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Abstract

Self-supervised pre-training methods on proteins have recently gained attention,
with most approaches focusing on either protein sequences or structures, neglecting
the exploration of their joint distribution, which is crucial for a comprehensive
understanding of protein functions by integrating co-evolutionary information and
structural characteristics. In this work, inspired by the success of denoising diffu-
sion models in generative tasks, we propose the DiffPreT approach to pre-train a
protein encoder by sequence-structure joint diffusion modeling. DiffPreT guides
the encoder to recover the native protein sequences and structures from the per-
turbed ones along the joint diffusion trajectory, which acquires the joint distribution
of sequences and structures. Considering the essential protein conformational
variations, we enhance DiffPreT by a method called Siamese Diffusion Trajectory
Prediction (SiamDiff) to capture the correlation between different conformers of a
protein. SiamDiff attains this goal by maximizing the mutual information between
representations of diffusion trajectories of structurally-correlated conformers. We
study the effectiveness of DiffPreT and SiamDiff on both atom- and residue-level
structure-based protein understanding tasks. Experimental results show that the
performance of DiffPreT is consistently competitive on all tasks, and SiamDiff
achieves new state-of-the-art performance, considering the mean ranks on all tasks.
Code will be released upon acceptance.

1 Introduction

Machine learning-based methods have made remarkable strides in predicting protein struc-
tures [44, 5, 50] and functionality [55, 24]. Among them, self-supervised (unsupervised) pre-training
approaches [20, 61, 87] have been successful in learning effective protein representations from
available protein sequences or from their experimental/predicted structures. These pre-training ap-
proaches are based on the rationale that modeling the input distribution of proteins provides favorable
initialization of model parameters and serves as effective regularization for downstream tasks [25].
Previous methods have primarily focused on modeling the marginal distribution of either protein
sequences to acquire co-evolutionary information [20, 61], or protein structures to capture essential
characteristics for tasks such as function prediction and fold classification [87, 33]. Nevertheless,
both these forms of information hold significance in revealing the underlying functions of proteins
and offer complementary perspectives that are still not extensively explored. To address this gap, a
more promising approach for pre-training could involve modeling the joint distribution of protein
sequences and structures, surpassing the limitations of unimodal pre-training methods.
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To model this joint distribution, denoising diffusion models [37, 65] have recently emerged as one
of the most effective methods due to their simple training objective and high sampling quality and
diversity [2, 54, 40, 74]. However, the application of diffusion models has predominantly been
explored in the context of generative tasks, rather than within pre-training and fine-tuning frameworks
that aim to learn effective representations for downstream tasks. In this work, we present a novel
approach that adapts denoising diffusion models to pre-train structure-informed protein encoders1.
Our proposed approach, called DiffPreT, gradually adds noise to both protein sequence and structure
to transform them towards random distribution, and then denoises the corrupted protein structure
and sequence using a noise prediction network parameterized with the output of the protein encoder.
This approach enables the encoder to learn informative representations that capture the inter-atomic
interactions within the protein structure, the residue type dependencies along the protein sequence,
and the joint effect of sequence and structure variations.

In spite of these advantages, DiffPreT ignores the fact that any protein structure exists as a population
of interconverting conformers, and elucidating this conformational heterogeneity is essential for
predicting protein function and ligand binding [27]. In both DiffPreT and previous studies, no
explicit constraints are added to acquire the structural correlation between different conformers of
a specific protein or between structural homologs, which prohibits capturing the conformational
energy landscape of a protein [56]. Therefore, to consider the physics underlying the conformational
change, we propose Siamese Diffusion Trajectory Prediction (SiamDiff) to augment the DiffPreT by
maximizing the mutual information between representations of diffusion trajectories of structurally-
correlated conformers (i.e., siamese diffusion trajectories). We first adopt a torsional perturbation
scheme on the side chain to generate randomly simulated conformers [36]. Then, for each protein,
we generate diffusion trajectories for a pair of its conformers. We theoretically prove that the problem
can be transformed to the mutual prediction of the trajectories using representations from their
counterparts. In this way, the model can keep the advantages of DiffPreT and inject conformer-related
information into representations as well.

Both DiffPreT and SiamDiff can be flexibly applied to atom-level and residue-level structures to
pre-train protein representations. To thoroughly assess their capabilities, we conduct extensive
evaluations of the pre-trained models on a wide range of downstream protein understanding tasks.
These tasks encompass protein function annotation, protein-protein interaction prediction, mutational
effect prediction, residue structural contributions, and protein structure ranking. In comparison to
existing pre-training methods that typically excel in only a subset of the considered tasks, DiffPreT
consistently delivers competitive performance across all tasks and at both the atomic and residue-
level resolutions. Moreover, SiamDiff further enhances model performance, surpassing previous
state-of-the-art results in terms of mean ranks across all evaluated tasks.

2 DiffPreT: Diffusion Models for Pre-Training

Recently, there have been promising progress on applying denoising diffusion models for protein
structure-sequence co-design [54, 2]. The effectiveness of the joint diffusion model on modeling
the distribution of proteins suggests that the process may reflect physical and chemical principles
underlying protein formation [3, 18], which could be beneficial for learning informative representa-
tions. Based on this intuition, in this section, we explore the application of joint diffusion models on
pre-training protein encoders in a pre-training and fine-tuning framework.

2.1 Preliminary

Notation. A protein with nr residues (amino acids) and na atoms can be represented as a sequence-
structure tuple P = (S,R). We use S = [s1, s2, · · · , snr ] to denote its sequence with si as the type
of the i-th residue, while R = [r1, r2..., rna ] ∈ Rna×3 denotes its structure with ri as the Cartesian
coordinates of the i-th atom. To model the structure, we construct a graph for each protein with edges
connecting atoms whose Euclidean distance below a certain threshold.

Equivariance. Equivariance is ubiquitous in machine learning for modeling the symmetry in physical
systems [67, 75] and is shown to be critical for successful design and better generalization of 3D

1It is important to note that protein structure encoders in this context take both sequences and structures as
input, distinguishing them from protein sequence encoders as established in previous works.
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Figure 1: A pre-training and fine-tuning framework for DiffPreT. During pre-training, diffusion
processes are applied to both protein structures and sequences, with * indicating masked residues.
Noise prediction networks, parameterized with an encoder ϕ(S,R), are employed to restore the
original states. The learned encoder ϕ(S,R) is subsequently fine-tuned on downstream tasks.

networks [46]. Formally, a function F : X → Y is equivariant w.r.t. a group G if F ◦ ρX (x) =
ρY ◦ F(x), where ρX and ρY are transformations corresponding to an element g ∈ G acting on the
space X and Y , respectively. The function is invariant w.r.t G if the transformations ρY is identity. In
this paper, we consider SE(3) group, i.e., rotations and translations in 3D space.

Problem Definition. Given a set of unlabeled proteins D = {P1,P2, ...}, our goal is to train a
protein encoder ϕ(S,R) to extract informative d-dimensional residue representations h ∈ Rnr×d

and atom representations a ∈ Rna×d that are SE(3)-invariant w.r.t. protein structures R.

2.2 Diffusion Models on Proteins

Diffusion models are a class of deep generative models with latent variables encoded by a forward
diffusion process and decoded by a reverse generative process [63]. We use P0 to denote the ground-
truth protein and Pt for t = 1, · · · , T to be the latent variables over T diffusion steps. Modeling
the protein as an evolving thermodynamic system, the forward process gradually injects small noise
to the data P0 until reaching a random noise distribution at time T . The reverse process learns to
denoise the latent variable towards the data distribution. Both processes are defined as Markov chains:

q(P1:T |P0) =
∏T

t=1 q(Pt|Pt−1), pθ(P0:T−1|PT ) =
∏T

t=1 pθ(Pt−1|Pt), (1)

where q(Pt|Pt−1) defines the forward process at step t and pθ(Pt−1|Pt) with learnable parameters
θ defines the reverse process at step t. We decompose the forward process into diffusion on protein
structures and sequences, respectively. The decomposition is represented as follows:

q(Pt|Pt−1) = q(Rt|Rt−1) · q(St|St−1), pθ(Pt−1|Pt) = pθ(Rt−1|Pt) · pθ(St−1|Pt), (2)

where the reverse processes use representations at and ht learned by the protein encoder ϕθ(St,Rt).

