPT estimator is defined in Eq. (13). Note that there are s priors {p1, . . . ,ps} (we
assume that they have been normalized so that they have unit norm), and {u1,u2, . . . ,uq−s} is a
uniformly random orthonormal set of q − s vectors in the (d− s)-dimensional subspace orthogonal
to {p1, . . . ,ps}. For convenience, we first consider the case of s = 1, and the analysis can easily be
generalized to the case of s > 1.

C.3.1 THE CASE OF s = 1

When s = 1, we rewrite the Prior-OPT estimator in the following form:

v∗ = ∇g(θ)⊤p · p+∇g(θ)⊤v⊥ · v⊥, (94)
where

v⊥ :=

q−1∑︂
i=1

sign(∇g(θ)⊤ui) · ui. (95)

Here p is the prior vector with ∥p∥ = 1, and {ui}q−1
i=1 is the random orthonormal basis of the (d− 1)-

dimensional subspace orthogonal to p. Note that we employ the directional derivative approximation
as in Eq. (43). Furthermore, it should also be noted that v⊥ defined in Eq. (95) is consistent with that
in Eq. (71), and thus the conclusions regarding v⊥ derived in Appendix C.2.1 remain valid in this
section (e.g., Eq. (76)).
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Theorem C.5. For the Prior-OPT estimator defined in Eq. (94), we let γ := v∗⊤∇g(θ) be its cosine
similarity to the true gradient, where the notation v∗ := v∗

∥v∗∥ is defined to be the ℓ2 normalization of
the corresponding vector, then

E[γ] ≥

⌜⃓⃓⎷α2 +
(q − 1)(1− α2)

π

(︄
Γ(d−1

2 )

Γ(d2 )

)︄2

, (96)

E[γ] ≤

√︄
α2 +

1

d− 1

(︃
2

π
(q − 2) + 1

)︃
(1− α2), (97)

E[γ2] = α2 +
1

d− 1

(︃
2

π
(q − 2) + 1

)︃
(1− α2), (98)

where α := p⊤∇g(θ) is the cosine similarity between the prior and the true gradient.

Proof. Let g := ∇g(θ). Then v∗ = ∥∇g(θ)∥(g⊤p · p + g⊤v⊥ · v⊥). We also note that v⊥ is a
linear combination of u1 to uq−1, all of which are orthogonal to p, so v⊥ is also orthogonal to p.

Therefore, ∥v∗∥ = ∥∇g(θ)∥
√︂

(p⊤g)2 + (v⊥
⊤g)2. Hence

γ =
(v∗)⊤∇g(θ)
∥v∗∥

(99)

=
(p⊤g)2 + (v⊥

⊤g)2√︂
(p⊤g)2 + (v⊥

⊤g)2
(100)

=

√︂
(p⊤g)2 + (v⊥

⊤g)2. (101)

We define a new estimator ˜︂v∗ := ∇g(θ)⊤p · p+ E[v⊥
⊤∇g(θ)] · v⊥ (102)

= ∥∇g(θ)∥
(︁
g⊤p · p+ E[v⊥

⊤g] · v⊥
)︁
. (103)

Let ˜︁γ be the cosine similarity between ˜︂v∗ and∇g(θ). Then

˜︁γ :=
(˜︂v∗)⊤∇g(θ)
∥˜︂v∗∥

(104)

=
(p⊤g)2 + E[v⊥

⊤g]v⊥
⊤g√︂

(p⊤g)2 + E[v⊥
⊤g]2

. (105)

Therefore,

E[˜︁γ] = E

⎡⎣ (p⊤g)2 + E[v⊥
⊤g]v⊥

⊤g√︂
(p⊤g)2 + E[v⊥

⊤g]2

⎤⎦ (106)

=
α2 + E[v⊥

⊤g]2√︂
α2 + E[v⊥

⊤g]2
(107)

=

√︂
α2 + E[v⊥

⊤g]2. (108)

Since E[v⊥
⊤g] = 1

∥v⊥∥E[v
⊤
⊥g], we substitute Eq. (76) and ∥v⊥∥ =

√
q − 1 into this expression,

yielding E[v⊥
⊤g] =

√
q − 1

√
1− α2 Γ( d−1

2 )

Γ( d
2 )

√
π

. Hence,

E[˜︁γ] =
⌜⃓⃓⎷α2 +

(q − 1)(1− α2)

π

(︄
Γ(d−1

2 )

Γ(d2 )

)︄2

. (109)
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The remaining part is to show the relationship between E[γ] and E[˜︁γ]. Note that v∗ is the projection of
∇g(θ) on the 2-dimensional subspace spanned by p and v⊥. By Proposition 1 in Meier et al. (2019),
among all the vectors in the subspace spanned by p and v⊥, v∗ has the largest cosine similarity with
∇g(θ). Since ˜︂v∗ is a linear combination of p and v⊥, γ ≥ ˜︁γ always holds. Therefore, E[γ] ≥ E[˜︁γ],
which directly proves the lower bound given in Eq. (96).

Next, we derive E[γ2]. By Eq. (99) we have

E[γ2] = α2 + E[(v⊥
⊤g)2]. (110)

Since ∥v⊥∥ =
√
q − 1, using Eq. (81) we have

E[(v⊥
⊤g)2] =

1

∥v⊥∥2
E[(v⊤

⊥g)
2] (111)

=
1

d− 1

(︃
2

π
(q − 2) + 1

)︃
(1− α2). (112)

Plugging Eq. (112) into Eq. (110), we obtain Eq. (98).

Finally, by applying Jensen’s inequality (E[γ])2 ≤ E[γ2], we derive the upper bound for E[γ], which
leads to the following result:

E[γ] ≤
√︁
E[γ2] =

√︄
α2 +

1

d− 1

(︃
2

π
(q − 2) + 1

)︃
(1− α2). (113)

This establishes Eq. (97), thereby completing the proof.

C.3.2 THE CASE OF s > 1

In the case of s > 1, we rewrite the Prior-OPT estimator in the following form:

v∗ =

s∑︂
i=1

∇g(θ)⊤pi · pi +∇g(θ)⊤v⊥ · v⊥, (114)

where

v⊥ :=

q−s∑︂
i=1

sign(∇g(θ)⊤ui) · ui. (115)

Note that Eq. (115) approximates Eq. (14) under the directional derivative approximation. Further-
more, it should also be noted that v⊥ defined in Eq. (115) is consistent with that in Eq. (83), and thus
the conclusions regarding v⊥ derived in Appendix C.2.2 remain valid in this section (e.g., Eq. (88)).

Now, we present the proof of Theorem 3.4 for the Prior-OPT estimator defined in Eq. (114).

Proof. Let g := ∇g(θ). Then

v∗ = ∥∇g(θ)∥

(︄
s∑︂

i=1

g⊤pi · pi + g⊤v⊥ · v⊥

)︄
. (116)

We also note that v⊥ is a linear combination of u1 to uq−s, all of which are orthogonal to {pi}si=1, so

v⊥ is also orthogonal to {pi}si=1. Therefore, ∥v∗∥ = ∥∇g(θ)∥
√︂∑︁s

i=1(p
⊤
i g)

2 + (v⊥
⊤g)2. Hence

γ =
(v∗)⊤∇g(θ)
∥v∗∥

(117)

=

⌜⃓⃓⎷ s∑︂
i=1

(p⊤
i g)

2 + (v⊥
⊤g)2. (118)

24



Published as a conference paper at ICLR 2025

We define a new estimator˜︂v∗ :=

s∑︂
i=1

∇g(θ)⊤pi · pi + E[v⊥
⊤∇g(θ)] · v⊥ (119)

= ∥∇g(θ)∥

(︄
s∑︂

i=1

g⊤pi · pi + E[v⊥
⊤g] · v⊥

)︄
. (120)

Let ˜︁γ be the cosine similarity between ˜︂v∗ and ∇g(θ). Then

˜︁γ :=
(˜︂v∗)⊤∇g(θ)
∥˜︂v∗∥

(121)

=

∑︁s
i=1(p

⊤
i g)

2 + E[v⊥
⊤g]v⊥

⊤g√︂∑︁s
i=1(p

⊤
i g)

2 + E[v⊥
⊤g]2

. (122)

Therefore,

E[˜︁γ] = E

⎡⎣∑︁s
i=1(p

⊤
i g)

2 + E[v⊥
⊤g]v⊥

⊤g√︂∑︁s
i=1(p

⊤
i g)

2 + E[v⊥
⊤g]2

⎤⎦ (123)

=

∑︁s
i=1 α

2
i + E[v⊥

⊤g]2√︂∑︁s
i=1 α

2
i + E[v⊥

⊤g]2
(124)

=

⌜⃓⃓⎷ s∑︂
i=1

α2
i + E[v⊥

⊤g]2. (125)

Since E[v⊥
⊤g] = 1

∥v⊥∥E[v
⊤
⊥g], we substitute Eq. (88) and ∥v⊥∥ =

√
q − s into this expression,

yielding E[v⊥
⊤g] =

√
q − s

√︁
1−

∑︁s
i=1 α

2
i

Γ( d−s
2 )

Γ( d−s+1
2 )

√
π

. Hence,

E[˜︁γ] =
⌜⃓⃓⎷ s∑︂

i=1

α2
i +

(q − s) (1−
∑︁s

i=1 α
2
i )

π

(︄
Γ(d−s

2 )

Γ(d−s+1
2 )

)︄2

. (126)

The remaining part is to show the relationship between E[γ] and E[˜︁γ]. We note that v∗ is the projection
of ∇g(θ) on the (s+ 1)-dimensional subspace spanned by {p1,p2, . . . ,ps,v⊥}. By Proposition 1
in Meier et al. (2019), among all the vectors in the subspace spanned by {p1,p2, . . . ,ps,v⊥}, v∗

has the largest cosine similarity with ∇g(θ). Since ˜︂v∗ also lies in this subspace, γ ≥ ˜︁γ always holds.
Therefore, E[γ] ≥ E[˜︁γ], which directly proves the lower bound given in Eq. (15).

