Supplement to: Drawing out of Distribution with
Neuro-Symbolic Generative Models

A Dataset Details

All dataset images are scaled to 50x50 in grayscale, with dataset-specific configuration list below.

MNIST, KMNIST: we use the original split of with 60k images for training, 10k for tests. Each
image belongs to 1 of the 10 classes.

EMNIST: we use the “balanced” split of the dataset with 112,800 training images and 18,800 testing
images, separated into 47 classes.

QuickDraw: we use the 10-category version of dataset, where each has 4k/1k training/testing
samples, as found on https://github.com/XJay18/QuickDraw-pytorch.

Omniglot: we use the original split [24], with inverted black and white pixels. For one-shot classifi-
cation (§ 3.2), we use the original task-split, as found on https://github.com/brendenlake/
omniglotl It has 20 episodes, each a 20-way, 1-shot, within-alphabet classification task.

B Model Details

B.1 Differentiable Renderer

Bézier curves are parametric curves commonly used in computer graphics to define smooth, continu-
ous curves. The renderer outputs a greyscale, pixel-based image when takes in a stroke s; defined as
an array of control-point coordinates for a Bézier curve. It has three parameters (o, wf, w1); the first
two are per-stroke and wj is per-character. It renders a stroke through two steps: 1) compute a sample
curve based on the control points; 2) rasterize the output image from the sample curve as described
below.

With (D + 1) control points, §; = [p})] (113:0, each with their x, y coordinates, a sample curve with .S
sample points can be computed using the explicit definition of Bézier curves, where n is one of the S
numbers ranging [0, 1]:

D /p 4
bf, :Z (d)(l—n)D_]ndpd (10)
d=0
In our case, we use .S = 100 samples spaced evenly between [0, 1].

With S points [bf]5_,, an image Z;, with pixels indexed by indexed by h € [0, H —1],w € [0, W —1]

n=1- -
where H, W are image dimensions, can be rasterized. Its pixel intensity Z} is given by:

. h—bt _)2(w — bt)2
ﬁm=z(*()Uf;‘; 2) (11)

n

where bl, ., bl stands for the ,y coordinates of the sample point bf,, and o* is the renderer

parameter roughly in control of the blur of the rendering output.

As an effect of this rasterizing procedure, the pixel intensity can be arbitrarily large. To normalize it
to be always inside [0, 1], we apply a max-normalization followed by a parametrized tanh function
to get per-stroke renderings x; (this corresponds to the x; introduced in the Rendering Module of

Ty = maxnorm(7;) = e 12)
max (Z;)
x} . = normalize_stroke(Z}, ;wh) = tanh (xhzy> (13)
“o

12

https://github.com/XJay18/QuickDraw-pytorch
https://github.com/brendenlake/omniglot
https://github.com/brendenlake/omniglot

The max-normalization divides each image’s pixel values by the highest pixel value of that image,
normalizing all pixels to the range [0, 1]. Both steps here are important because with just the max-
norm, the maximum pixel value of each image is always 1, which is usually not preferred. Conversely,
with just the tanh-normalization, wf, would be required to vary in a much greater range for the output

image to look as intended, as max () can range from tens to thousands.

B.2 Compositing Module

With the image pixel value of an individual stroke being in [0, 1], an element-wise sum of all strokes’
rendering could still be larger than 1. Hence, another parametrized tanh function is used to get the
canvas-so-far at time ¢’ € [1,...,7"] (using ¢’ to index the per-stroke-renderings from Eq. to
avoid clashes):

t
T<t = ® €Ty (14)

=1
t t
. ’ _1 X
x5! = normalize_canvas([z},,]l _,;wi) = tanh (W) (15)

where xg is the initial blank canvas.

This is an implementation detail underneath the simplified description of the compositing procedure,
T<y = Tt ® x4, appeared in[§ 2.1} This eschews an accumulative brightening effect that happens
when the tanh normalization is applied to the canvas-so-far multiple times (once at every step), as
would be required in the procedure in the simplified description.