Forward diffusion process q(Pt|Pt−1). For diffusion on protein structures, we introduce random
Gaussian noises to the 3D coordinates of the structure. For diffusion on sequences, we utilize a
Markov chain approach with an absorbing state [MASK], where each residue either remains the same
or transitions to [MASK] with a certain probability at each time step [4]. Specifically, we have:

q(Rt|Rt−1) = N (Rt;
√
1− βtRt−1, βtI), q(St|St−1) = random_mask(St−1, ρt), (3)

Here, β1, ..., βT and ρ1, ..., ρT are a series of fixed variances and masking ratios, respectively.
random_mask(St−1, ρt) denotes the random masking operation, where each residue in St−1 is
masked with a probability of ρt at time step t.

Reverse process on structures pθ(Rt−1|Pt). The reverse process on structures is parameterized as
a Gaussian with a learnable mean µθ(Pt, t) and user-defined variance σt. Given the availability of
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Rt as an input, we reparameterize the mean µθ(Pt, t) following Ho et al. [37]:

pθ(Rt−1|Pt) = N (Rt−1;µθ(Pt, t), σ2
t I), µθ(Pt, t) = 1√

αt

(
Rt − βt√

1−ᾱt
ϵθ(Pt, t)

)
, (4)

where αt = 1− βt, ᾱt =
∏t

s=1 αs and the network ϵθ(·) learns to decorrupt the data and should be
translation-invariant and rotation-equivariant w.r.t. the structure Rt.

To define our noise prediction network, we utilize the atom representations at (which is guaranteed to
be SE(3)-invariant w.r.t. Rt by the encoder) and atom coordinates rt (which is SE(3)-equivariant w.r.t.
Rt). We build an equivariant output based on normalized directional vectors between adjacent atom
pairs. Each edge (i, j) is encoded by its length ∥rti − rtj∥2 and the representations of two end nodes
at
i, a

t
j , and the encoded score mi,j will be used for aggregating directional vectors. Specifically,

[ϵθ(Pt, t)]i =
∑

j∈N t(i) mi,j ·
rt
i−rt

j

∥rt
i−rt

j∥2

, with mi,j = MLP(at
i,a

t
j ,MLP(∥rti − rtj∥2)), (5)

where N t(i) denotes the neighbors of the atom i in the corresponding graph of Pt. Note that
ϵθ(Pt, t) achieves the equivariance requirement, as mi,j is SE(3)-invariant w.r.t. Rt while rti − rtj is
translation-invariant and rotation-equivariant w.r.t. Rt.

Reverse process on sequences pθ(St−1|Pt). For the reverse process pθ(St−1|Pt), we adopt
the parameterization proposed in [4]. The diffusion trajectory is characterized by the probability
q(St−1|St, S̃0), and we employ a network p̃θ to predict the probability of S0:

pθ(St−1|Pt) ∝
∑

S̃0 q(St−1|St, S̃0) · p̃θ(S̃0|Pt), (6)

We define the predictor p̃θ with residue representations ht. For each masked residue i in St, we feed
its representation ht

i to an MLP and predict the type of the corresponding residue type s0i in S0:

p̃θ(S̃0|Pt) =
∏

i p̃θ(s̃
0
i |Pt) =

∏
i Softmax(s̃0i |MLP(ht

i)), (7)

where the softmax function is applied over all residue types.

2.3 Pre-Training Objective

Now we derive the pre-training objective of DiffPreT by optimizing the diffusion model above with
the ELBO loss [37]:

L := E
[∑T

t=1 DKL
(
q(Pt−1|Pt,P0)||pθ(Pt−1|Pt)

)]
. (8)

Under the assumptions in (2), it can be shown that the objective can be decomposed into a structure
loss L(R) and a sequence loss L(S) (see proof in App. C.2):

L(R) :=E
[∑T

t=1 DKL
(
q(Rt−1|Rt,R0)||pθ(Rt−1|Pt)

)]
,

L(S) :=E
[∑T

t=1 DKL
(
q(St−1|St,S0)||pθ(St−1|Pt)

)]
.

(9)

Both loss functions can be simplified as follows.

Structure loss L(R). It has been shown in Ho et al. [37] that the loss function can be simplified under
our parameterization by calculating KL divergence between Gaussians as weighted L2 distances
between means ϵθ and ϵ (see details in App. C.3):

L(R) =
∑T

t=1 γtEϵ∼N (0,I)

[
∥ϵ− ϵθ(Pt, t)∥22

]
, (10)

where the coefficients γt are determined by the variances β1, ..., βt. In practice, we follow Ho et al.
[37] to set all weights γt = 1 for the simplified loss L(R)

simple.

Since ϵθ is designed to be rotation-equivariant w.r.t. Rt, to make the loss function invariant w.r.t. Rt,
the supervision ϵ is also supposed to achieve such equivariance. Therefore, we adopt the chain-rule
approach proposed in Xu et al. [82], which decomposes the noise on pairwise distances to obtain the
modified noise vector ϵ̂ as supervision. We refer readers to Xu et al. [82] for more details.

Sequence loss L(S). Since we parameterize pθ(St−1|Pt) with p̃θ(S̃0|Pt) and q(St−1|St, S̃0) as in
(6), it can be proven that the t-th KL divergence term in L(S) reaches zero when p̃θ(S̃0|Pt) assigns
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all mass on the ground truth S0 (see proof in App. C.4). Therefore, for pre-training, we can simplify
the KL divergence to the cross-entropy between the correct residue type s0i and the prediction:

L(S)
simple =

∑T
t=1

∑
i CE

(
s0i , p̃θ(s

0
i |Pt)

)
, (11)

where CE(·, ·) denotes the cross-entropy loss.

The ultimate training objective is the sum of simplified structure and sequence diffusion losses:

Lsimple = L(R)
simple + L(S)

simple. (12)

2.4 Two-Stage Noise Scheduling
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Figure 2: Structure diffusion loss and se-
quence denoising accuracy of pre-training
with different noise scheduling strategies.

Previous studies on scheduled denoising autoen-
coders on images [23] have shown that large noise
levels encourage the learning of coarse-grained fea-
tures, while small noise levels require the model to
learn fine-grained features. We observe a similar phe-
nomenon in structure diffusion, as depicted in Fig. 2.
The diffusion loss with large noise at a fixed scale
(orange) is smaller than that with small noise at a
fixed scale (green), indicating the higher difficulty of
structure diffusion with small noises. Interestingly,
the opposite is observed in sequence diffusion, where
the denoising accuracy with small noise (green) is
higher than that with large noise (orange). This can
be attributed to the joint diffusion effects on protein
sequences and structures. The addition of large noise
during joint diffusion significantly disrupts protein
structures, making it more challenging to infer the
correct protein sequences. For validation, we com-
pare the loss of sequence-only diffusion pre-training (blue) with joint diffusion pre-training (red)
in Fig. 2. Sequence diffusion achieves higher denoising accuracy than joint diffusion when using
uncorrupted structures, supporting our hypothesis.

Unlike recent denoising pre-training methods that rely on a fixed noise scale as a hyperparameter [85],
DiffPreT incorporates a denoising objective at various noise levels to capture both coarse- and fine-
grained features and consider the joint diffusion effect explained earlier. Both granularities of features
are crucial for downstream tasks, as they capture both small modifications for assessing protein
structure quality and large changes leading to structural instability. In our implementation, we perform
diffusion pre-training using T = 100 noise levels (time steps). Following the intuition of learning
coarse-grained features before fine-grained ones in curriculum learning [8], we divide the pre-training
process into two stages: the first stage focuses on large noise levels (t = 10, ..., 100), while the second
stage targets small noise levels (t = 1, ..., 9). As observed in Fig. 2, structure diffusion becomes more
challenging and sequence diffusion becomes easier during the second stage, as we discussed earlier.
However, even with this two-stage diffusion strategy, there remains a significant gap between the
accuracy of sequence diffusion and joint diffusion. We hypothesize that employing protein encoders
with larger capacities could help narrow this gap, which is left as our future works.