Next, we derive E[γ2]. By Eq. (117) we have

E[γ2] =

s∑︂
i=1

α2
i + E[(v⊥

⊤g)2]. (127)

Since ∥v⊥∥ =
√
q − s, using Eq. (93) we have

E[(v⊥
⊤g)2] =

1

∥v⊥∥2
E[(v⊤

⊥g)
2] (128)

=
1

d− s

(︃
2

π
(q − s− 1) + 1

)︃(︄
1−

s∑︂
i=1

α2
i

)︄
. (129)

Plugging Eq. (129) into Eq. (127), we obtain Eq. (17).

Finally, by applying Jensen’s inequality (E[γ])2 ≤ E[γ2], we derive the upper bound for E[γ], which
leads to the following result:

E[γ] ≤
√︁
E[γ2] =

⌜⃓⃓⎷ s∑︂
i=1

α2
i +

1

d− s

(︃
2

π
(q − s− 1) + 1

)︃(︄
1−

s∑︂
i=1

α2
i

)︄
. (130)

This establishes Eq. (16), thereby completing the proof.

25



Published as a conference paper at ICLR 2025

D DERIVATION OF THE CONDITION FOR PRIOR-OPT TO OUTPERFORM
SIGN-OPT

With the formulas of E[γ2] of Sign-OPT (Eq. (10)) and Prior-OPT (Eq. (17)), we now derive the
exact value of αi for which Prior-OPT can outperform Sign-OPT on gradient estimation.

Now, we rewrite the formulas of E[γ2] of Sign-OPT and Prior-OPT as follows:

E[γ2]Sign-OPT =
1

d

(︃
2

π
(q − 1) + 1

)︃
, (131)

E[γ2]Prior-OPT =

s∑︂
i=1

α2
i +

1

d− s

(︃
2

π
(q − s− 1) + 1

)︃(︄
1−

s∑︂
i=1

α2
i

)︄
. (132)

We need to find the value of αi such that E[γ2]Prior-OPT > E[γ2]Sign-OPT.

Let A :=
∑︁s

i=1 α
2
i , and the inequality becomes:

A+ (1−A) · 1

d− s

(︃
2

π
(q − s− 1) + 1

)︃
>

1

d

(︃
2

π
(q − 1) + 1

)︃
. (133)

Now let us simplify the left side of Eq. (133) to E[γ2]Prior-OPT = A + (1 − A)C2, where C2 :=
1

d−s

(︁
2
π (q − s− 1) + 1

)︁
.

Then, let us simplify the right side of Eq. (133) to E[γ2]Sign-OPT = C1, where C1 :=
1
d

(︁
2
π (q − 1) + 1

)︁
.

The inequality of Eq. (133) becomes:

A+ (1−A)C2 > C1. (134)

We rearrange the above inequality as A(1− C2) + C2 > C1, and then we solve for A:

A >
C1 − C2

1− C2
. (135)

Substituting the formulas of A, C1, and C2 into Eq. (135), we have:

s∑︂
i=1

α2
i >

1
d

(︁
2
π (q − 1) + 1

)︁
− 1

d−s

(︁
2
π (q − s− 1) + 1

)︁
1− 1

d−s

(︁
2
π (q − s− 1) + 1

)︁ . (136)

This is the condition of
∑︁s

i=1 α
2
i for Prior-OPT to outperform Sign-OPT. But this inequality is

complex, next we show how to further simplify this inequality. Under the reasonable assumptions
that q ≪ d, which implies that the input dimension is much larger than the total number of vectors
(and consequently s≪ d since s < q), the above inequality can be simplified.

We first approximate denominator of Eq. (136), note that when s≪ d, we have d− s ≈ d. Therefore,
the denominator simplifies to:

D := 1− 1

d− s

(︃
2

π
(q − s− 1) + 1

)︃
≈ 1− 1

d

(︃
2

π
(q − s− 1) + 1

)︃
. (137)

Since 1
d

(︁
2
π (q − s− 1) + 1

)︁
is a small number because q ≪ d (denote it as ϵ), the denominator

becomes D ≈ 1− ϵ ≈ 1. Next, we simplify the numerator as:
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N :=
1

d

(︃
2

π
(q − 1) + 1

)︃
− 1

d− s

(︃
2

π
(q − s− 1) + 1

)︃
(138)

≈ 1

d

(︃
2

π
(q − 1) + 1

)︃
− 1

d

(︃
2

π
(q − s− 1) + 1

)︃
(139)

=
1

d

(︃
2

π
(q − 1) + 1−

(︃
2

π
(q − s− 1) + 1

)︃)︃
(140)

=
2s

πd
. (141)

Now, let us substitute the simplified N and D into the right side of Eq. (136), we have

s∑︂
i=1

α2
i >

N

D
≈ 2s

πd
. (142)

This is the simplified condition of
∑︁s

i=1 α
2
i for Prior-OPT to outperform Sign-OPT.

Dividing both sides by s, we get the condition for the average squared cosine similarity α2 :=
1
s

∑︁s
i=1 α

2
i > 2

πd . Since 2
πd is typically a very small value due to the large input dimension d, this

threshold is relatively easy to satisfy. Therefore, Prior-OPT generally outperforms Sign-OPT when
the priors have even a minimal level of informativeness (non-zero αi).

E DISCUSSIONS

E.1 PRIOR ACCURACY αi

αi = p⊤
i ∇g(θ) is the cosine similarity between the i-th surrogate model’s gradient (the i-th prior)

and the true gradient. The value of αi is only used in the theoretical analysis and is not required for
practical algorithm. Algorithm 1 does not require any αi or the true gradient to run. We assume that
αi is known in the theoretical analysis so that we can analyze its impact on the expectation of the
final estimated gradient’s cosine similarity γ to the true gradient, which derives the solutions of E[γ]
and E[γ2]. Figs. 5 and 13 demonstrate the quantitative analysis for E[γ] and E[γ2], respectively.

E.2 DIFFERENCES BETWEEN OPT AND PRIOR-OPT

Although the gradient estimation formulas in OPT (Cheng et al., 2019) and Prior-OPT (Eq. (13))
exhibit some similarities, they differ in two key aspects.

First, the formula of Prior-OPT (Eq. (13)) is not identical to that of OPT. In Eq. (13), the last
term involves the ℓ2 normalization of v⊥, where v⊥ =

∑︁q−s
i=1 sign(g(θ + σui)− g(θ)) · ui. and

u1, . . . ,uq−s are orthonormal random vectors. Consequently, Prior-OPT employs more precise
finite difference estimation for the priors (the first term), while relying on sign-based estimation
for the random vector components. This distinction arises because random vectors u1, . . . ,uq−s

are identically distributed, leading to a relatively consistent cosine similarity with the true gradient.
This observation enables efficient sign-based estimation for random vectors. In contrast, the cosine
similarities between the prior directions p1, . . . ,ps and the true gradient∇g(θ) are unknown and may
differ significantly. Thus, the coefficients for priors require more precise estimation, necessitating a
separate binary search procedure. Therefore, Prior-OPT is not merely a simple extension of OPT that
incorporates priors, as it handles priors and random directions differently to address these challenges.

Second, OPT does not require its random directions to be orthogonality, while Prior-OPT explicitly
does. Although a small number of randomly sampled vectors are approximately orthogonal in
the high-dimensional space, this is not always the case for multiple priors. Priors derived from
potentially correlated models are less likely to be orthogonal to each other. If the Gram-Schmidt
orthonormalization is omitted, the estimated gradient obtained using Eq. (7) and Eq. (13) may
become less accurate, potentially degrading performance. Furthermore, the formulas of E[γ] and
E[γ2] derived from our theoretical analysis would no longer hold in such scenarios.
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E.3 PRACTICALITY OF THEORY

No matter how complex a real-world situation is, the generation of adversarial examples mainly relies
on gradient vectors that increases the classification loss to cause misclassification. Our theory focuses
on the similarity between the estimated gradient and the true gradient, and it is applicable to all image
classifiers. One of the most common challenges in real-world scenarios is the significant difference
between models, leading to discrepancies in their gradients. We address this issue by introducing
the variable αi in Eqs. (11), (12), (15), (16), and (17), where αi represents the cosine similarity
between the i-th prior and the true gradient and is assumed to be known in our theoretical analysis. In
summary, our theory is universally applicable to real-world scenarios.

F EXPERIMENTAL SETTINGS

In this section, we provide the hyperparameter settings for our approach and the compared methods,
which include HSJA, TA, G-TA, GeoDA, Evolutionary, Triangle Attack, SurFree, Sign-OPT, SVM-
OPT, SQBA, and BBA.

Experimental Equipment. The experiments of all methods are conducted using PyTorch
1.7.1 framework on NVIDIA V100 and A100 GPUs. NVIDIA A100 GPU has TensorFloat-
32 (TF32) tensor cores to improve computation speed, and enabling TF32 tensor cores causes
a large relative error compared to double precision, especially in attacks on ViTs. Therefore,
in all experiments, we set torch.backends.cuda.matmul.allow tf32 = False and
torch.backends.cudnn.allow tf32 = False to obtain higher precision.

CIFAR-10 dataset. In the CIFAR-10 dataset, we select four networks as target models, including
a 272-layer PyramidNet+ShakeDrop network (PyramidNet-272) (Han et al., 2017; Yamada et al.,
2019), two wide residual networks with 28 and 40 layers (WRN-28 and WRN-40) (Zagoruyko &
Komodakis, 2016), and DenseNet-BC-190 (k = 40) (Huang et al., 2017). We use ResNet-110 as the
surrogate model in the CIFAR-10 dataset.