B.3 Neural Network Configurations

DooD and AIR in our experiments share the overall neural components.

Convolutional neural nets (CNN) are used as feature extractors for images (one for canvas-so-far,
attention window, target, another for residual and its counterparts). Each CNN is equipped 2 Conv2d
layers with 3x3 kernel and stride 1 followed by a 1-layer MLP that outputs 256-dim features. The
Conv2d layers goes from 1 to 8, then to 16 channels. Notably, we don’t use any Max Pooling layer to
avoid the spatial-invariant property.

All the prior, posterior distribution parameters are output by their respective MLP (results in 6 separate
MLPs). Despite varying input, output dimensions, they share the main architecture: 2 256-dim hidden-
layers with tanh non-linearity. The renderer parameters as detailed in are predicted
by another MLP of the same form, but not modelled as latent variables in our implementation. As a
result, DooD employs 7 MLPs. For AIR, An MLP is used as the decoder (i.e., renderer) for AIR,
with the same configurations as above.

On top of these, GRUs[5]] with 256-dim hidden states are employed for the layout and stroke RNNs.

B.4 Token Model

To fit our model naturally into the hierarchical Bayesian formulation of the character-conditioned
generation and the one-shot classification task, we inserted a plug-and-play token model to our
generative model. With the learned generative and recognition model, we can regard the learned
prior p(o, 1, s) as a high level type model p(¢) and incorporate a token model p(z|v), where ¥, z
denote (0,1, s), (0,1, "), respectively (only potentially different in s vs. s”). We can then consider
the learned variational posterior ¢(o, [, s|x) to be directly on the type variable 1), i.e. ¢(¢|x). The
token model p(z|t)) captures the plausible structural variability of various instances of a character
(including affine transformations, motor noise; all embodied in s’ given s). This can either be learned
or set by heuristics.

In our experiment, we simply leverage a uniform distribution over a range of affine transformations
and a spherical normal distribution for motor-noise. Note that the flexibility of doing this is thanks to
the symbolic latent representation that DooD has, while models with distributed latent representations
lack. In detail, the motor noise model has a standard Gaussian distribution with mean centered on the

13

control points and scale 1le — 3. The affine model uses uniform distribution and has x, y shift value
ranging [—.2,.2], z, y scale [.8, 1.2], rotation [—.25, .257], x, y shear [—.257, .257]

14

C Training Details

C.1 Hyperparameters

The model is trained with the Adam [21]] optimizer with a learning rate of 1e-3 for the parameters
whose gradients are estimated with NVIL [28]] and 1e-4 for the rest, neither with weight decay. The
intermediate canvas-so-far <, for ¢ # 7" and residual Az, produced at each step are detached for
both DooD and AIR from the gradient graph for training stability, effectively making them not act as
a medium for backpropagation-through-time.

[settings. For DooD and it’s ablations, 5 = 4 is used in the loss function, whereas 5 = 5 is
used on AIR, both tuned on the MNIST-trained across-dataset generalization task. More specifically,
starting from 8 = 1, different 5’s with 41 increments up to = 6 are experimented with models
on MNIST, with their behaviors changing from using all steps to using fewer strokes than sufficient
to reconstruct the image. The values above are chosen from this range by assessing the marginal
likelihood, and qualitatively, whether it’s using a sufficient yet parsimonious number of strokes.

NN Parameter initialization. The initial parameters of the last layer of the I MLPs are set to
predict identity transformations as per [20]. For the Omniglot dataset only, the initial weights for o
MLP’s last layer is zeroed and the initial bias is set to a high value (e.g. 8) before passing through a
sigmoid function for normalization, because otherwise the model would quickly go to using no steps
due to the greater difficulty in joint learning and inference on Omniglot.