3 SiamDiff: Siamese Diffusion Trajectory Prediction

Through diffusion models on both protein sequences and structures, the pre-training approach pro-
posed in Sec. 2 tries to make representations capture (1) the atom- and residue-level spatial interactions
and (2) the statistical dependencies of residue types within a single protein. Nevertheless, no con-
straints or supervision have been added for modeling relations between different protein structures,
especially different conformers of the same protein. Generated under different environmental factors,
these conformers typically share the same protein sequence but different structures due to side chain
rotation driving conformational variations. These conformers’ properties are highly correlated [58],
and their representations should reflect this correlation.
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In this section, we introduce Siamese Diffusion Trajectory Prediction (SiamDiff), which incorporates
conformer-related information into DiffPreT by maximizing mutual information (MI) between
diffusion trajectory representations of correlated conformers. We propose a scheme to generate
simulated conformers (Sec. 3.1), generate joint diffusion trajectories (Sec. 3.2), and transform
MI maximization into mutual denoising between trajectories (Sec. 3.3), sharing similar loss with
DiffPreT.

3.1 Conformer Simulation Scheme
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Figure 3: High-level illustration of SiamDiff. Mutual
denoising of diffusion trajectories is performed across
two correlated conformers P1 and P2.

Our method begins by generating differ-
ent conformers of a given protein. How-
ever, direct sampling requires an accurate
characterization of the energy landscape
of protein conformations, which can be
difficult and time-consuming. To address
this issue, we adopt a commonly used
scheme for sampling randomly simulated
conformers by adding torsional perturba-
tions to the side chains [36].

Specifically, given the original protein
P = (S,R), we consider it as the na-
tive state P1 = (S1,R1) and generate a
correlated conformer P2 = (S2,R2) by
randomly perturbing the protein structure. That is, we set S2 to be the same as S1, and R2 is
obtained by applying a perturbation function perturb(R1, ϵ) to the original residue structure, where
ϵ ∈ [0, 2π)nr×4 is a noise vector drawn from a wrapped normal distribution [15]. The perturb(·, ·)
function rotates the side-chain of each residue according to the sampled torsional noises. To avoid
atom clashes, we adjust the variance of the added noise and regenerate any conformers that violate
physical constraints. It should be noted that the scheme can be adapted flexibly when considering
different granularities of structures. For example, instead of considering side chain rotation on a fixed
backbone, we can also consider a flexible backbone by rotating backbone angles, thereby generating
approximate conformers.

Although the current torsional perturbation scheme is effective, there is potential for improvement.
Future research can explore enhancements such as incorporating available rotamer libraries [62] and
introducing backbone flexibility using empirical force fields [72].

3.2 Siamese Diffusion Trajectory Generation

To maintain the information-rich joint diffusion trajectories from DiffPreT, we generate trajectories
for pairs of conformers, a.k.a., siamese trajectories. We first sample the diffusion trajectories P0:T

1 and
P0:T
2 for conformers P1 and P2, respectively, using the joint diffusion process outlined in Sec. 2. For

example, starting from P0
1 = P1 = (S1,R1), we use the joint diffusion on structures and sequences

to define the diffusion process q(P1:T
1 |P0

1 ) = q(R1:T
1 |R0

1)q(S1:T
1 |S0

1 ). We derive trajectories on
structures R1:T

1 using the Gaussian noise in (3) and derive the sequence diffusion process S1:T using
the random masking in (6). In this way, we define the trajectory P0:T

1 = {(St
1,Rt

1)}Tt=0 for P1 and
can derive the siamese trajectory P0:T

2 = {(St
2,Rt

2)}Tt=0 similarly.

3.3 Mutual Information Maximization between Representations of Siamese Trajectories

We aim to maximize the mutual information (MI) between representations of siamese trajectories
constructed in a way that reflects the correlation between different conformers of the same protein.
Direct optimization of MI is intractable, so we instead maximize a lower bound. In App. C.1, we show
that this problem can be transformed into the minimization of a loss function for mutual denoising
between two trajectories: L = 1

2 (L
(2→1) + L(1→2)), where

L(b→a) := EP0:T
a ,P0:T

b

[∑T
t=1 DKL

(
q(Pt−1

a |Pt
a,P0

a)||p(Pt−1
a |Pt

a,P
0:T
b )

)]
, (13)

with b → a being either 2 → 1 or 1 → 2 and P0:T
b being representations of the trajectory P0:T

b .
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The two terms share the similar formula as the ELBO loss in (8). Take L(2→1) for example.
Here q(Pt−1

1 |Pt
1,P0

1 ) is a posterior analytically tractable with our definition of each diffusion step
q(Pt

1|Pt−1
1 ) in (3) and (6). The reverse process is learnt to generate a less noisy state Pt−1

1 given
the current state Pt

1 and representations of the siamese trajectory P0:T
2 , which are extracted by the

protein encoder to be pre-trained. The parameterization of the reverse process is similar as in Sec. 2.2,
with the representations replaced by those of P0:T

2 (see App. B for details).

Our approach involves mutual prediction between two siamese trajectories, which is similar to the
idea of mutual representation reconstruction in [28, 14]. However, since P1 and P2 share information
about the same protein, the whole trajectory of P2 could provide too many clues for denoising towards
Pt−1
1 , making the pre-training task trivial. To address this issue, we parameterize p(Pt−1

1 |Pt
1,P

0:T
2 )

with pθ(Pt−1
1 |Pt

1,P
t
2). For diffusion on sequences, we further guarantee that the same set of residues

are masked in St
1 and St

2 to avoid leakage of ground-truth residue types across correlated trajectories.

Final pre-training objective. Given the similarity between the one-side objective and the ELBO
loss in (8), we can use a similar way to decompose the objective into structure and sequence losses
and then derive simplified loss functions for each side. To summarize, the ultimate training objective
for our method is

Lsimple = 1
2 (L

(R,2→1)
simple + L(S,2→1)

simple + L(R,1→2)
simple + L(S,1→2)

simple ), (14)

where L(·,b→a)
simple is the loss term defined by predicting P0:T

a from P0:T
b (see App. B for derivation).

3.4 Residue-level model

Residue-level protein graphs are simplified atom graphs that enable efficient message passing between
nodes and edges. As in Zhang et al. [87], we only keep the alpha carbon atom of each residue and
add sequential, radius and K-nearest neighbor edges as different types of edges. For SiamDiff, the
residue-level model cannot discriminate conformers generated by rotating side chains, since we only
keep CA atoms. To solve this problem, we directly add Gaussian noises to the coordinates instead to
generate approximate conformers. Specifically, the correlated conformer P2 = (S2,R2) is defined
by S2 = S1,R2 = R1 + ϵ, where ϵ ∈ Rna×3 is the noise drawn from a Gaussian distribution.

4 Related Work

Pre-training Methods on Proteins. Self-supervised pre-training methods have been widely used to
acquire co-evolutionary information from large-scale protein sequence corpus, inducing performant
protein language models (PLMs) [20, 53, 61, 50]. Typical sequence pre-training methods include
masked protein modeling [20, 61, 50] and contrastive learning [53]. The pre-trained PLMs have
achieved impressive performance on a variety of downstream tasks for structure and function pre-
diction [59, 81]. Recent works have also studied pre-training on unlabeled protein structures for
generalizable representations, covering contrastive learning [87, 33], self-prediction of geometric
quantities [87, 10] and denoising score matching [29, 76]. Compared with existing works, our
methods model the joint distribution of sequences and structures via diffusion models, which captures
both co-evolutionary information and detailed structural characteristics.

Diffusion Probabilistic Models (DPMs). DPM was first proposed in Sohl-Dickstein et al. [63] and
has been recently rekindled for its strong performance on image and waveform generation [37, 11].
While DPMs are commonly used for modeling continuous data, there has also been research exploring
discrete DPMs that have achieved remarkable results on generating texts [4, 49], graphs [71] and
images [38]. Inspired by these progresses, DPMs have been adopted to solve problems in chemistry
and biology domain, including molecule generation [82, 39, 78, 43], molecular representation
learning [52], protein structure prediction [77], protein-ligand binding [15], protein design [2, 54, 40,
74] and motif-scaffolding [69]. In alignment with recent research efforts focused on diffusion-based
image representation learning [1], this work presents a novel investigation into how DPMs can
contribute to protein representation learning.