Prior-OPT and Prior-Sign-OPT. Table 3 lists the hyperparameters of Prior-OPT and Prior-Sign-
OPT. Our implementation is based on the PyTorch framework. In the targeted attack experiments on
a given target class, we initialize the direction θ0 for both Prior-OPT and Prior-Sign-OPT toward the
same reference image from that class, consistent with all baseline methods.

Table 3: The hyperparameters of Prior-OPT and Prior-Sign-OPT.

Dataset Hyperparameter Value

CIFAR-10

q, total number of vectors for estimating a gradient, including priors and random vectors 200
the binary search’s stopping threshold β

500
the number of iterations 1,000
gmax, the maximum gradient norm for the gradient clipping operation 0.1

ImageNet

q, total number of vectors for estimating a gradient, including priors and random vectors 200
the binary search’s stopping threshold 1× 10−4

the number of iterations 1,000
gmax, the maximum gradient norm for the gradient clipping operation 1.0

Table 4: The hyperparameters of Sign-OPT and SVM-OPT.

Hyperparameter Value

q, the number of queries for estimating an approximate gradient 200
the number of iterations 1,000
the binary search’s stopping threshold of the CIFAR-10 dataset β

500

the binary search’s stopping threshold of the ImageNet dataset 1× 10−4
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Table 5: The hyperparameters of HSJA, TA and G-TA.

Hyperparameter Value

γ, threshold of the binary search 1.0
B0, the initial batch size for gradient estimation 100
Bmax, the maximum batch size for gradient estimation 10,000
the search method for step size geometric progression
the number of iterations 64
radius ratio r for the ImageNet dataset in G-TA 1.1
radius ratio r for the CIFAR-10 dataset in G-TA 1.5

Table 6: The hyperparameters of Evolutionary.

Hyperparameter Value

ccov , the hyperparameter of updating the diagonal covariance matrix C 0.001
σ, the deviation for bias 0.03
µ, a critical hyperparameter controlling the strength of going towards the original image 0.01
maxlen, the maximum length of successful attacks for calculating µ 30

Table 7: The hyperparameters of GeoDA.

Dataset Hyperparameter Value

CIFAR-10 subspace dimension, the dimension of 2D DCT basis’s subspace 10
ϵ, the step size of searching the decision boundary 0.5

ImageNet subspace dimension, the dimension of 2D DCT basis’s subspace 75
ϵ, the step size of searching the decision boundary 5

Table 8: The hyperparameters of Triangle Attack.

Dataset Hyperparameter Value

CIFAR-10

d, the number of picked dimensions 3
ratio mask, the ratio of the mask size for obtaining the low-frequency mask 0.3
θinit, the initial angle of the subspace equals θinit × π/32 2
αinit, the initial angle of alpha π/2
the maximum iteration number of attack algorithm in 2D subspace 2

ImageNet

d, the number of picked dimensions 3
ratio mask, the ratio of the mask size for obtaining the low-frequency mask 0.1
θinit, the initial angle of the subspace equals θinit × π/32 2
αinit, the initial angle of alpha π/2
the maximum iteration number of attack algorithm in 2D subspace 2

Sign-OPT and SVM-OPT. Table 4 lists the hyperparameters of Sign-OPT and SVM-OPT. For fair
comparison, we set the hyperparameters of Prior-OPT and Prior-Sign-OPT to be the same as those of
Sign-OPT and SVM-OPT, e.g., using the same number of vectors for the gradient estimation.

HSJA, TA and G-TA. Table 5 lists the hyperparameters of HSJA, TA, and G-TA. TA has no additional
hyperparameters. G-TA has an additional hyperparameter, the radius ratio r, to control the shape of
the virtual semi-ellipsoid. Specifically, r is set to 1.1 for ImageNet and 1.5 for CIFAR-10.

Evolutionary. We follow the official source code of Evolutionary to set its hyperparameters, as
shown in Table 6.

GeoDA. GeoDA only supports untargeted attacks, and the convergence of ℓ2-norm attacks of GeoDA
is theoretically guaranteed. Thus, we conduct untargeted ℓ2-norm attack experiments using GeoDA,
and the hyperparameters of GeoDA are shown in Table 7.

29



Published as a conference paper at ICLR 2025

Table 9: The hyperparameters of SurFree.

Hyperparameter Value

BS gamma, the stopping threshold in the binary search of α 0.01
BS max iteration, the maximum iterations in the binary search for α 10
ρ, the parameter for determining θmax 0.98
T, the parameter for determining the range of α and the best θ 3
θmax, the parameter for determining the range of α 30
n ortho, the parameter for finding the direction of the lowest ϵ in get candidates 100
the binary search’s stopping threshold of the ImageNet dataset 1× 10−4

frequence range, the parameter used in constructing dct mask 0 ∼ 0.5
with distance line search, the parameter used in get candidates False
with interpolation, the parameter used in get candidates False
with alpha line search, the parameter used in get best theta True

Table 10: The hyperparameters of SQBA.

Hyperparameter Value

threshold, the stopping threshold in the binary search 0.001
min randoms, the value indirectly determines the number of queries in each gradient estimation 10

Table 11: The hyperparameters of BBA.

Hyperparameter Value

use surrogate bias, whether to use a surrogate model as the bias True
use mask bias, whether to use regional masks as the bias False
use perlin bias, whether to use Perlin Noise as the bias False
pg factor, the hyperparameter that controls the strength of the bias 0.3

Triangle Attack. We set the hyperparameter “ratio mask” to 0.1 for ImageNet and 0.3 for CIFAR-10,
respectively. All hyperparameters of Triangle Attack are shown in Table 8.

SurFree. SurFree only supports the ℓ2-norm attacks. We adapt the official version of SurFree’s code
to PyTorch for our experiments, and its hyperparameters are detailed in Table 9.

SQBA. SQBA only supports the untargeted ℓ2-norm attacks, and its hyperparameters are shown in
Table 10.

BBA. BBA only supports the ℓ2-norm attacks, and the hyperparameters of BBA are shown in
Table 11. We only use the bias of the surrogate model, and the hyperparameter pg factor controls
the strength of this bias. When pg factor = 1, the orthogonal step is equivalent to one iteration of
the PGD attack. Brunner et al. (2019) suggest that pg factor = 0.3.

G ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the results of the computational overhead tests and additional experiments.

G.1 COMPUTATIONAL OVERHEAD

The primary additional computational cost of Prior-OPT over Sign-OPT stems from: (1) the binary
search procedure during gradient estimation, and (2) the time required to obtain priors. Let d denote
the dimension of the input image, q denote the number of vectors used in gradient estimation, f(d)
denote the inference time of the target model for an input of dimension d, and f̂(d) denote the
gradient computation time (i.e., the forward and backward pass time) of the surrogate model on an
input of dimension d. The time complexity of gradient estimation in Sign-OPT is O(q · f(d)). In
Prior-OPT, s priors are introduced. Each prior requires a binary search procedure, which involves
approximately k inference steps. While k may vary slightly depending on the specific prior or the
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input configuration, its value remains bounded and logarithmic in scale, given the nature of binary
search. Consequently, the time complexity of Prior-OPT’s gradient estimation can be expressed as:

O
(︂
(q − s+ (s+ 1) · k) · f(d) + s · f̂(d)

)︂
, (143)

where s · f̂(d) denotes the time to obtain s priors, (q − s) · f(d) indicates the time for computing v⊥
in Eq. (14), and (s+1) ·k ·f(d) represents the time of performing the binary search over s priors and
v⊥ in Eq. (13). When q is large, s and k are relatively small (i.e., the number of priors is small, and
k typically ranges in the tens), the additional overhead introduced by Prior-OPT is limited compared
to Sign-OPT. While Prior-OPT introduces extra computation due to the binary search, the increase in
time complexity is relatively modest, especially when s remains much smaller than q. This shows
that Prior-OPT strikes a balance between computational efficiency and gradient estimation quality.

Table 12 demonstrates the time consumption of Sign-OPT, SVM-OPT, Prior-Sign-OPT, and Prior-
OPT, measured by performing untargeted attacks on the ImageNet dataset. We use a ResNet-50
surrogate model and an NVIDIA Tesla V100 GPU. The additional time overhead of Prior-Sign-OPT
is mainly the time of obtaining priors on surrogate models. Prior-OPT uses Eq. (13) to estimate the
gradient, invoking binary search s+ 1 times, where s is the number of surrogate models. This will
result in additional time consumption compared to Prior-Sign-OPT. Note that for black-box attacks,
the primary metrics are the number of queries and the attack success rate rather than runtime. In
real-world scenarios, the number of queries is the main limitation, thus we need to use as few queries
as possible to achieve the highest success rate. Table 13 shows the GPU memory allocations of
Sign-OPT, Prior-Sign-OPT, and Prior-OPT. Prior-OPT and Prior-Sign-OPT require the transfer-based
priors, and thus the additional memory allocation is mainly consumed in the forward and backward
pass of the surrogate models. After obtaining a prior, GPU memory is promptly released, thus
minimizing additional memory usage of our approach.

Table 12: The time consumption of attacking one image with 10,000 queries, which are measured by
seconds on a NVIDIA Tesla V100 GPU.

Method ResNet-101 SENet-154 ResNeXt-101 GC ViT Swin Transformer

Sign-OPT (Cheng et al., 2020) 112 197 91 131 88
SVM-OPT (Cheng et al., 2020) 119 189 102 158 98
Prior-Sign-OPTResNet50 240 372 195 203 183
Prior-OPTResNet50 342 476 321 357 203

Table 13: The GPU memory allocations of attacks against different target models, which are measured
by MiB on a NVIDIA Tesla V100 GPU.