Variable initialization. At = 0, variables are initialized to fixed values: h{, h$, 0g, so, lo, Zo
are assigned vectors of 0’s of different dimensions. In other words, these initial variables are not
sampled and not accounted in the joint distribution. This initialization is used in all of the training
and evaluation.

C.2 Stochastic Gradient Estimators

One way of learning the parameters of the generative model # and the inference network ¢ is by
jointly maximizing the lower bound of the marginal likelihood of an image x, denoting the joint
latent variables by z:

toaps(z) = log/dng(m,z) B 1Og/dzqas(z|x)lq)z((z’xz))

o po(x, z) o po(x, 2)
i er SR rer
= Eqy, [log pg(2)] + Eqy, [log po([2)] — Eq, [log g (2|2)] =: L(0,¢) (16)

A Monte Carlo gradient estimator for %E is relatively easy to compute by drawing z ~ gg4(-|z) and
computing % log pg(z, z) as the model is differentiable w.r.t. its parameters.

Estimating the gradient for %ﬁ is more involved as the parameters ¢ are also used when drawing
samples from ¢,. To address this, for each step ¢, denote w’ all the parameters of the distribution on

variables at ¢, z*. The full gradient can therefore be obtained via chain rule: % =>, g f, %.
Define £(¢, 0, z) := log %, we can write the loss as £(0,¢) = Eq, [((¢,0, z)], and let z* be

either the continuous or the discrete subset of latent variables in (I*, s*, 0o'). How to proceed with
computing £

gwt depends on whether 2! is discrete or continuous.

Continuous. For continuous random variable z!, we can use the reparametrization trick to back-
propagate through z* [22} [31]]. The trick suggest that for many continuous random variables, drawing
a sample 2! from the distribution parametrized by w’ yields an equivalent result as taking the output
of a deterministic function inputting some random noise variable ¢ and parameter w?, 2 = f(&, w?)

where ¢ is sampled from some fixed noise distribution p(§). This results in the estimator: g ft R~
04($,0,2) df
ozt owt”

15

Discrete. For discrete variables such as of, the reparametrization trick can’t be applied. Instead,
we resort to the REINFORCE estimator [28, 31], with a Monte Carlo estimate of the gradient:
OL aloga%(zlf 00,0, 7).

Ow?

This can be derived as follows (denote (¢, 6, z) by £(z) and g4 (z|x) by g4 (2) to simplify notation):

oL 0]

— [(o osas2)) as(t(2)a
=Eq,(2) {6?& log %(2)5(73)}

dlog gy (2)
~ Tj’f(z) (17)
This basic form usually results in a high variance, and we can significantly reduce it by using only
local learning signals and a structured neural baseline[28]. The former suggests that we can remove
the terms in £(z) that don’t depend on w' without affecting the result, this allows us to substitute
{(z) with £*(2) := log pe(x|2)pe(257T)/qs(z4T) such that it only uses learning signals dependent
on w'. The latter suggests subtracting a control variate b(z<*, z), which takes in = and the previous
variables z<! detached from the gradient graph, from ¢!(-). It is trained by minimizing the mean
squared error between ¢'(-) and b(z~",z), i.e., Ly := Eg,[(¢'(2) — b(z~',x))?]. This yields an

lower-variance estimator used in learning 25 ~ aqgﬁ (¢4(2) — b(2<%,x)). Finally, the learning

signal, (¢*(z) — b(z<*, z)), is centered and smoothed as in [28]. And the final loss function can be
written as £ = L + L.

D Evaluation Details

D.1 More across-dataset generalization results

demonstrates each model’s performance when trained on MNIST. Here we show an instance
of with additional results for models trained on each of the 5 datasets (except for the baseline
that didn’t work on that particular dataset). We further present a[Fig. 4}style confusion matrix for
DooD-EG.