Now we discuss the relationship between our method and previous works.

Advantages of joint denoising. Compared with previous diffusion models focusing on either protein
sequences [83] or structures [29] or cross-modal contrastive learning [12, 84], in this work, we
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Table 1: Atom-level results on Atom3D tasks.

Method PIP MSP RES PSR Mean
RankAUROC AUROC Accuracy Global ρ Mean ρ

GearNet-Edge 0.868±0.002 0.633±0.067 0.441±0.001 0.782±0.021 0.488 ±0.012 7.6
w

/p
re

-t
ra

in
in

g

Denoising Score Matching 0.877±0.002 0.629±0.040 0.448±0.001 0.813±0.003 0.518±0.020 5.2
Residue Type Prediction 0.879±0.004 0.620±0.027 0.449±0.001 0.826±0.020 0.518±0.018 4.4
Distance Prediction 0.872±0.001 0.677±0.020 0.422±0.001 0.840±0.020 0.522±0.004 4.0
Angle Prediction 0.878±0.001 0.642±0.013 0.419±0.001 0.813±0.007 0.503±0.012 6.2
Dihedral Prediction 0.878±0.004 0.591±0.008 0.414±0.001 0.821±0.002 0.497±0.004 6.8
Multiview Contrast 0.871±0.003 0.646±0.006 0.368±0.001 0.805±0.005 0.502±0.009 7.2

DiffPreT 0.880±0.005 0.680±0.018 0.452±0.001 0.821±0.007 0.533±0.006 2.4
SiamDiff 0.884±0.003 0.698±0.020 0.460±0.001 0.829±0.012 0.546±0.018 1.2

Table 2: Residue-level results on EC and Atom3D tasks.

Method EC MSP PSR Mean
RankAUPR Fmax AUROC Global ρ Mean ρ

GearNet-Edge 0.837±0.002 0.811±0.001 0.644±0.023 0.763±0.012 0.373±0.021 7.8

w
/p

re
-t

ra
in

in
g

Denoising Score Matching 0.859±0.003 0.840±0.001 0.645±0.028 0.795±0.027 0.429±0.017 5.0
Residue Type Prediction 0.851±0.002 0.826±0.005 0.636±0.003 0.828±0.005 0.480±0.031 5.4
Distance Prediction 0.858±0.003 0.836±0.001 0.623±0.007 0.796±0.017 0.416±0.021 6.4
Angle Prediction 0.873±0.003 0.849±0.001 0.631±0.041 0.802±0.015 0.446±0.009 4.2
Dihedral Prediction 0.858±0.001 0.840±0.001 0.568±0.022 0.732±0.021 0.398±0.022 7.2
Multiview Contrast 0.875±0.003 0.857±0.003 0.713±0.036 0.752±0.012 0.388±0.015 4.0

DiffPreT 0.864±0.002 0.844±0.001 0.673±0.042 0.815±0.008 0.505±0.007 3.2
SiamDiff 0.878±0.003 0.857±0.003 0.700±0.043 0.856±0.007 0.521±0.016 1.2

perform joint diffusion on both modalities. Note that given a sequence S and a structure R that exist
in the nature with high probability, the sequence-structure tuple P = (S,R) may not be a valid state
of this protein. Consequently, instead of modeling the marginal or conditional distribution, we model
the joint distribution of protein sequences and structures.

Connection with diffusion models. Diffusion models excel in image and text generation [17,
49] and have been applied to unsupervised representation learning [1]. Previous works explored
denoising objectives [23, 9] but lacked explicit supervision for different conformers, while our
method incorporates mutual prediction between siamese diffusion trajectories to capture conformer
correlation and regularize protein structure manifold.

Difference with denoising distance matching. While previous works rely on perturbing distance
matrices [52, 29], which can violate the triangular inequality and produce negative values, our
approach directly adds noise at atom coordinates, as demonstrated in Xu et al. [82]. This distinction
allows us to address the limitations associated with denoising distance matching algorithms used in
molecule and protein generation and pre-training.

Comparison with other deep generative models. Self-supervised learning essentially learns an
Energy-Based Model (EBM) for modeling data distribution [48], making VAE [45], GAN [26], and
normalizing flow [60] applicable for pre-training. However, these models limit flexibility or fail to
acquire high sampling quality and diversity compared to diffusion models [54]. Therefore, we focus
on using diffusion models for pre-training and leave other generative models for future work.

5 Experiments

5.1 Experimental Setups

Pre-training datasets. Following Zhang et al. [87], we pre-train our models with the AlphaFold
protein structure database v1 [44, 70], including 365K proteome-wide predicted structures.

Downstream benchmark tasks. In our evaluation, we assess EC prediction task [24] for catalysis
behavior of proteins and four ATOM3D tasks [68]. The EC task involves 538 binary classification
problems for Enzyme Commission (EC) numbers. We use dataset splits from Gligorijević et al. [24]
with a 95% sequence identity cutoff. The ATOM3D tasks include Protein Interface Prediction (PIP),
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Mutation Stability Prediction (MSP), Residue Identity (RES), and Protein Structure Ranking (PSR)
with different dataset splits based on sequence identity or competition year. Details are in App. D.

Baseline methods. In our evaluation, we utilize GearNet-Edge as the underlying model for both atom-
and residue-level structures. GearNet-Edge incorporates various types of edges and edge-type-specific
convolutions, along with message passing between edges, to model protein structures effectively.
We compare our proposed methods with several previous protein structural pre-training algorithms,
including multiview contrastive learning [87], denoising score matching [29], and four self-prediction
methods (residue type, distance, angle, and dihedral prediction) [87]. For residue-level tasks, we
include EC, MSP, and PSR in our evaluation, while PIP and RES tasks are specifically designed
for atom-level models. Besides, we exclude EC from the atom-level evaluation due to the limited
presence of side-chain atoms in the downloaded PDB dataset.

Training and evaluation. We pre-train our model for 50 epochs on the AlphaFold protein structure
database following Zhang et al. [87] and fine-tune it for 50 epochs on EC, MSP, and PSR. However,
due to time constraints, we only fine-tune the models for 10 epochs on the RES and PIP datasets.
Results are reported as mean and standard deviation across three seeds (0, 1, and 2). Evaluation
metrics include Fmax and AUPR for EC, AUROC for PIP and MSP, Spearman’s ρ for PSR, and
micro-averaged accuracy for RES. More details about experimental setup can be found in App. D.

5.2 Experimental Results

Tables 1 and 2 provide a comprehensive overview of the results obtained by GearNet-Edge on both
atom- and residue-level benchmark tasks. The tables clearly demonstrate that both DiffPreT and
SiamDiff exhibit significant improvements over GearNet-Edge without pre-training on both levels,
underscoring the effectiveness of our pre-training methods.

An interesting observation from the tables is that previous pre-training methods tend to excel in
specific tasks while showing limitations in others. For instance, Multiview Contrast, designed
for capturing similar functional motifs [87], struggles with structural intricacies and local atomic
interactions, resulting in lower performance on tasks like Protein Interface Prediction (PIP), Protein
Structure Ranking (PSR), and Residue Identity (RES). Self-prediction methods excel at capturing
structural details or residue type dependencies but show limitations in function prediction tasks, such
as Enzyme Commission (EC) number prediction and Mutation Stability Prediction (MSP), and do
not consistently improve performance on both atom and residue levels.

In contrast, our DiffPreT approach achieves top-3 performance in nearly all considered tasks, show-
casing its versatility and effectiveness across different evaluation criteria. Moreover, SiamDiff
surpasses all other pre-training methods, achieving the best results in 6 out of 7 tasks, establishing
it as the state-of-the-art pre-training approach. These results provide compelling evidence that our
joint diffusion pre-training strategy successfully captures the intricate interactions between different
proteins (PIP), captures local structural details (RES) and global structural characteristics (PSR), and
extracts informative features crucial for accurate function prediction (EC) across various tasks.