Method ResNet-101 SENet-154 ResNeXt-101 GC ViT Swin Transformer

Sign-OPT (Cheng et al., 2020) 4,686 6,244 7,272 7,352 8,854
SVM-OPT (Cheng et al., 2020) 4,688 6,246 7,274 7,354 8,856
Prior-Sign-OPTResNet50 5,222 6,750 7,828 7,856 9,410
Prior-OPTResNet50 5,222 6,746 7,816 7,846 9,390

G.2 EXPERIMENTAL RESULTS OF LARGE VISION-LANGUAGE MODEL

To evaluate the scalability of the proposed approach, we conduct experiments of attacking a CLIP
model (Radford et al., 2021) with the ViT-L/14 backbone (Dosovitskiy et al., 2021), and the surrogate
models include ImageNet pretrained ResNet-50, ConViT, CrossViT, MaxViT, and ViT. Here, ViT-
L/14 refers to a large variant of the Vision Transformer architecture with the patch size of 14×14. It is
worth noting that these surrogate models are pretrained on ImageNet and their training paradigms are
entirely different from that of CLIP. The CLIP model, which stands for Contrastive Language-Image
Pretraining, is trained on millions of image-text pairs from the internet using a contrastive learning
approach, enabling it to generalize effectively through natural language supervision. By aligning
images and text in a shared embedding space, the CLIP model functions as a zero-shot image classifier.
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We encapsulate it as a 1,000-class classifier by constructing a set of text prompts that correspond to
the class names. These prompts are then embedded into the same space as the images.

In the experiments, due to the differences between CLIP and standard classification models, the
tested images used in previous experiments may not be correctly classified by CLIP. Therefore, we
select a new set of 1,000 images that are correctly classified by both CLIP and five surrogate models
(ResNet-50, ConViT, CrossViT, MaxViT, and ViT) for evaluation. The results are shown in Table 14,
which demonstrate that incorporating more surrogate models (priors) significantly enhances attack
performance. Notably, despite being pretrained on ImageNet with fundamentally different training
methods than those used by CLIP, the surrogate models still improve performance.

Table 14: The experimental results of attacking against CLIP with the backbone of ViT-L/14, and the
surrogate models include ImageNet pretrained ResNet-50, ConViT, CrossViT, MaxViT, and ViT.

Method Priors Mean ℓ2 distortion Attack Success Rate1

@1K @2K @5K @8K @10K @1K @2K @5K @8K @10K

Sign-OPT (Cheng et al., 2020) no prior 58.180 49.435 40.261 37.020 35.713 13.4% 15.2% 17.4% 19.1% 19.4%
Prior-Sign-OPTResNet50 1 prior 56.935 47.234 35.189 30.957 29.517 13.5% 15.5% 22.0% 25.3% 27.3%
Prior-Sign-OPTConViT 1 prior 55.036 43.327 31.387 27.577 26.250 14.3% 16.3% 24.0% 28.8% 31.5%
Prior-Sign-OPTResNet50&ConViT 2 priors 53.658 40.868 27.988 23.954 22.737 14.1% 17.6% 28.0% 34.3% 37.4%
Prior-Sign-OPTResNet50&ConViT&CrossViT 3 priors 50.875 36.428 23.410 19.589 18.414 15.3% 20.5% 37.2% 44.1% 46.7%
Prior-Sign-OPTResNet50&ConViT&CrossViT&MaxViT 4 priors 49.438 33.941 20.801 17.466 16.296 15.7% 23.3% 44.3% 53.2% 57.1%
Prior-Sign-OPTResNet50&ConViT&CrossViT&MaxViT&ViT 5 priors 48.214 32.298 19.114 15.790 14.726 15.0% 24.1% 48.0% 56.5% 59.3%
Prior-OPTResNet50 1 prior 38.934 27.384 20.184 18.520 18.153 23.4% 34.9% 47.3% 50.6% 51.4%
Prior-OPTConViT 1 prior 31.822 21.267 15.568 14.623 14.362 29.2% 43.3% 56.6% 58.8% 58.9%
Prior-OPTResNet50&ConViT 2 priors 29.596 18.088 11.770 10.724 10.427 31.3% 50.1% 68.3% 72.2% 73.4%
Prior-OPTResNet50&ConViT&CrossViT 3 priors 26.355 15.251 9.953 8.834 8.625 35.0% 55.7% 75.2% 79.1% 79.5%
Prior-OPTResNet50&ConViT&CrossViT&MaxViT 4 priors 26.433 14.261 7.899 6.807 6.562 35.6% 59.5% 82.0% 86.5% 87.3%
Prior-OPTResNet50&ConViT&CrossViT&MaxViT&ViT 5 priors 25.170 13.327 6.745 5.931 5.737 39.2% 63.0% 85.9% 89.4% 89.8%

1 The distortion threshold for the attack success rate is 12.26898528811572, which is calculated as
√
0.001× 224× 224× 3.

G.3 PERFORMANCE OF PRIOR-ONLY GRADIENT ESTIMATORS

The experimental results in previous sections demonstrate that incorporating a single transfer-based
prior enhances performance. To explore this further, it is valuable to investigate an alternative
approach where only prior vectors are used, rather than relying on random vectors. We can examine
this approach from both theoretical and empirical perspectives.

If all random vectors are eliminated in gradient estimation, the gradient estimator’s performance lacks
a lower bound, making it unable to guarantee accuracy in the worst-case scenario. However, when
random vectors are included in the gradient estimation, the accuracy of the estimator is guaranteed to
have a lower bound. This means that, regardless of how poor the priors are, the estimator maintains a
guaranteed minimum level of performance in the worst case. This can be verified by examining the
E[γ] derived for Prior-Sign-OPT (Eq. (11)) and Prior-OPT (Eq. (15)). Specifically, when all random
vectors are removed in Prior-Sign-OPT and q is set to s, Eq. (11) reduces to

E[γ] =
1
√
q

(︄
s∑︂

i=1

|αi|

)︄
. (144)

In this case, E[γ] depends solely on αi, which reflects the accuracy of the priors. If αi is extremely
small, the accuracy of the estimated gradient degrades significantly. Similarly, when we remove all
random vectors in Prior-OPT and q is set to s, Eq. (15) reduces to

E[γ] ≥

⌜⃓⃓⎷ s∑︂
i=1

α2
i . (145)

This demonstrates that, without random vectors, the gradient estimation is entirely reliant on the
quality of the priors (i.e., the αi values), and poor priors can result in arbitrarily poor performance.

Conversely, when random vectors are included, the formula incorporating them guarantees a lower
bound for E[γ]. This lower bound can be derived by setting αi = 0 in Eqs. (11) and (15). For
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Table 15: Mean ℓ2 distortions of targeted attacks on the ImageNet dataset against GC ViT, where
Pure-Prior-Sign-OPT and Pure-Prior-OPT use only priors in the gradient estimation.

Method Priors Targeted Attacks
@1K @2K @5K @8K @10K @12K @15K @18K @20K

Sign-OPT (Cheng et al., 2020) no prior 53.026 42.049 28.210 22.156 19.557 17.661 15.556 14.018 13.194
Pure-Prior-Sign-OPTResNet50 1 prior 52.337 51.255 51.024 51.017 51.017 51.017 51.017 51.017 51.017
Pure-Prior-Sign-OPTResNet50&ConViT 2 priors 41.468 38.481 37.791 37.787 37.787 37.787 37.787 37.787 37.787
Pure-Prior-OPTResNet50 1 prior 53.673 53.416 53.385 53.385 53.385 53.385 53.385 53.385 53.385
Pure-Prior-OPTResNet50&ConViT 2 priors 41.631 38.687 38.256 38.250 38.250 38.250 38.250 38.250 38.250
Prior-Sign-OPTResNet50 (ours) 1 prior 52.491 41.333 26.857 20.829 18.427 16.681 14.741 13.337 12.593
Prior-Sign-OPTResNet50&ConViT (ours) 2 priors 51.465 39.537 25.124 19.216 16.841 15.115 13.321 12.030 11.377
Prior-OPTResNet50 (ours) 1 prior 50.323 39.615 25.876 20.309 18.120 16.488 14.750 13.535 12.918
Prior-OPTResNet50&ConViT (ours) 2 priors 47.739 36.129 23.177 18.528 16.764 15.467 14.121 13.193 12.699

Table 16: Attack success rates of targeted attacks on the ImageNet dataset against GC ViT, where
Pure-Prior-Sign-OPT and Pure-Prior-OPT use only priors in the gradient estimation.

Method Priors Targeted Attacks
@1K @2K @5K @8K @10K @12K @15K @18K @20K

Sign-OPT (Cheng et al., 2020) no prior 1.0% 1.9% 8.5% 20.3% 30.2% 38.7% 48.8% 57.5% 61.2%
Pure-Prior-Sign-OPTResNet50 1 prior 2.3% 2.6% 2.7% 2.7% 2.7% 2.7% 2.7% 2.7% 2.7%
Pure-Prior-Sign-OPTResNet50&ConViT 2 priors 8.6% 10.7% 11.6% 11.6% 11.6% 11.6% 11.6% 11.6% 11.6%
Pure-Prior-OPTResNet50 1 prior 2.1% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3%
Pure-Prior-OPTResNet50&ConViT 2 priors 9.7% 12.5% 12.7% 12.7% 12.7% 12.7% 12.7% 12.7% 12.7%
Prior-Sign-OPTResNet50 (ours) 1 prior 0.9% 2.6% 12.0% 25.1% 34.4% 41.9% 49.6% 58.2% 62.9%
Prior-Sign-OPTResNet50&ConViT (ours) 2 priors 0.9% 3.3% 15.8% 32.2% 40.2% 47.9% 57.1% 62.5% 66.0%
Prior-OPTResNet50 (ours) 1 prior 1.5% 4.6% 14.2% 25.4% 32.8% 40.4% 50.5% 56.8% 60.5%
Prior-OPTResNet50&ConViT (ours) 2 priors 2.6% 9.2% 24.7% 36.2% 41.0% 46.8% 53.5% 58.0% 60.7%

Prior-Sign-OPT, the lower bound of E[γ] is

E[γ] ≥ q − s
√
q
·

Γ(d−s
2 )

Γ(d−s+1
2 )
√
π
. (146)

For Prior-OPT, the lower bound of E[γ] is

E[γ] ≥
√︃

q − s

π
·

Γ(d−s
2 )

Γ(d−s+1
2 )

, (147)

thereby providing robustness with random vectors when the priors are of low quality. Furthermore, in
Prior-OPT’s gradient estimation, each prior requires a binary search, whereas random vectors do not.
Random vectors require only a single query per vector, making them more efficient in this regard.