16

D.1.1 EMNIST-trained models

Omniglot

MNIST KMNIST QuickDraw

EMNIST —

W LrQoa 08692319 93rlE»S Crm)OPDor Boa e P)

(a)

[N Lok [ofE[H]
R olalslola] |alalz[=RIF]
S ool [S[e[]
I8 O) 2 e e) e 2 o (O A (R [9)
Clefefe] ([ololelele] Lol fe]
clefe seefelele
Elelels| |elels[s] |elz[=][s]e]s]
(072 12155 2) A I 5] 2 I (01 G (A (9 [[
[T 8 (ATB 1R S | lw s S]] S
VIDI0[6161 (CL10]6[6]6[|klule[[6]6!
SV A A A | CHEANANA |l 401414 AR AR
QYN (CICISICIBIY | QICIIIDIS!
v L MNSon ICodiooe [~
LINNBRE ACEBE clanbbE
NISNNRSNIBENAE RN SISERSEN
U OIDIG | [CI0BIICIG | < ICK K00
BISOEE S ISRV Y e N3t
Rl R () adelRR
v INANARPRA LT CTEREVERNE v MM MW
RSN NN AN A A AT SN N ST
NINNEYE Y| ST Y e
b AR (5 bR b b b e
NIS SIS NS I ST NSNS
Sk olfde |kl [e[ee
S e (oIS
Clome e e DROAICIACCY
Ol S e I S T = A CE CI IC C3 00
SILYCY vltjojojajo
SRR LR RRNSSN
DIRESEUEY NS SNC N
SIS ~lellefele
JVQQe ([LCRY NIVERIYY
\RRI®R NSRRI |N[sNINR®
vloele [Jele <[00
SIS
LILe L6l ~[ofulelblb
VPERR ACERR [LllssEE
Lpplpl [Loppl LD
AY2Y AYRY =l sINY

a
[S)
<)

[a}

DH-dood

Figure 9: EMNIST-trained model generalize to other datasets.

D.1.2 KMNIST-trained models

Omniglot

MNIST EMNIST QuickDraw

08 L9 %3 [19 VUW"VOA?Q@&J-DQ¢’®WB&GP%>&>D

KMNIST —

. 93 w%(/ﬁﬁﬁi'&

(a)

=S SRR
Ol delels
EEEIEESA
5 %‘ﬁ@@@v\ [Hle[blelele |[]] 5] 0] b
~ Rl RRECIa
O fR FQIE\ M|@le) ClHsele (=]
[~ k|8 sl (] £l sl s 5]
QRO lelm| o) M A af@fnfia]
LTGRO ASTS ([(Y]E8181813
o1015191918] [VISR |[C18]1215918(8)]
LT ANA (R[N |0 A B AN
B 2PRIBIG QRSS! (112 313131
Eer o HREEE=
130N Ralhath JA 34 i
VSRS (IR SIS | B RI8LSIS)
R v swelSsvedlidawale’s
ARSI (NGRS ([T 3 BIS[G]
AISIRIRIR] |NINIRIR] |[TIPIRIRIRIN
dCige (RO idliejlvll+] ()
NAYANN N ISINNARN
NIESINY RNEYONCY
=CEEEE = T PIRIR[BIB]
Sl=se)i > IcDioDIP | TP DDIDID
EEK‘N MMNMARR
Oll=ty =] 5 Blarie{e]
e ' & e S|P
Awim Mwom ([3]s 9mm
V|elepled| | ofpler] | 4] &lapiee[so)
vinoo NN AN NO O
VRN NSRS (]88 SIS]
Nwelse Dol [~]%]%B|% %
SISSIS als)S) B SIS
SEEVEYON ¥ VY YT s ERCEYY
NI e T SH il o sho i of I A S5 10
SE s SNESS SNSRI
N SN[Y R
AR | QRAE O R AAIR
MRIK S el A] 4 U s
vicielss |bislsle |2 H el

aood

DH-dood

Figure 10: KMNIST-trained model generalize to other datasets.