5.3 Ablation Study

Table 3: Ablation study on atom-level Atom3D tasks.
Method PIP MSP RES PSR

AUROC AUROC Accuracy Global ρ

GearNet-Edge 0.868±0.002 0.633±0.067 0.441±0.001 0.782±0.021

SiamDiff 0.884±0.003 0.698±0.020 0.460±0.001 0.829±0.008
w/o seq. diff. 0.873±0.004 0.695±0.002 0.443±0.001 0.803±0.010
w/o struct. diff. 0.878±0.003 0.652±0.021 0.456±0.001 0.805±0.005
w/o MI max. 0.880±0.005 0.680±0.018 0.452±0.001 0.821±0.007
w/ small noise 0.875±0.002 0.646±0.031 0.444±0.001 0.828±0.005
w/ large noise 0.867±0.003 0.683±0.020 0.443±0.001 0.819±0.011

To analyze the effect of different com-
ponents of SiamDiff, we perform ab-
lation study on atom-level tasks and
present results in Table 3. We first
examine two degenerate settings of
joint diffusion, i.e., "w/o sequence dif-
fusion" and "w/o structure diffusion".
These settings lead to a deterioration
in performance across all benchmark
tasks, highlighting the importance of both sequence diffusion for residue type identification in RES
and structure diffusion for capturing the structural stability of mutation effects in MSP. Next, we
compare SiamDiff with DiffPreT, which lacks mutual information maximization between correlated
conformers. The consistent improvements observed across all tasks indicate the robustness and
effectiveness of our proposed mutual information maximization scheme.
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Besides, we compare our method to baselines with fixed small (T = 1) and large (T = 100) noise
levels to demonstrate the benefits of multi-scale denoising in diffusion pre-training. Interestingly,
we observe that denoising with large noise enhances performance on MSP by capturing significant
structural changes that lead to structural instability, while denoising with small noise improves perfor-
mance in PSR by capturing fine-grained details for protein structure assessment. By incorporating
multi-scale noise, we eliminate the need for manual tuning of the noise level as a hyperparameter and
leverage the advantages of both large- and small-scale noise, as evidenced in the table.

5.4 Combine with Protein Language Models

Table 4: ESM2-650M-GearNet on residue-level tasks.
Method EC MSP PSR

AUPR Fmax AUROC Global ρ Mean ρ

GearNet-Edge 0.837±0.002 0.811±0.001 0.664±0.023 0.764±0.012 0.373±0.021
w/ SiamDiff 0.878±0.003 0.857±0.003 0.700±0.043 0.856±0.007 0.521±0.016

ESM-GearNet 0.904±0.002 0.890±0.002 0.685±0.027 0.829±0.013 0.595±0.010
w/ SiamDiff 0.907±0.001 0.897±0.001 0.692±0.010 0.863±0.009 0.656±0.011

Protein language models (PLMs) have
recently become a standard method
for extracting representations from
protein sequences, such as ESM [50].
However, these methods are unable to
directly handle structure-related tasks
in Atom3D without using protein structures as input. A recent solution addresses this by feeding
residue representations outputted by ESM into the protein structure encoder GearNet [86]. To show-
case the potential of SiamDiff on PLM-based encoders, we pre-trained the ESM-GearNet encoder
using SiamDiff and evaluated its performance on residue-level tasks. Considering the model capacity
and computational budget, we selected ESM-2-650M as the base PLM. The results in Table 4 demon-
strate the performance improvements obtained by introducing the PLM component in ESM-GearNet.
Furthermore, after pre-training with SiamDiff, ESM-GearNet achieves even better performance on
all tasks, especially on PSR where ESM-only representations are not indicative for structure ranking.
This highlights the benefits of our method for PLM-based encoders.

In addition, we provide experimental results about pre-training datasets in App. E, multimodal
baselines in App. F, different diffusion strategies in App. G, and different backbone models in App. H.

6 Conclusions
In this work, we propose the DiffPreT approach to pre-train a protein encoder by sequence-structure
joint diffusion modeling, which captures the inter-atomic interactions within structure and the residue
type dependencies along sequence. We further propose the SiamDiff method to enhance DiffPreT
by additionally modeling the correlation between different conformers of one protein. Extensive
experiments on diverse types of tasks and on both atom- and residue-level structures verify the
competitive performance of DiffPreT and the superior performance of SiamDiff.
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A More Related Works

Protein Structure Encoder. The community witnessed a surge of research interests in learning
informative protein structure representations using structure-based encoders. The encoders are
designed to capture protein structural information on different granularity, including residue-level
structures [24, 87, 80], atom-level structures [34, 41, 73] and protein surfaces [22, 66, 64]. In this
work, we focus on pre-training a typical residue-level structure encoder, i.e., GearNet-Edge [87], and
a typical atom-level structure encoder, i.e., GVP [41].

Mutual Information (MI) Estimation and Maximization. MI can measure both the linear and non-
linear dependency between random variables. Some previous works [7, 35] try to use neural networks
to estimate the lower bound of MI, including Donsker-Varadhan representation [19], Jensen-Shannon
divergence [21] and Noise-Contrastive Estimation (NCE) [30, 31]. The optimization with InfoNCE
loss [57] maximizes a lower bound of MI and is broadly shown to be a superior representation
learning strategy [13, 32, 79, 51, 87]. In this work, we adopt the MI lower bound proposed by Liu
et al. [52] with two conditional log-likelihoods, and we formulate the learning objective by mutually
denoising the multimodal diffusion processes of two correlated proteins.

A.1 Broader Impacts and Limitations

The main objective of this research project is to enhance protein representations by utilizing joint
pre-training using a vast collection of unlabeled protein structures. Unlike traditional unimodel
pre-training methods, our approach takes advantage of both sequential and structural information,
resulting in superior representations. This advantage allows for more comprehensive analysis of
protein research and holds potential benefits for various real-world applications, including protein
function prediction and sequence design.

Limitations. In this paper, we limit our pre-training dataset to less than 1M protein structures.
However, considering the vast coverage of the AlphaFold Protein Structure Database, which includes
over 200 million proteins, it becomes feasible to train more advanced and extensive protein encoders
on larger datasets in the future. Furthermore, an avenue for future exploration is the incorporation of
conformer-related information during pre-training and the development of improved noise schedules
for multi-scale denoising pre-training. It is important to acknowledge that powerful pretrained models
can potentially be misused for harmful purposes, such as the design of dangerous drugs. We anticipate
that future studies will address and mitigate these concerns.

B Details of SiamDiff

In this section, we discuss details of our SiamDiff method. We first describe the parameterization of
the generation process pθ(Pt−1

1 |Pt
1,P

t
2) in Sec. B.1, derive the pre-training objective in Sec. B.2,

and discuss some modifications when applied on residue-level models in Sec. 3.4.

B.1 Parameterization of Generation Process

Remember that we use P0:T
1 and P0:T

2 to denote the representation of the siamese trajectories P0:T
1

and P0:T
2 , respectively. Different from the generation process in traditional diffusion models, the

parameterization of pθ(Pt−1
1 |Pt

1,P
t
2) should inject information from Pt

2. Therefore, we use the
extracted residue and atom representations (denoted as at

2 and ht
2) of Pt

2 for this denoising step.
Given the conditional independence in (2), this generation process can be decomposed into that on
protein structures and sequences similarly in Sec. 2.3.
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Algorithm 1 SiamDiff Pre-Training
Input: training dataset D, learning rate α
Output: trained encoder ϕθ

1: for (S,R) in D do
2: (S1,R1)← (S,R);
3: (S2,R2)← (S, perturb(R, ϵ));
4: sample noise scale t ∈ {1...T};
5: Rt

1 ∼ N (
√
ᾱtR1, (1− ᾱt)I);

6: Rt
2 ∼ N (

√
ᾱtR2, (1− ᾱt)I);

7: St
1,St

2 ∼ random_mask(S, t)
8: h1 ← ϕθ(St

1,Rt
1);

9: h2 ← ϕθ(St
2,Rt

2);
10: L(R) = L(R1,h2) + L(R2,h1);
11: L(S) = L(S1,h2) + L(S2,h1);
12: θ ← θ − α∇θ(L(R) + L(S));
13: end for

Generation process on protein structures. As in (4), modeling the generation process of protein
structures is to model the noise on Rt

1 and gradually decorrupt the noisy structure. This can be
parameterized with a noise prediction network ϵθ(Pt

1,P
t
2, t) that is translation-invariant and rotation-

equivariant w.r.t. Rt
1. Besides, the noise applied on Rt

1 should not change with transformations on
Rt

2, so ϵθ should be SE(3)-invariant w.r.t. Rt
2.