We present experimental results of targeted attacks using variants of the Prior-Sign-OPT and Prior-
OPT algorithms, in which random vectors are excluded from the gradient estimation and only priors
(i.e., gradients from surrogate models) are used. These variants are referred to as Pure-Prior-Sign-
OPT and Pure-Prior-OPT. The experimental results of attacks against GC ViT (Hatamizadeh et al.,
2023) on the ImageNet dataset are presented in Tables 15 and 16. The results indicate that Pure-Prior-
Sign-OPT and Pure-Prior-OPT fail to outperform Sign-OPT when the query budget exceeds 2,000,
even though Sign-OPT relies solely on random vectors without incorporating priors. Furthermore,
as the query budget increases, the distortions and attack success rates for Pure-Prior-Sign-OPT and
Pure-Prior-OPT remain relatively stable, revealing their inefficient use of additional queries.

G.4 EFFECT OF PGD INITIALIZATION ON THE PERFORMANCE OF SQBA AND BBA METHODS

Previous experiments have demonstrated that applying PGD (Projected Gradient Descent) initializa-
tion, denoted as Prior-OPTθPGD

0
and Prior-Sign-OPTθPGD

0
, significantly enhances the performance of

adversarial attacks. This raises the question: How would other baseline methods perform if PGD
initialization were applied to them as well? To investigate this, we propose variants of the SQBA
(Park et al., 2024) and BBA (Brunner et al., 2019) methods, labeled as SQBAθPGD

0
and BBAθPGD

0
, in

which PGD initialization is utilized on a surrogate model to generate the initial adversarial examples.
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Table 17: Mean ℓ2 distortions of untargeted attacks on the ImageNet dataset against Inception-v4.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAIncResV2 (Park et al., 2024) 26.134 19.035 15.200 12.799 11.189 10.015 9.129 8.432 7.878 7.417
SQBAθPGD

0 + IncResV2 (Park et al., 2024) 22.698 16.882 13.731 11.699 10.314 9.301 8.543 7.931 7.426 7.017
BBAIncResV2 (Brunner et al., 2019) 38.782 28.437 23.673 20.745 18.757 17.373 16.307 15.474 14.781 14.191
BBAθPGD

0 + IncResV2 (Brunner et al., 2019) 26.297 20.370 17.460 15.647 14.404 13.484 12.754 12.177 11.700 11.295
Prior-Sign-OPTIncResV2 81.991 42.403 25.355 17.163 12.835 10.191 8.508 7.365 6.508 5.842
Prior-Sign-OPTθPGD

0 + IncResV2 23.596 15.347 11.565 9.458 8.074 7.085 6.330 5.729 5.249 4.863
Prior-OPTIncResV2 49.279 18.135 9.426 6.798 5.718 5.148 4.747 4.451 4.215 4.027
Prior-OPTθPGD

0 + IncResV2 22.852 12.194 8.896 7.452 6.568 5.947 5.485 5.114 4.809 4.548

Table 18: Mean ℓ2 distortions of untargeted attacks on the ImageNet dataset against ViT.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAConViT (Park et al., 2024) 12.886 9.762 8.045 6.972 6.240 5.702 5.278 4.947 4.681 4.452
SQBAθPGD

0 + ConViT (Park et al., 2024) 10.794 8.424 7.094 6.227 5.647 5.204 4.856 4.572 4.337 4.143
BBAConViT (Brunner et al., 2019) 22.716 16.153 13.409 11.886 10.893 10.155 9.614 9.193 8.868 8.595
BBAθPGD

0 + ConViT (Brunner et al., 2019) 11.163 9.431 8.535 7.958 7.534 7.227 6.982 6.783 6.615 6.477
Prior-Sign-OPTConViT 46.883 24.551 14.592 10.329 8.057 6.669 5.755 5.142 4.688 4.313
Prior-Sign-OPTθPGD

0 + ConViT 9.011 6.935 5.752 5.025 4.504 4.108 3.803 3.549 3.345 3.174
Prior-OPTConViT 26.649 11.706 7.632 6.025 5.228 4.728 4.380 4.117 3.909 3.754
Prior-OPTθPGD

0 + ConViT 8.688 6.646 5.595 4.962 4.551 4.245 4.003 3.808 3.640 3.511

Table 19: Mean ℓ2 distortions of untargeted attacks on the ImageNet dataset against GC ViT.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAConViT (Park et al., 2024) 19.307 14.049 11.170 9.327 8.072 7.135 6.434 5.877 5.426 5.056
SQBAθPGD

0 + ConViT (Park et al., 2024) 15.652 11.520 9.197 7.752 6.754 6.033 5.479 5.034 4.673 4.370
BBAConViT (Brunner et al., 2019) 29.928 21.095 17.061 14.680 13.103 11.954 11.020 10.302 9.694 9.188
BBAθPGD

0 + ConViT (Brunner et al., 2019) 15.959 12.688 11.054 9.997 9.230 8.627 8.164 7.766 7.430 7.131
Prior-Sign-OPTConViT 55.864 34.707 22.793 16.584 12.893 10.546 8.895 7.678 6.712 5.972
Prior-Sign-OPTθPGD

0 + ConViT 17.159 11.230 8.642 7.209 6.250 5.551 5.009 4.560 4.205 3.916
Prior-OPTConViT 39.497 18.955 12.320 9.275 7.641 6.599 5.828 5.251 4.817 4.453
Prior-OPTθPGD

0 + ConViT 16.949 10.708 8.251 6.937 6.031 5.391 4.913 4.530 4.219 3.961

Table 20: Mean ℓ2 distortions of untargeted attacks on the ImageNet dataset against ResNet-101.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAResNet50 (Park et al., 2024) 8.873 7.229 6.172 5.449 4.934 4.531 4.215 3.957 3.745 3.563
SQBAθPGD

0 + ResNet50 (Park et al., 2024) 6.882 5.675 4.894 4.364 3.985 3.689 3.456 3.264 3.101 2.961
BBAResNet50 (Brunner et al., 2019) 14.935 11.764 10.346 9.484 8.870 8.421 8.051 7.754 7.511 7.295
BBAθPGD

0 + ResNet50 (Brunner et al., 2019) 6.281 5.488 5.051 4.779 4.577 4.425 4.302 4.196 4.109 4.029
Prior-Sign-OPTResNet50 34.150 18.733 11.452 7.977 6.111 4.982 4.247 3.718 3.323 3.019
Prior-Sign-OPTθPGD

0 + ResNet50 5.423 4.303 3.632 3.182 2.859 2.615 2.414 2.267 2.142 2.045
Prior-OPTResNet50 18.355 7.100 4.190 3.214 2.840 2.612 2.450 2.324 2.233 2.158
Prior-OPTθPGD

0 + ResNet50 4.932 3.807 3.273 2.940 2.710 2.532 2.390 2.275 2.181 2.107

Table 21: Mean ℓ2 distortions of untargeted attacks on the ImageNet dataset against SENet-154.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAResNet50 (Park et al., 2024) 16.332 11.802 9.335 7.788 6.765 6.016 5.445 4.994 4.630 4.332
SQBAθPGD

0 + ResNet50 (Park et al., 2024) 13.342 9.871 7.944 6.707 5.863 5.246 4.779 4.410 4.115 3.860
BBAResNet50 (Brunner et al., 2019) 24.402 17.863 14.923 13.134 11.915 11.009 10.330 9.796 9.348 8.976
BBAθPGD

0 + ResNet50 (Brunner et al., 2019) 13.074 10.435 9.080 8.221 7.626 7.187 6.843 6.559 6.320 6.112
Prior-Sign-OPTResNet50 45.340 26.404 17.200 12.317 9.412 7.551 6.285 5.400 4.740 4.223
Prior-Sign-OPTθPGD

0 + ResNet50 12.375 8.859 6.900 5.684 4.865 4.272 3.817 3.461 3.184 2.958
Prior-OPTResNet50 29.578 14.233 8.955 6.677 5.542 4.823 4.316 3.947 3.630 3.394
Prior-OPTθPGD

0 + ResNet50 11.952 8.431 6.580 5.542 4.863 4.368 3.980 3.680 3.420 3.215
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Table 22: Success rates of untargeted attacks on ImageNet against Inception-v4.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAIncResV2 (Park et al., 2024) 41.9% 55.8% 65.9% 74.7% 79.2% 85.6% 87.7% 89.9% 91.4% 93.0%
SQBAθPGD

0 + IncResV2 (Park et al., 2024) 51.5% 63.7% 71.3% 79.4% 82.8% 87.4% 90.2% 91.2% 92.6% 93.3%
BBAIncResV2 (Brunner et al., 2019) 16.3% 29.0% 39.0% 46.9% 54.3% 57.5% 60.6% 63.9% 66.6% 68.8%
BBAθPGD