D.1.3 MNIST-trained models

EMNIST KMNIST QuickDraw Omniglot

CUOWeELrQoa 932 lE»S O6rmM) O3 Ta o &)U

MNIST —
., 08692319

(a)

Nla)

tlslols|

ClslE|sls| ol

Dok lelele

PRxpRR]

~lelzlalzla)
<

=

)

I

BRI

[} Y[|®|

J8ke e
~efe]s)

[e [e
clele]
SR

Dl fohe]

Wl | efe
2l
EIR2EIEIEY
INEIETY

SO IR

Y3333

SB[
NAGI6Iee

I

DIB[6I61616/

AVONENESERS

SEISONINEN

N O[RRANAK

AIRISINIS]

NNININININ]

AR

oL

paee

S

RN
IR IPIR

ML)
RGN

AL |
NRIRITINIPS

DADIBIO

LILICIBICIO

DIABIOIO)

ElSe [wlio

NRRA
SRR

LRSSt

ENEN YN

AR R L

AR RN

N AN

NN ES

MNNSNN

AR Al

[EEASCSESREES

ARSI ASES

SIRTRE

CHCLRIRIERL

RV TR R

[N]| Sopobpiéore

(] ewisle

| o] S>olpt Do)

Diee

MNyee{ee

b@@@&

NG

09

CIRIRIRIR]
20l
AR

/D
€/
-

AACCIVICTAC
000
V&Y

Liblb

SISIsIs6
2ITIB[8lB

i F[ﬂ B)

; EE](
v 9
\J

Ldl5]
&\\3
12

8) %P
0)¢ 4|9 %
i

7]

wivicieicicl

SRR

~opopip

oooppp
AR

AR

Figure 11: MNIST-trained model generalize to other datasets.

D.1.4 Omniglot-trained models

MNIST EMNIST KMNIST QuickDraw

oaé9zalqvowryoaaﬁéw%w253©wnﬁa¢®w

Omniglot —

(a)

xB&ﬂP%)«bD

1019]816/9/6)

I WWW%

MESEN Y

\4|mm&®

ClBIGIBIG

ISR

DT
EICICH NI

RERE

SISISISISIS

[ZICIO0G

e[ele/c[e]¢]

¢ |l

(LKLDD

O

@@M@ﬂ

BLAIEIE
ke

) [P

5/5/8/8598

BICIC I

[s](s]is]

XXX [x[x

elelel®

2 NEIE

I[BBBEE
[o)is][elizjfs)s]

SIPIPDIDID

[Hadste] s
[=~<l+]

RIS
EESEERS

IAISTRYRYAVRY (VG YA S

[=]
o|mjm

BRI

C"‘.EOI g g

EERINNISIN

<[

ol oje[%

SRR

IS B STSS)

oo/l

| |@|@|@|-§\

\bbb

Eﬂjj

20

e/

k104

Figure 12: Omniglot-trained model generalize to other datasets.

D.1.5 QuickDraw-trained models

KMNIST Omniglot
BbaoeaPEID

EMNIST

MNIST

, OtrmDO>P@or 08692319 UWELQoa P Ari(JE3

QuickDraw —

(a)