To achieve these goals, we build our noise prediction network with atom representations at
2 (which is

SE(3)-invariant w.r.t. Rt
2) and atom coordinates rt1 (which is SE(3)-equivariant w.r.t. Rt

1). We define
an equivariant output similarly as in DiffPreT. Specifically, we have

[ϵθ(Pt
1,P

t
2, t)]i =

∑
j∈N t

1 (i)
mi,j ·

rt
1i−rt

1j

∥rt
1i−rt

1j∥2

, with mi,j = MLP(at
2i,a

t
2j ,MLP(∥rt1i − rt1j∥2)),

where N t
1(i) denotes the neighbors of the atom i in the corresponding graph of Pt

1. Note that
ϵθ(Pt

1,P
t
2, t) achieves the equivariance requirement, as mi,j is SE(3)-invariant w.r.t. Rt

1 and Rt
2

while rt1i − rt1j is translation-invariant and rotation-equivariant w.r.t. Rt
1.

Generation process on protein sequences. As in (7), the generation process on sequences aims to
predict masked residue types in S0

1 with a predictor p̃θ. In our setting of mutual prediction, we define
the predictor based on representations of the same residues in St

2, which are also masked. Hence, for
each masked residue i in St

2, we feed its representation ht
2i to an MLP and predict the type of the

corresponding residue type s01i in S0
1 :

p̃θ(S0
1 |Pt

1,P
t
2) =

∏
i p̃θ(s

0
1i|Pt

1,P
t
2) =

∏
i Softmax(s01i|MLP(ht

2i)),

where the softmax function is applied over all residue types.

B.2 Pre-Training Objective

Given the defined forward and reverse process on two trajectories, we now derive the pre-training
objective based on the mutual diffusion loss in (13).We take the term L(2→1) for example and its
counterpart can be derived in the same way. The objective can be decomposed into a structure loss
L(R,2→1) and a sequence loss L(S,2→1):

L(R,2→1) :=E
[∑T

t=1 DKL
(
q(Rt−1

1 |Rt
1,R0

1)||pθ(Rt−1
1 |Pt

1,P
t
2)
)]

, (15)

L(S,2→1) :=E
[∑T

t=1 DKL
(
q(St−1

1 |St
1,S0

1 )||pθ(St−1
1 |Pt

1,P
t
2)
)]

. (16)

Based on the derivation in Sec. 2.3, the structure loss L(R,2→1) can be simplified as

L(R,2→1)
simple =

∑T
t=1 Eϵ∼N (0,I)

[
∥ϵ− ϵθ(Pt

1,P
t
2, t)∥22

]
, (17)

and the sequence loss L(S,2→1) can be simplified as

L(S,2→1)
simple =

∑T
t=1

∑
i CE

(
s01i, p̃θ(s

0
1i|Pt

1,P
t
2)
)
. (18)

Then, the final objective in Sec. 3.3 can be easily derived.

18



C Proofs

In this section, we provide proofs for propositions in Sec. 2 and Sec. 3. Due to the similarity between
the two methods, all propositions are restated for SiamDiff. DiffPreT can be seen as a special case
that two siamese trajectories collapse into one.

C.1 Proof of Proposition 1

For notations, we use the bold symbol to denote the representation of an object and use P 0:T
1 and

P 0:T
2 to denote the corresponding random variables of representations of the siamese trajectories

P0:T
1 and P0:T

2 .

Proposition 1 With some approximations, the mutual information between representations of two
siamese trajectories is lower bounded by:

I(P 0:T
1 ;P 0:T

2 ) ≥ −1

2
(L(2→1) + L(1→2)) + C,

where C is a constant independent of our encoder and the term from trajectory P0:T
b to P0:T

a is
defined as

L(b→a) := EP0:T
a ,P0:T

b

[∑T
t=1 DKL

(
q(Pt−1

a |Pt
a,P0

a)||p(Pt−1
a |Pt

a,P
0:T
b )

)]
,

with b → a being either 2 → 1 or 1 → 2.

Proof. First, the mutual information between representations of two trajectories is defined as:

I(P 0:T
1 ;P 0:T

2 ) = EP0:T
1 ,P0:T

2 ∼p(P 0:T
1 ,P 0:T

2 )

[
log

p(P0:T
1 ,P0:T

2 )

p(P0:T
1 )p(P0:T

2 )

]
, (19)

where the joint distribution is defined as p(P 0:T
1 ,P 0:T

2 ) = p(P 0
1 ,P

0
2 )q(P

1:T
1 |P 0

1 )q(P
1:T
2 |P 0

2 ).
Next, we can derive a lower bound with this definition:

I(P 0:T
1 ;P 0:T

2 ) = E

[
log

p(P0:T
1 ,P0:T

2 )

p(P0
1)q(P

1:T
1 |P0

1)p(P
0
2)q(P

1:T
2 |P0

2)

]

≥E

log p(P0:T
1 ,P0:T

2 )√
p(P0

1)p(P
0
2)q(P

1:T
1 |P0

1)q(P
1:T
2 |P0

2)


=
1

2
E

[
log

p(P0:T
1 ,P0:T

2 )2

p(P0
1)p(P

0
2)q(P

1:T
1 |P0

1)
2q(P1:T

2 |P0
2)

2

]

=
1

2
E

[
log

p(P0:T
1 ,P0:T

2 )

p(P0
2)q(P

1:T
1 |P0

1)q(P
1:T
2 |P0

2)
+ log

p(P0:T
1 ,P0:T

2 )

p(P0
1)q(P

1:T
1 |P0

1)q(P
1:T
2 |P0

2)

]

=
1

2
E

[
log

p(P0:T
1 |P0:T

2 )

q(P1:T
1 |P0

1)
+ log

p(P0:T
2 |P0:T

1 )

q(P1:T
2 |P0

2)

]
.

However, since the distribution of representations are intractable to sample for optimization, we in-
stead sample the trajectories P0:T

1 and P0:T
2 from our defined diffusion process, i.e., p(P0:T

1 ,P0:T
2 ) =

p(P0
1 ,P0

2 )q(P1:T
1 |P0

1 )q(P1:T
2 |P0

2 ). Besides, instead of predicting representations, we use the repre-
sentations from one trajectory to recover the other trajectory, which reflects more information than its
representation. With these approximations, the lower bound above can be further written as:

1
2E
[
log

p(P0:T
1 |P0:T

2 )

q(P1:T
1 |P0

1)
+ log

p(P0:T
2 |P0:T

1 )

q(P1:T
2 |P0

2)

]
≈ 1

2EP0:T
1 ,P0:T

2

[
log

p(P0:T
1 |P0:T

2 )

q(P1:T
1 |P0

1 )
+ log

p(P0:T
2 |P0:T

1 )

q(P1:T
2 |P0

2 )

]
We now show the first term on the right hand side can be written as the loss defined in Proposition 1.
The derivation is very similar with the proof of Proposition 3 in Xu et al. [82]. We include it here for

19



completeness:

EP0:T
1 ,P0:T

2

[
log

p(P0:T
1 |P0:T

2 )

q(P1:T
1 |P0

1 )

]

=EP0:T
1 ,P0:T

2

[
T∑

t=1

log
p(Pt−1

1 |Pt
1,P

0:T
2 )

q(Pt
1|P

t−1
1 )

]