0 + IncResV2 (Brunner et al., 2019) 43.9% 53.4% 60.1% 65.6% 69.0% 71.7% 74.8% 77.0% 78.8% 79.6%
Prior-Sign-OPTIncResV2 3.8% 16.6% 38.9% 60.4% 75.7% 85.0% 89.4% 91.8% 94.2% 96.3%
Prior-Sign-OPTθPGD

0 + IncResV2 62.6% 72.2% 77.8% 84.4% 88.3% 90.7% 93.4% 94.5% 95.8% 96.9%
Prior-OPTIncResV2 17.8% 63.4% 86.6% 94.2% 96.4% 97.4% 98.4% 98.8% 99.0% 99.1%
Prior-OPTθPGD

0 + IncResV2 64.7% 76.6% 84.1% 89.2% 92.5% 95.1% 96.1% 96.7% 97.6% 98.1%

Table 23: Success rates of untargeted attacks on ImageNet against ViT.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAConViT (Park et al., 2024) 55.9% 71.7% 81.1% 88.4% 91.9% 94.4% 96.7% 97.4% 97.8% 98.3%
SQBAθPGD

0 + ConViT (Park et al., 2024) 67.1% 80.7% 87.8% 91.6% 94.6% 96.2% 96.9% 97.6% 98.2% 98.3%
BBAConViT (Brunner et al., 2019) 19.0% 39.6% 53.0% 61.6% 66.2% 70.2% 73.9% 75.2% 77.7% 79.3%
BBAθPGD

0 + ConViT (Brunner et al., 2019) 69.9% 76.4% 80.3% 84.8% 86.5% 87.5% 89.1% 89.5% 90.6% 91.3%
Prior-Sign-OPTConViT 8.4% 23.8% 49.2% 71.4% 83.6% 90.4% 94.0% 96.0% 97.1% 98.1%
Prior-Sign-OPTθPGD

0 + ConViT 83.8% 89.7% 93.6% 95.2% 96.4% 97.5% 97.9% 98.3% 98.7% 99.2%
Prior-OPTConViT 26.2% 65.7% 83.6% 91.3% 94.7% 96.2% 97.1% 97.7% 98.9% 99.2%
Prior-OPTθPGD

0 + ConViT 83.6% 89.7% 93.4% 94.9% 96.3% 97.3% 97.9% 98.1% 98.6% 98.9%

Table 24: Success rates of untargeted attacks on ImageNet against GC ViT.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAConViT (Park et al., 2024) 38.1% 53.3% 64.4% 73.8% 79.6% 84.7% 87.7% 90.9% 93.1% 94.4%
SQBAθPGD

0 + ConViT (Park et al., 2024) 50.2% 65.5% 74.6% 81.9% 86.8% 89.7% 92.1% 94.1% 95.4% 96.2%
BBAConViT (Brunner et al., 2019) 10.7% 28.2% 42.4% 50.4% 56.6% 62.9% 67.8% 71.5% 74.0% 77.6%
BBAθPGD

0 + ConViT (Brunner et al., 2019) 51.7% 60.3% 66.0% 69.4% 74.2% 78.1% 79.7% 82.7% 85.1% 86.5%
Prior-Sign-OPTConViT 1.7% 9.2% 27.5% 48.2% 62.7% 72.0% 78.7% 82.7% 86.3% 89.0%
Prior-Sign-OPTθPGD

0 + ConViT 63.4% 73.6% 81.1% 85.4% 89.4% 91.2% 92.8% 94.3% 95.4% 96.4%
Prior-OPTConViT 10.0% 45.3% 68.1% 82.2% 87.9% 90.1% 92.4% 93.5% 94.8% 95.7%
Prior-OPTθPGD

0 + ConViT 63.2% 74.1% 81.4% 86.4% 89.9% 92.0% 93.5% 94.4% 95.7% 96.7%

Table 25: Success rates of untargeted attacks on ImageNet against ResNet-101.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAResNet50 (Park et al., 2024) 78.7% 85.3% 89.6% 92.6% 94.6% 96.2% 97.0% 98.1% 98.3% 98.9%
SQBAθPGD

0 + ResNet50 (Park et al., 2024) 88.5% 93.2% 95.2% 96.0% 97.1% 97.5% 98.1% 98.7% 98.9% 99.3%
BBAResNet50 (Brunner et al., 2019) 47.6% 62.3% 70.2% 75.2% 79.4% 81.1% 83.7% 84.6% 85.7% 86.9%
BBAθPGD

0 + ResNet50 (Brunner et al., 2019) 89.8% 92.2% 93.9% 95.1% 95.9% 96.0% 96.4% 96.8% 97.1% 97.1%
Prior-Sign-OPTResNet50 10.9% 35.4% 65.0% 83.0% 91.1% 94.0% 95.9% 97.3% 98.6% 99.4%
Prior-Sign-OPTθPGD

0 + ResNet50 94.5% 96.1% 97.2% 97.9% 98.2% 98.7% 99.0% 99.3% 99.4% 99.7%
Prior-OPTResNet50 42.0% 87.4% 96.2% 98.3% 99.2% 99.3% 99.7% 99.7% 99.8% 100.0%
Prior-OPTθPGD

0 + ResNet50 94.6% 95.9% 96.9% 97.8% 98.3% 98.7% 98.7% 99.0% 99.2% 99.5%

Table 26: Success rates of untargeted attacks on ImageNet against SENet-154.

Method Untargeted Attacks
@1K @2K @3K @4K @5K @6K @7K @8K @9K @10K

SQBAResNet50 (Park et al., 2024) 45.1% 61.5% 72.9% 81.7% 85.7% 89.0% 91.7% 94.6% 96.4% 97.9%
SQBAθPGD

0 + ResNet50 (Park et al., 2024) 59.1% 72.3% 81.1% 86.7% 90.2% 92.4% 94.4% 96.5% 97.5% 98.4%
BBAResNet50 (Brunner et al., 2019) 16.6% 33.9% 45.6% 54.9% 61.2% 66.3% 69.7% 72.7% 74.2% 76.9%
BBAθPGD

0 + ResNet50 (Brunner et al., 2019) 60.8% 69.7% 75.4% 79.9% 83.2% 85.6% 87.0% 88.6% 89.9% 90.6%
Prior-Sign-OPTResNet50 3.7% 16.2% 36.6% 58.3% 75.2% 83.1% 88.3% 92.1% 95.0% 96.7%
Prior-Sign-OPTθPGD

0 + ResNet50 71.9% 79.6% 87.2% 91.3% 94.2% 96.3% 97.2% 97.6% 97.9% 98.3%
Prior-OPTResNet50 16.3% 55.9% 77.5% 88.3% 93.0% 95.4% 97.0% 97.6% 98.6% 98.9%
Prior-OPTθPGD

0 + ResNet50 72.5% 81.3% 88.5% 91.6% 94.3% 96.2% 97.1% 97.5% 98.0% 98.6%
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The mean ℓ2 distortions of the experimental results on the ImageNet dataset are presented in Tables 17,
18, 19, 20, and 21, while the corresponding attack success rates are shown in Tables 22, 23, 24,
25, and 26. The distortion threshold for attack success rates is 16.3769 for attacks on Inception-v4
and 12.2689 for attacks on other networks, calculated as

√
0.001× d, where d is the dimension

of the input image. As shown in these tables, the PGD initialization improves the performance
of both SQBA and BBA, resulting in reduced mean ℓ2 distortions and higher attack success rates.
Furthermore, our approach with PGD initialization outperforms both SQBA and BBA.

G.5 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 27: Untargeted attack results of ViTs on the ImageNet dataset, where “Mean ℓ2” denotes the
average ℓ2 distortion of the final adversarial examples, “AUC” denotes the area under the curve of
mean ℓ2 distortions versus the number of queries (lower is better), and “ASR” denotes the attack
success rate of the final adversarial examples.

Method ViT GC ViT Swin Transformer
Mean ℓ2 AUC ASR Mean ℓ2 AUC ASR Mean ℓ2 AUC ASR

HSJA (Chen et al., 2020) 5.637 102956.7 96.7% 7.955 163915.1 82.8% 10.635 228806.0 70.3%
TA (Ma et al., 2021b) 5.674 104023.3 96.6% 9.102 176063.8 76.7% 10.513 230351.0 68.4%
G-TA (Ma et al., 2021b) 5.643 102013.4 96.4% 8.671 170511.6 77.6% 9.929 219877.9 72.6%
GeoDA (Rahmati et al., 2020) 6.313 83176.7 91.0% 12.998 172173.2 54.3% 19.120 245094.6 31.5%
Evolutionary (Dong et al., 2019) 6.719 128659.9 89.8% 8.615 174592.0 79.1% 15.738 266695.9 52.6%
SurFree (Maho et al., 2021) 6.303 104053.9 91.6% 10.967 193400.6 65.4% 13.059 200688.5 58.3%
Triangle Attack (Wang et al., 2022) 10.097 99746.4 69.0% 30.119 298578.9 21.2% 29.005 288358.2 23.1%
BBAResNet50 (Brunner et al., 2019) 9.567 125221.1 74.0% 11.294 161711.4 67.5% 14.084 185551.7 59.9%
BBAConViT (Brunner et al., 2019) 8.595 105826.6 79.3% 9.188 128468.5 77.6% 12.375 156081.9 59.5%
SQBAResNet50 (Park et al., 2024) 5.201 79423.0 95.7% 6.186 100435.8 89.2% 7.557 115845.7 83.2%
SQBAConViT (Park et al., 2024) 4.452 60295.8 98.3% 5.056 79670.8 94.4% 5.883 82141.3 91.0%
Sign-OPT (Cheng et al., 2020) 4.572 111439.9 98.3% 7.185 166001.9 85.9% 9.899 238907.0 74.7%
SVM-OPT (Cheng et al., 2020) 5.070 120008.9 97.1% 7.325 171869.8 83.9% 10.526 249491.3 72.1%
Prior-Sign-OPTResNet50 4.850 119961.6 97.4% 6.723 165586.5 87.1% 9.254 234462.4 75.7%
Prior-Sign-OPTConViT 4.313 105379.9 98.1% 5.972 151725.9 89.0% 7.622 198431.3 84.2%
Prior-Sign-OPTResNet50&ConViT 3.967 99940.6 98.6% 5.286 137011.9 92.9% 6.331 177589.1 89.2%
Prior-Sign-OPTθPGD