v

slo[6]D [1]a]olo/os]
ol lala, [1]elolelala]
RRREEI=
o]cots|éo]® BEECEE
-] -[+]+[e]
@l [@l]e []1]1]afgtd]
[s]s]s]sls]6]
D[ieje) REEE G
(] S e [0] o e
IR AR NI RSB [QAR
o RN | Ve || OO\ NN
L& s [CICEEEE | ddm
| (e s ([T SIS IaA |4 M M
sl<a[R[E ([N JRRTRTRDR
LS pChisthet) ot |[5) |05 opinoy |1 ¢ o st aopwe
|t el e |0 eio]e v o] oo
I [oJrelil 1/4/8/9/9/9
L([RIRR RIRIR R[RAR[CIRIR
9)[9] RIwiv)lvilvilv]
e RN | R AXN AN YA
olble Y57Y BINCIY
o RR[ER| C[B[BIB R[RIRRR
LpDD | [DDPD DIO[OPPID|
) A BRY AR Y YR 1RY
Dnym w [w]m Y 9] a[«[®]m
L o 2[3[eefee
NA oo Naoaaa
INSIEIS RANDE RIS
S[o[[%o|] | 2% D] o o/ w[w[%)
BRSS! <olo INEISISIEIS]
kAR 3k 3 T P RIE 13 BRI
DB |08 DDIOIOIOLE
SAAN (DA A s M M ARAN
61SSI3G (L] IS 31131 B BIBI<B)
== ales (e IRselala
QuDEE B AR
olskslS|& |8 [B BRI RLRIK
DO OO [DIRINICICID)

aoodq

qiv

DH-dood

Figure 13: QuickDraw-trained model generalize to other datasets.

D.1.6 Ablation marginal likelihood evaluation

MNIST|

EMNIST|

KMNIST|

Source dataset

Quickdraw|

©Omniglot|

9725Trwh fiYUsoas 85

6983.0

q 2 5Z ¢ w3 {t{vnals~ 8
9 25T zw3 9V 8
Q25T rwd $ i PYwa= 81

25T w2 Ve 85

N/A N/A N/A N/A N/A

9725Tzwhh{iYUsvae 8

-4411.2
+1572.8

-6344.3
+1834.7

Tiz|a| % 9]][l 87

7053.5
+195.8

925

6725.7
117

92 5T w3 ? i |Unc 8T

9.2/5/Tz/w|2| 1] Vil 8 A

12523 Ve8|

N/A N/A N/A N/A N/A

Figure 14: DooD-SP (DooD without sequential prior) and DooD-EG (DooD without execution

MNIST EMNIST KMNIST Quickdraw Gmniglot
Target dataset

MNIST EMNIST KMNIST Quickdraw Omniglot
Target dataset

guidance) cross-dataset log-marginal-likelihood evaluation.

22

D.2 More across-task generalization results

D.2.1 Unconditional generation

Additional unconditional samples from DooD are shown in[Fig. T3] In generating these samples, we

also make use of the common low-temperature sampling technique [15].

MNIST

EMNIST

KMNIST

QuickDraw

Omniglot

—UANVNIN- S~ O~ VN2 U U™ e~ MUY eSS 2%+

O30 O I QUNn~—JI QAN ~—J U ENW VI LAQUPWRODTDWD NNy Wy See

OO QA2N2RNAMURAMURON—Y AN NV~ a8 e~ sPcd IN=-W

NARNNE X 2RI NPESINPESIWN—OeQewaE NA~) ANRD G @—un oY

S L20CN —OWW o r—~roortTYVNP AW AN O—RND ZAODOY IO YNV

ANNWo o
HToLro
coct> 2+
Mo I Xx
FWoH>x<
oo
Orday—
NOw—<W
a7 MY &
amma3lmn
rRraAr
<qQW>o
viapL=Zmnm
x<x0 %
CwWwowoe=
+FtOoOX0 L
vrm7a2—
T~Q7C A
- LA0 0
Qe -x
2= L2
QZ TDY
DQaea
>T¢gUND
o 0L>
7)Orw Z
w2 vx
dQ~N=<
o 0L
710w Z
=2 ovorxr
0OQ~N=<
<awzxp
TIPI
AT 300
nANZ -~
-4 WV
~o-XAXI
OX>¢ Q@
VRN e P

~
N

»

W@p: ﬂ\ ‘4:@?: ﬂ\
QP Jretioe S
P 1 2o 5T 900 1 2l IS (e

3 ?Q‘n;"% }Q"‘?"% PacTA
== 9 g d

3-4.
~
\>
+

VPRt
Te1Ng é
AT

23

DorQH=>
O 60el4o 8
SHORY
o< R
D) &
aogna/o;é&
@@ 3 &
E) i {J
&5 oo
0P QB
PIORY
DG KD
Q@R
Qo+
gog 0
B RO>@
AR SRS
HLrON &
1A ®) E P2