=EP0:T
1 ,P0:T

2

[
log

(P0
1 |P1

1 ,P
0:T
2 )

q(P1
1 |P0

1 )
+

T∑
t=2

log

(
p(Pt−1

1 |Pt
1,P

0:T
2 )

q(Pt−1
1 |Pt

1,P0
1 )

· q(P
t−1
1 |P0

1 )

q(Pt
1|P0

1 )

)]

=EP0:T
1 ,P0:T

2

[
− log q(PT

1 |P0
1 ) + log p(P0

1 |P1
1 ,P

0:T
2 ) +

T∑
t=2

log
p(Pt−1

1 |Pt
1,P

0:T
2 )

q(Pt−1
1 |Pt

1,P0
1 )

]

=− EP0:T
1 ,P0:T

2

[∑T

t=1
DKL

(
q(Pt−1

1 |Pt
1,P0

1 )||p(Pt−1
1 |Pt

1,P
0:T
2 )

)]
+ C(2→1)

=− L(2→1) + C(2→1),

where we merge the term p(P0
1 |P1

1 ,P
0:T
2 ) into the sum of KL divergences for brevity and use C(2→1)

to denote the constant independent of our encoder. Note that the counterpart can be derived in the
same way. Adding these two terms together finishes the proof of Proposition 1. □

C.2 Proof of Pre-Training Loss Decomposition

We restate the proposition of pre-training loss decomposition rigorously as below.

Proposition 2 Given the assumptions 1) the separation of the diffusion process on protein structures
and sequences

q(Pt
a|Pt−1

a ) = q(Rt
a|Rt−1

a ) · q(St
a|St−1

a ), (20)

and 2) the conditional independence of the generation process

pθ(Pt−1
a |Pt

a,P
t
b) = pθ(Rt−1

a |Pt
a,P

t
b) · pθ(St−1

a |Pt
a,P

t
b), (21)

it can be proved that

L(b→a) = L(R,b→a) + L(S,b→a), (22)

where the three loss terms are defined as

L(b→a) :=E
[∑T

t=1 DKL
(
q(Pt−1

a |Pt
a,P0

a)||pθ(Pt−1
a |Pt

a,P
t
b)
)]

,

L(R,b→a) :=E
[∑T

t=1 DKL
(
q(Rt−1

a |Rt
a,R0

a)||pθ(Rt−1
a |Pt

a,P
t
b)
)]

,

L(S,b→a) :=E
[∑T

t=1 DKL
(
q(St−1

a |St
a,S0

a)||pθ(St−1
a |Pt

a,P
t
b)
)]

,

with b → a referring to the term from trajectory P0:T
b to P0:T

a .

Proof. Let L(·)
t to denote the t-th KL divergence term in L(·). Then, we have

L(b→a)
t = DKL

(
q(Pt−1

a |Pt
a,P0

a)||pθ(Pt−1
a |Pt

a,P
0:T
b )

)
= DKL

([
q(Rt−1

a |Rt
a,R0

a)q(St−1
a |St

a,S0
a)
]
||
[
pθ(Rt−1

a |Pt
a,P

0:T
b )pθ(St−1

a |Pt
a,P

0:T
b )

])
= DKL

(
q(Rt−1

a |Rt
a,R0

a)||pθ(Rt−1
a |Pt

a,P
0:T
b )

)
+DKL

(
q(St−1

a |St
a,S0

a)||pθ(St−1
a |Pt

a,P
0:T
b )

)
= L(R,b→a)

t + L(S,b→a)
t ,

where we use the assumptions (20) and (21) in the second equality. The third equality is due to the
additive property of the KL divergence for independent distributions. Adding T KL divergence terms
together will lead to (22). □
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C.3 Proof of Simplified Structure Loss

For completeness, we show how to derive the simplified structure loss. The proof is directly adapted
from [82].

Proposition 3 Given the definition of the forward process

q(Rt
a|Rt−1

a ) = N (Rt
a;
√

1− βtRt−1
a , βtI), (23)

and the reverse process

pθ(Rt−1
a |Pt

a,P
t
b) = N (Rt−1

a ;µθ(Pt
a,P

t
b, t), σ

2
t I), (24)

µθ(Pt
a,P

t
b, t) =

1
√
αt

(
Rt

a −
βt√
1− ᾱt

ϵθ(Pt
a,P

t
b, t)

)
, (25)

the structure loss function

L(R,b→a) :=E
[∑T

t=1 DKL
(
q(Rt−1

a |Rt
a,R0

a)||pθ(Rt−1
a |Pt

a,P
t
b)
)]

, (26)

can be simplified to

L(R,b→a) =
∑T

t=1 γtEϵ∼N (0,I)

[
∥ϵ− ϵθ(Pt

a,P
t
b, t)∥22

]
, (27)

where γt =
βt

2αt(1−ᾱt−1)
with αt = 1− βt, ᾱt =

∏t
s=1 αs and b → a is either 2 → 1 or 1 → 2.

Proof. First, we prove q(Rt
a|R0

a) = N (Rt
a;
√
ᾱtR0

a, (1− ᾱt)I). Let ϵi be the standard Gaussian
random variable at time step i. Then, we have

Rt
a =

√
αtRt−1

a +
√
βtϵt

=
√
αt−1αtRt−2

a +
√
αt−1βt−1ϵt−1 +

√
βtϵt

= · · ·

=
√
ᾱtR0

a +
√
αtαt−1...α2β1ϵ1 + · · ·+

√
αt−1βt−1ϵt−1 +

√
βtϵt,

which suggests that the mean of Rt
a is

√
ᾱtR0

a and the variance matrix is (αtαt−1...α2β1 + · · · +
αt−1βt−1 + βt)I = (1− ᾱ)I .

Next, we derive the posterior distribution as:

q(Rt−1
a |Rt

a,R0
a) =

q(Rt
a|Rt−1

a )q(Rt−1
a |R0

a)

q(Rt
a|R0

a)

=
N (Rt

a;
√
αtRt−1

a , βtI) · N (Rt−1
a ;

√
ᾱt−1R0

a, (1− ᾱt−1)I)

N (Rt
a;
√
ᾱtR0

a, (1− ᾱt)I)

= N (Rt−1
a ;

√
ᾱt−1βt

1− ᾱt
R0

a +

√
αt(1− ᾱt−1)

1− ᾱt
Rt

a,
1− ᾱt−1

1− ᾱt
βtI).

Let β̃t =
1−ᾱt−1

1−ᾱt
βt, then the t-th KL divergence term can be written as:

DKL
(
q(Rt−1

a |Rt
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which completes the proof. □
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C.4 Proof of Simplified Sequence Loss

Now we show the equivalence of optimizing sequence loss L(S,b→a) and the masked residue type
prediction problem on S0

a .

Proposition 4 Given the definition of reverse process on protein sequences
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t
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∑
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a
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the sequence loss L(S,b→a) reaches zero when p̃θ(S̃0
a |Pt
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b) puts all mass on the ground truth S0
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Proof. The loss function can be written as:
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where Z is the normalization constant. Hence, when p̃θ(S̃0
a |Pt
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b) puts all mass on the ground

truth S0
a , the distribution pθ(St−1
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b) will be identical with q(St−1

a |St
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a), which makes the
KL divergence become zero. □

D Experimental Details

In this section, we introduce the details of our experiments. All these methods are developed based
on PyTorch and TorchDrug [88].

Downstream benchmark tasks. For downstream evaluation, we adopt the EC prediction task [24]
and four ATOM3D tasks [68].

1. Enzyme Commission (EC) number prediction task aims to predict EC numbers of proteins
which describe their catalysis behavior in biochemical reactions. This task is formalized as 538
binary classification problems. We adopt the dataset splits from Gligorijević et al. [24] and use the
test split with 95% sequence identity cutoff following Zhang et al. [87].

2. Protein Interface Prediction (PIP) requires the model to predict whether two amino acids
from two proteins come into contact when the proteins bind (binary classification). The protein
complexes of this benchmark are split with 30% sequence identity cutoff.

3. Mutation Stability Prediction (MSP) task seeks to predict whether a mutation will increase the
stability of a protein complex or not (binary classification). The benchmark dataset is split upon a
30% sequence identity cutoff among different splits.