0 + ResNet50 4.331 88120.1 97.7% 5.243 98749.0 92.6% 8.112 128167.1 80.3%
Prior-OPTResNet50 5.195 106791.0 97.3% 6.066 134255.9 90.7% 9.625 190534.1 73.0%
Prior-OPTConViT 3.754 62928.1 99.2% 4.453 92662.3 95.7% 5.558 102428.7 91.8%
Prior-OPTResNet50&ConViT 3.609 60449.0 99.2% 3.700 76896.1 98.3% 4.896 91211.7 94.5%
Prior-OPTθPGD

0 + ResNet50 5.009 90005.1 96.4% 5.502 98555.8 92.8% 8.552 128766.0 76.4%

Table 28: Untargeted attack results of CNNs on the ImageNet dataset, where “Mean ℓ2” denotes the
average ℓ2 distortion of the final adversarial examples, “AUC” denotes the area under the curve of
mean ℓ2 distortions versus the number of queries (lower is better), and “ASR” denotes the attack
success rate of the final adversarial examples.

Method ResNet-101 ResNeXt-101 (64× 4d) SENet-154
Mean ℓ2 AUC ASR Mean ℓ2 AUC ASR Mean ℓ2 AUC ASR

HSJA (Chen et al., 2020) 5.158 96234.2 95.8% 5.484 110376.8 95.0% 9.385 177364.9 74.9%
TA (Ma et al., 2021b) 5.239 96858.5 95.9% 5.565 110870.1 95.0% 9.379 172600.0 73.8%
G-TA (Ma et al., 2021b) 5.225 95901.1 96.3% 5.524 109990.5 95.0% 5.430 119281.1 92.9%
GeoDA (Rahmati et al., 2020) 6.364 82320.0 91.9% 6.898 88947.7 89.3% 8.209 107267.4 80.9%
Evolutionary (Dong et al., 2019) 5.406 107841.6 93.2% 6.042 123706.5 91.3% 6.111 130032.0 90.1%
SurFree (Maho et al., 2021) 6.627 104285.4 88.1% 7.550 123394.0 83.7% 8.247 131295.4 79.5%
Triangle Attack (Wang et al., 2022) 12.123 117731.5 61.3% 11.883 116639.5 63.7% 15.019 145508.7 48.9%
BBAResNet50 (Brunner et al., 2019) 7.295 83314.7 86.9% 9.393 116579.5 74.9% 8.976 115007.9 76.9%
SQBAResNet50 (Park et al., 2024) 3.563 46450.8 98.9% 4.058 59316.7 97.8% 4.332 67106.3 97.9%
Sign-OPT (Cheng et al., 2020) 4.754 101907.7 95.9% 5.108 120545.5 95.4% 5.111 124730.7 93.5%
SVM-OPT (Cheng et al., 2020) 4.842 105778.8 95.8% 5.255 126799.4 95.0% 5.125 127568.9 93.7%
Prior-Sign-OPTResNet50 3.019 79126.4 99.4% 3.518 100999.4 98.9% 4.223 114089.3 96.7%
Prior-Sign-OPTθPGD

0 + ResNet50 2.045 27148.4 99.7% 2.450 35290.7 99.4% 2.958 48708.7 98.3%
Prior-OPTResNet50 2.158 37218.3 100.0% 2.692 53085.7 99.7% 3.394 68609.1 98.9%
Prior-OPTθPGD

0 + ResNet50 2.107 25627.6 99.5% 2.486 33291.5 99.7% 3.215 48447.6 98.6%

Tables 27, 28, and 29 show the experimental results of untargeted attacks against ViTs and CNNs
on the ImageNet dataset, where “AUC” indicates area under the curve of the mean ℓ2 distortions
versus the number of queries, “Mean ℓ2” denotes the average ℓ2 distortion of the final adversarial
examples, and “ASR” indicates the attack success rate of the final adversarial examples. Here, the
final adversarial examples are generated with the query budget of 10,000. The ASR is defined as the
percentage of samples with distortions below a threshold ϵ, which is set to ϵ =

√
0.001× d in the
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Table 29: Untargeted attack results of Inception networks on the ImageNet dataset, where “Mean ℓ2”
denotes the average ℓ2 distortion of the final adversarial examples, “AUC” denotes the area under the
curve of mean ℓ2 distortions versus the number of queries (lower is better), and “ASR” denotes the
attack success rate of the final adversarial examples.

Method Inception-V3 Inception-V4
Mean ℓ2 AUC ASR Mean ℓ2 AUC ASR

HSJA (Chen et al., 2020) 12.014 211938.7 81.1% 11.645 227700.5 82.1%
TA (Ma et al., 2021b) 12.378 208706.8 79.8% 11.694 219707.3 82.0%
G-TA (Ma et al., 2021b) 12.076 205670.7 81.5% 11.448 216797.7 83.3%
GeoDA (Rahmati et al., 2020) 9.437 124150.7 87.8% 9.688 128665.4 87.7%
Evolutionary (Dong et al., 2019) 9.809 192654.1 86.4% 10.839 215405.4 81.6%
SurFree (Maho et al., 2021) 11.648 186094.3 79.1% 13.818 221197.5 69.7%
Triangle Attack (Wang et al., 2022) 20.878 205534.2 46.5% 22.132 214723.3 42.5%
BBAIncResV2 (Brunner et al., 2019) 13.952 169881.3 69.0% 14.191 182033.7 68.8%
BBAXception (Brunner et al., 2019) 14.657 185798.3 67.2% 15.282 199287.2 63.6%
SQBAIncResV2 (Park et al., 2024) 7.020 98767.0 94.3% 7.417 110451.8 93.0%
SQBAXception (Park et al., 2024) 6.933 97022.6 94.7% 7.115 102939.0 92.2%
Sign-OPT (Cheng et al., 2020) 8.134 195118.7 91.9% 8.786 217576.3 89.8%
SVM-OPT (Cheng et al., 2020) 7.995 193289.7 92.3% 8.839 219673.6 89.0%
Prior-Sign-OPTIncResV2 5.314 156261.6 97.8% 5.842 174243.9 96.3%
Prior-Sign-OPTXception 5.831 163715.5 96.8% 5.958 176950.5 95.7%
Prior-Sign-OPTIncResV2&Xception 4.225 130427.5 98.6% 4.199 142032.3 99.0%
Prior-Sign-OPTθPGD

0 + IncResV2 4.713 75088.7 97.1% 4.863 83066.8 96.9%
Prior-OPTIncResV2 4.067 79685.9 99.3% 4.027 85290.8 99.1%
Prior-OPTXception 4.539 88915.0 99.3% 4.261 90492.0 99.3%
Prior-OPTIncResV2&Xception 3.387 64461.8 99.7% 3.167 66110.1 99.8%
Prior-OPTθPGD

0 + IncResV2 4.496 65031.0 98.4% 4.548 70165.3 98.1%

ImageNet dataset and ϵ = 1.0 in the CIFAR-10 dataset, where d is the image dimension. Tables 27,
28, and 29 show that the Prior-OPT with two surrogate models performs the best in most cases, and
the PGD initialization of θ (e.g., Prior-OPTθPGD

0 + ResNet50) can effectively reduce the AUC.

Table 30 demonstrates that Prior-OPT and Prior-Sign-OPT deliver competitive performance in ℓ∞-
norm attacks on ImageNet, surpassing Sign-OPT in average ℓ∞ distortions, further validating our
approach’s effectiveness across attack types.

Fig. 7 shows the experimental results of untargeted ℓ2-norm attacks on the ImageNet dataset. The
results demonstrate that Prior-OPT significantly outperforms all compared methods, including SQBA
and BBA that also use surrogate models. The results also show that using multiple surrogate models
can further boost performance. In addition, the PGD initialization ensures the algorithm’s initial
attack direction θ0 is already good, which enables it to achieve better untargeted attack performance
even with a small number of queries (e.g., the query budget of 1,000). Fig. 8 shows that on ImageNet,
Prior-Sign-OPT outperforms Prior-OPT in targeted ℓ2-norm attacks on CNN models, especially when
using multiple surrogate models compared to a single one.

Figs. 9 and 10 show the attack success rates of untargeted and targeted attacks on the ImageNet
dataset. In untargeted ℓ2-norm attacks (Fig. 9), Prior-OPT with two surrogate models achieves the
highest success rate, and both Prior-OPT and Prior-Sign-OPT outperform the baseline Sign-OPT. For
targeted attacks (Fig. 10), Prior-Sign-OPT exhibits superior performance compared to Prior-OPT. One
plausible explanation is that Prior-Sign-OPT employs a more query-efficient strategy by leveraging
the sign of directional derivatives, which requires only a single query per direction. When αi is small,
Prior-OPT, which relies on binary search to fully exploit prior information, becomes less efficient due
to its high query cost. Consequently, Prior-Sign-OPT holds a relative advantage in such scenarios.