[fr>G h =

o[P
RPN O
2R OR
<« NOQE
B @23 4
R @
22060
»dP0®
B ®o0% B4
Hoso @
e®2060
~dP e
S 2D
e =
w03 J
Qoo =]
A eradanly
o> @ ME] &
~ o[04 R
&« OO

o 4R w [0
] * T e D
we g ®
® 7 W X &k
» L& D (
RO QG
&E (deeo
LY M e d
9 4 L2
$9 Y
by ay v o Q
T3 TZO
b ayo A
20 L9

-
—_ S

\!

2Fropt 2 Frpt EVAS
CH> I ALY DALY @O DX

& os
M 3k v A

C
g

3
8

— e ="
TRGm D uwma D Muma

Figure 15: Additional Unconditional generation results from DooD.

D.2.2 Character-conditioned generation

Additional character-conditioned samples from QuickDraw- and Omniglot-trained DooD are shown

in[Fig. T6]and [Fig. 17]

0 QFRGHHPROF OO CEPRAOGHRY v —i= A

DS D EEOFT O N CEFPATGHBDY v~ f)
0 QHGSLQPQROT O AU WNPGPBTEHB Yl f
tQHLLBQROFTH XN R B FPA®ED Y~ P
P ORLERPJOFTHANASYFATHD Y=g M
OB BN PROTO =AY FPAT5HRAY =
P OHRELPQOFT ORI RY PAGSHY T P
0a(DFoL P QP HH B CPFP AT DY~ M
0 QBHELPQOFT O NP FPATHAY v ~d= {
P ORDLPYRITHANOCHF Ao DY v == 4

s2bHan[(HOrRlDAObeBOHEFLOwOD

s=2bawJ9OTrRLDQPQobbeomOEFO@wOD
B2ba s OFRLTRARCoBYF = F2OWOD
=22banl%O0FHReDP@ AR F v P 5O
&5 [[$+O8+2LPPRCoRIHTPOWOH
=22b oG xndbPBRACCRIHE PO [
eLbor(SOT0lP@QROeBHEST @01
e2banHE5+RLVPOAGCBIZ T 2@©ROD
b 50+ LVPROG=RIFFYLEROD
225a% 05 0+rnLVEQACOBHFTPBOwOD

Figure 16: Additional Character-conditioned generation results from QuickDraw-trained DooD.

24

RSQUYUPRWYP oW ADRNEHIITCTLI = E o
r&%@gll(w:P"ln-mmm@»@’xa’ut,\@n{?fju&urgo\
RKSQUy Pawld Tadg@®Do BHDV% TN TIT wesd = § d
ARSQ YUEW P Madp @0 » R YNNI T weta =F d
ASQY P WY Moo W0 LADNGH TT wlad™= g o
rrﬁ\\Ql—}\l“D\i’”7»@\70;00@»%'0(‘:35&,\@’1[33@&3?7:%0\
ARSNQ Y REwY MTopl @ 07 B ADULGH T T Tl =f o
RSQB R L Mok MY 0> BAINGNEHIT wibdd = F o
RSQYPRPW P Mg BADYURWENT T w2 =F o
ASQUY LS Mo D20 BARINGH AT TLEZ=E o
RSESQuyupwy Toppdwd» EADVNLGAT T L =% o
Ay Buyf Tdmmod »» /UGN TT Tty =g o
r{grpanlil T2dp Il sy DT o2y T4
rggprixnlﬂj62,]033@:.\1/@503/@?63&?'4 LIRS e 2
P LAl 14 T oI NL PLI/R Y TP T XA
LT AT FUAp Trenl 2LdyN P T 2w T
P L gFABTIR oI ewl 2 L0R 7 T3 5 Tt
PRI o[]S e?,\(:oSan:ul/?[O\}@?aBM‘/f T A
rdapdel 3 oIl 2NN DT IV TN
FJ‘BW&DWJ ngwgwt\lfﬁxcdyﬂyﬁa&?'ﬁ LT N
P LRIl QoI 2 L)R DT I U TN
P grinlfl fUodenv 2 LdyNRDPT e TN
P LTI VDo Iranl #2dyR DT 2P T4
P LRTIBTY VoIl s yRO)PTo22n T

Figure 17: Additional Character-conditioned generation results from Omniglot-trained DooD.

25

D.2.3 One-shot classification

DooD performs one-shot classification as follows. When given a support image () from each class
¢ = [1,C], and a query image 2(T) it classifies which class c it belongs to by computing the Bayesian
score p(x(T)|2(©)) for each ¢ and predicting the ¢ with the highest score. The score is computed by:

p(x<T>|m(c>):/ (@), 2T) () [2()d(5(T) (@) (18)
/ (T)‘Z(T) ((T)|w(c))p(w(c)|x(0))d(z(T),w(c)) (19)
K
~ 3 memaxp(e @)p(= "0 (20)
k=1

K
where w,(f) ~ gz, 1y x Ty = p(w,gc),x(c)) and Zm =1 2D

where p(z(T)[1)(¢)) is the plug-and-play token model (as introduced in of |Appendix B.4) taking the
potential affine transformation, motor noise into consideration. And the max,(r) is obtained through
gradient-based optimization, as in [10} 24]].

E Limitations

For MNIST-trained DooD in particular, we observe that despite outperforming all baselines in
generalization, as evident by the significantly superior mll (Fig. 4), it has a hard time faithfully
reconstructing in particular the more complex samples. We attribute this to 2 components of our
model that will be investigated in future work, fixing either should significantly improve upon the
current generalization performance.

Primarily, we can attribute this to the s-component not generalizing strongly. When trained on MNIST,
the model rarely sees multiple strokes appearing inside a glimpse. However, this is common in
complex dataset such as QuickDraw. This creates a major train/test discrepancy for the s-component,
causing the model’s malfunction—e.g., trying to cover 2 isolated strokes (a “11”") with 1 stroke in
the middle (a horizontal bar). Despite multiple strokes appearing in glimpses of models trained on
other the datasets. This malfunctioning of s-component does not happen as much because the model
has more robustly learned through its source dataset that it should focus on the center of the given
glimpses during inference. A more robust s-component design should in principle address this issues.

Fundamentally, however, this can be seen to be caused due to constraints in /. By design, [should
perfectly segment out each individual stroke and place it into a canonical reference frame, before
passing it to the s-component—multiple strokes appearing in a single glimpse should not have
happened in the first place. Perhaps more flexible STNs[20] could do this (with shear, skew, etc). We
expect a combination of the bounding-box approach (as in DooD) and a masking approach (e.g., [4])
might work well, where the masking could help the model ignore irrelevant parts of glimpses before
fitting splines to the relevant parts.

26

	Introduction
	Method
	Generative Model
	Recognition Model
	Learning

	Experiments
	Across-Dataset Generalization
	Across-Task Generalization

	Related Work
	Conclusion
	Dataset Details
	Model Details
	Differentiable Renderer
	Compositing Module
	Neural Network Configurations
	Token Model

	Training Details
	Hyperparameters
	Stochastic Gradient Estimators

	Evaluation Details
	More across-dataset generalization results
	EMNIST-trained models
	KMNIST-trained models
	MNIST-trained models
	Omniglot-trained models
	QuickDraw-trained models
	Ablation marginal likelihood evaluation

	More across-task generalization results
	Unconditional generation
	Character-conditioned generation
	One-shot classification

	Limitations