Figs. 11 and 12 present the experimental results on the CIFAR-10 dataset. The results demonstrate
that SQBA and Prior-Sign-OPT achieve the highest performance among all evaluated methods. In
future work, we aim to further improve the performance of our approach on the CIFAR-10 dataset.

Figs. 13a, 13b, and 13c present the ablation studies of E[γ2] based on our theoretical results,
with Eq. (10) for Sign-OPT, Eq. (12) for Prior-Sign-OPT, and Eq. (17) for Prior-OPT. Fig. 13d
demonstrates the performance of Prior-Sign-OPT in untargeted ℓ2-norm attacks against the Swin
Transformer on the ImageNet dataset, evaluated with different values of q.
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Table 30: Mean ℓ∞ distortions of untargeted attacks across various query budgets on ImageNet.

Target Model Method Mean ℓ∞ distortions
@1K @2K @5K @8K @10K

Inception-v3

TA (Ma et al., 2021b) 0.397 0.379 0.359 0.348 0.342
Sign-OPT (Cheng et al., 2020) 0.726 0.403 0.156 0.100 0.084
SVM-OPT (Cheng et al., 2020) 0.723 0.389 0.155 0.102 0.088
Prior-Sign-OPTIncResV2 0.678 0.365 0.117 0.086 0.080
Prior-Sign-OPTIncResV2&Xception 0.640 0.318 0.102 0.083 0.080
Prior-OPTIncResV2 0.581 0.267 0.138 0.115 0.109
Prior-OPTIncResV2&Xception 0.502 0.208 0.119 0.111 0.109

Inception-v4

TA (Ma et al., 2021b) 0.420 0.402 0.381 0.370 0.365
Sign-OPT (Cheng et al., 2020) 0.794 0.450 0.175 0.111 0.093
SVM-OPT (Cheng et al., 2020) 0.811 0.446 0.178 0.113 0.096
Prior-Sign-OPTIncResV2 0.756 0.408 0.136 0.097 0.089
Prior-Sign-OPTIncResV2&Xception 0.700 0.348 0.107 0.086 0.082
Prior-OPTIncResV2 0.645 0.302 0.157 0.131 0.123
Prior-OPTIncResV2&Xception 0.558 0.218 0.117 0.108 0.106

ResNet-101

TA (Ma et al., 2021b) 0.301 0.285 0.267 0.258 0.253
Sign-OPT (Cheng et al., 2020) 0.437 0.247 0.101 0.066 0.057
SVM-OPT (Cheng et al., 2020) 0.461 0.254 0.110 0.075 0.066
Prior-Sign-OPTResNet50 0.404 0.218 0.074 0.053 0.049
Prior-OPTResNet50 0.289 0.138 0.075 0.064 0.060

ResNeXt-101 (64× 4d)

TA (Ma et al., 2021b) 0.362 0.344 0.323 0.313 0.307
Sign-OPT (Cheng et al., 2020) 0.611 0.326 0.131 0.090 0.078
SVM-OPT (Cheng et al., 2020) 0.667 0.336 0.131 0.089 0.078
Prior-Sign-OPTResNet50 0.574 0.303 0.104 0.075 0.069
Prior-OPTResNet50 0.428 0.196 0.097 0.080 0.075

SENet-154

TA (Ma et al., 2021b) 0.355 0.336 0.316 0.306 0.300
Sign-OPT (Cheng et al., 2020) 0.563 0.326 0.132 0.082 0.067
SVM-OPT (Cheng et al., 2020) 0.570 0.325 0.132 0.082 0.068
Prior-Sign-OPTResNet50 0.536 0.314 0.113 0.074 0.065
Prior-OPTResNet50 0.448 0.246 0.129 0.102 0.094

ViT

TA (Ma et al., 2021b) 0.399 0.379 0.358 0.348 0.342
Sign-OPT (Cheng et al., 2020) 0.602 0.302 0.105 0.072 0.064
SVM-OPT (Cheng et al., 2020) 0.651 0.310 0.107 0.075 0.068
Prior-Sign-OPTResNet50 0.597 0.334 0.118 0.084 0.077
Prior-Sign-OPTResNet50&ConViT 0.539 0.273 0.090 0.069 0.065
Prior-OPTResNet50 0.591 0.352 0.178 0.136 0.123
Prior-OPTResNet50&ConViT 0.429 0.217 0.124 0.110 0.106

GC ViT

TA (Ma et al., 2021b) 0.380 0.365 0.348 0.339 0.335
Sign-OPT (Cheng et al., 2020) 0.680 0.434 0.186 0.119 0.098
SVM-OPT (Cheng et al., 2020) 0.678 0.427 0.183 0.116 0.097
Prior-Sign-OPTResNet50 0.670 0.445 0.183 0.116 0.097
Prior-Sign-OPTResNet50&ConViT 0.642 0.389 0.141 0.092 0.079
Prior-OPTResNet50 0.652 0.455 0.248 0.185 0.163
Prior-OPTResNet50&ConViT 0.538 0.305 0.160 0.131 0.122

Swin Transformer

TA (Ma et al., 2021b) 0.536 0.515 0.491 0.479 0.472
Sign-OPT (Cheng et al., 2020) 1.009 0.625 0.258 0.159 0.128
SVM-OPT (Cheng et al., 2020) 1.036 0.622 0.251 0.157 0.131
Prior-Sign-OPTResNet50 1.000 0.647 0.262 0.162 0.133
Prior-Sign-OPTResNet50&ConViT 0.909 0.513 0.169 0.105 0.088
Prior-OPTResNet50 0.942 0.619 0.309 0.226 0.198
Prior-OPTResNet50&ConViT 0.662 0.321 0.159 0.129 0.120

Figs. 14, 16, and 18 show examples of adversarial images generated using different numbers of
queries in targeted attacks with Sign-OPT, Prior-Sign-OPT, and Prior-OPT methods. Figs. 15, 17,
and 19 show the corresponding adversarial perturbations for the Sign-OPT, Prior-Sign-OPT, and
Prior-OPT methods. Initially, all methods start with an image from the target class and iteratively
minimize the ℓ2-norm distance to the original image, while maintaining the predicted label as the
target class. Prior-Sign-OPT and Prior-OPT achieve a faster reduction in perturbation magnitude
compared to Sign-OPT, as shown in Figs. 15, 17, and 19.
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Figure 7: Mean distortions of untargeted ℓ2-norm attack under different query budgets on the
ImageNet dataset.
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Figure 8: Mean distortions of targeted ℓ2-norm attacks under different query budgets on the ImageNet
dataset.
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(h) Swin Transformer

Figure 9: Attack success rates of untargeted ℓ2-norm attacks under different query budgets on the
ImageNet dataset.
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Figure 10: Attack success rates of targeted ℓ2-norm attacks under different query budgets on the
ImageNet dataset.
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Figure 11: Mean distortions of untargeted ℓ2-norm attack under different query budgets on the
CIFAR-10 dataset.
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Figure 12: Attack success rates of untargeted ℓ2-norm attacks under different query budgets on the
CIFAR-10 dataset.
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Figure 13: Experimental results of ablation studies of E[γ2]. Figs. 13a, 13b, and 13c are based on
theoretical results (Eqs. (10), (12) and (17)) with d = 3072. Fig. 13d demonstrates the results of
attacking against Swin Transformer on the ImageNet dataset using Prior-Sign-OPT with different q.
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(a) 0 query (b) 1,110 queries (c) 2,142 queries (d) 3,017 queries

(e) 5,007 queries (f) 8,039 queries (g) 10,104 queries (h) 12,184 queries

(i) 15,176 queries (j) 18,477 queries (k) 19,032 queries (l) 20,470 queries

Figure 14: Adversarial images generated with different queries in Sign-OPT targeted attacks against
ResNet-101.

(a) 0 query (b) 1,110 queries (c) 2,142 queries (d) 3,017 queries

(e) 5,007 queries (f) 8,039 queries (g) 10,104 queries (h) 12,184 queries

(i) 15,176 queries (j) 18,477 queries (k) 19,032 queries (l) 20,470 queries

Figure 15: The corresponding adversarial perturbations generated with different queries in Sign-OPT
targeted attacks against ResNet-101.
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(a) 0 query (b) 1,092 queries (c) 2,124 queries (d) 3,088 queries

(e) 5,368 queries (f) 8,191 queries (g) 10,331 queries (h) 12,025 queries

(i) 15,192 queries (j) 18,149 queries (k) 19,138 queries (l) 20,114 queries

Figure 16: Adversarial images generated with different queries in Prior-Sign-OPT targeted attacks
against ResNet-101.

(a) 0 query (b) 1,092 queries (c) 2,124 queries (d) 3,088 queries

(e) 5,368 queries (f) 8,191 queries (g) 10,331 queries (h) 12,025 queries

(i) 15,192 queries (j) 18,149 queries (k) 19,138 queries (l) 20,114 queries

Figure 17: The corresponding adversarial perturbations generated with different queries in Prior-Sign-
OPT targeted attacks against ResNet-101.
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(a) 0 query (b) 1,142 queries (c) 2,424 queries (d) 3,336 queries

(e) 5,105 queries (f) 8,047 queries (g) 10,068 queries (h) 12,239 queries

(i) 15,646 queries (j) 18,179 queries (k) 19,189 queries (l) 20,233 queries

Figure 18: Adversarial images generated with different queries in Prior-OPT targeted attacks against
ResNet-101.

(a) 0 query (b) 1,142 queries (c) 2,424 queries (d) 3,336 queries

(e) 5,105 queries (f) 8,047 queries (g) 10,068 queries (h) 12,239 queries

(i) 15,646 queries (j) 18,179 queries (k) 19,189 queries (l) 20,233 queries

Figure 19: The corresponding adversarial perturbations generated with different queries in Prior-OPT
targeted attacks against ResNet-101.
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