4. Residue Identity (RES) task studies the structural role of an amino acid under its local envi-
ronment. A model predicts the type of the center amino acid based on its surrounding atomic
structure. The environments in different splits are with different protein topology classes.

5. Protein Structure Ranking (PSR) predicts global distance test scores of structure predictions
submitted to the Critical Assessment of Structure Prediction (CASP) [47] competition. This
dataset is split according to the competition year.

Graph construction. For atom graphs, we connect atoms with Euclidean distance lower than a
distance threshold. For PSR and MSP tasks, we remove all hydrogen atoms following Jing et al.
[42]. For residue graphs, we discard all non-alpha-carbon atoms and add three different types of
directed edges: sequential edges, radius edges and K-nearest neighbor edges. For sequential edges,
two atoms are connected if their sequential distance is below a threshold and these edges are divided
into different types according to these distances. For two kinds of spatial edges, we connect atoms
according to Euclidean distance and k-nearest neighbors. We further apply a long range interaction
filter that removes edges with low sequential distances. We refer readers to Zhang et al. [87] for more
details.

Atom-level backbone models. To adapt GearNet-Edge to atom-level structures with moderate
computational cost, we construct the atom graph by using only the spatial edge with the radius
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dradius = 4.5Å. We concatenate one-hot features of atom types and residue types as node features and
concatenate (1) one-hot features of residue types of end nodes, (2) one-hot features of edge types,
(3) one-hot features of sequential distance, (4) spatial distance as edge features. The whole model is
composed of 6 message passing layers with 128 hidden dimensions and ReLU activation function.
For edge message passing, we employ the discretized angles to determine the edge types on the
line graph. The final prediction is performed upon the hidden representation concatenated across all
layers.

Residue-level backbone models. We directly borrow the best hyperparameters reported in the orig-
inal paper of GearNet-Edge [87]. We adopt the same configuration of relational graph construction,
i.e., the sequential distance threshold dseq = 3, the radius dradius = 10.0Å, the number of neighbors
k = 10 and the long range interaction cutoff dlong = 5. We use one-hot features of residue types
as node features and concatenate (1) features of end nodes, (2) one-hot features of edge types, (3)
one-hot features of sequential distance, (4) spatial distance as edge features. Then we use 6 message
passing layers with 512 hidden dimensions and ReLU as the activation function. For edge message
passing, the edge types on the line graph are determined by the discretized angles. The hidden
representations in each layer of GearNet will be concatenated for the final prediction.

Baseline pre-training methods. Here we briefly introduce the considered baselines. Multiview
Contrast aims to maximize the mutual information between correlated views, which are extracted by
randomly chosen augmentation functions to capture protein sub-structures. Residue type, distance,
angle and dihedral prediction masks single residues, single edges, edge pairs and edge triplets,
respectively, and then predict the corresponding properties. Denoising score matching performs
denoising on noised pairwise distance matrices based on the learnt representations.

For all baselines in [87], we adopt the original configurations. For Multiview Contrast, we use
subsequence cropping that randomly extracts protein subsequences with no more than 50 residues
and space cropping that takes all residues within a 15Å Euclidean ball with a random center residue.
Then, either an identity function or a random edge masking function with mask rate equal to 0.15 is
applied for constructing views. The temperature τ in the InfoNCE loss function is set as 0.07. We set
the number of sampled items in each protein as 256 for Distance Prediction and as 512 for Angle
and Dihedral Prediction. The mask rate for Residue Type Prediction is set as 0.15. When masking
a residue on atom graphs, we discard all non-backbone atoms and set the residue features as zero.
Since the backbone models and tasks in our paper are quite different with those in Guo et al. [29], we
re-implement the method on our codebase. We consider 50 different noise levels log-linearly ranging
from 0.01 to 10.0.

In DiffPreT, for structure diffusion, we use a sigmoid schedule for variances βt with the lowest
variance β1 = 1e − 4 and the highest variance βT = 0.1. For sequence diffusion, we simply set
the cumulative transition probability to [MASK] over time steps as a linear interpolation between
minimum mask rate 0.15 and maximum mask rate 1.0. The number of diffusion steps is set as 100. In
SiamDiff, we adopt the same hyperparameters for multimodal diffusion models. We set the variance
of torsional perturbation noises as 0.1π on the atom level and that of Gaussian perturbation noises as
0.3 on the residue level when constructing the correlated conformer.

All other optimization configurations for these pre-training methods are reported in Table 5. All
methods are pre-trained on 4 Tesla A100 GPUs and Table 5 reports the batch sizes on each GPU.

Fine-tuning on downstream tasks. For all models on all downstream tasks, we apply a three-layer
MLP head for prediction, the hidden dimension of which is set to the dimension of model outputs.
The number of used gpus and batch sizes for each model are chosen according the memory limit. All
residue-level tasks are run on 4 V100 GPUs while all atom-level tasks are run on A100 GPUs.

Evaluation metrics. We clarify the definitions of Fmax (used in EC), global Spearman’s ρ (used in
PSR) and mean Spearman’s ρ (used in PSR) as below:

• Fmax denotes the protein-centric maximum F-score. It first computes the precision and recall for
each protein at a decision threshold t ∈ [0, 1]:

precisioni(t) =

∑
f 1[f ∈ Pi(t) ∩ Ti]∑

f 1[f ∈ Pi(t)]
, recalli(t) =

∑
f 1[f ∈ Pi(t) ∩ Ti]∑

f 1[f ∈ Ti]
, (29)
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Table 5: Optimization configurations for pre-training methods. Here max length denotes the maximum
number of residues kept in each protein and lr stands for learning rate.

Method Max length Batch size Optimizer lr
residue atom residue atom

Residue Type Prediction 100 100 96 64 Adam 1e-3
Distance Prediction 100 100 128 64 Adam 1e-3
Angle Prediction 100 100 96 64 Adam 1e-3
Dihedral Prediction 100 100 96 64 Adam 1e-3
Multiview Contrast - - 96 64 Adam 1e-3
Denoising Score Matching 200 200 12 12 Adam 1e-4
DiffPreT 150 100 16 64 Adam 1e-4
SiamDiff 150 100 16 32 Adam 1e-4

Table 6: Optimization configurations for downstream evaluations. Here max length denotes the
maximum number of residues kept in each protein and lr stands for learning rate.

Task # GPUS Batch size Optimizer lr
residue atom residue atom

EC 4 N/A 2 N/A Adam 1e-4
PIP N/A 1 N/A 8 Adam 1e-4
MSP 4 1 1 8 Adam 1e-4
RES N/A 4 N/A 64 Adam 1e-4
PSR 4 1 8 8 Adam 1e-4

where f denotes a functional term in the ontology, Ti is the set of experimentally determined
functions for protein i, Pi(t) is the set of predicted functions for protein i whose scores are greater
or equal to t, and 1[·] represents the indicator function. After that, the precision and recall are
averaged over all proteins:

precision(t) =
1

M(t)

∑
i

precisioni(t), recall(t) =
1

N

∑
i

recalli(t), (30)

where N denotes the total number of proteins, and M(t) denotes the number of proteins which
contain at least one prediction above the threshold t, i.e., |Pi(t)| > 0.
Based on these two metrics, the Fmax score is defined as the maximum value of F-measure over
all thresholds:

Fmax = max
t

{
2 · precision(t) · recall(t)
precision(t) + recall(t)

}
. (31)

• Global Spearman’s ρ for PSR measures the correlation between the predicted global distance
test (GDT_TS) score and the ground truth. It computes the Spearman’s ρ between the prediction
and the ground truth over all test proteins without considering the different biopolymers that these
proteins lie in.

• Mean Spearman’s ρ for PSR also measures the correlation between GDT_TS predictions and
the ground truth. However, it first splits all test proteins into multiple groups based on their
corresponding biopolymers, then computes the Spearman’s ρ within each group, and finally
reports the mean Spearman’s ρ over all groups.

E Results of Pre-Training on Different Sizes of Datasets

In the main paper, we followed the setting in Zhang et al. [87] and used AlphaFold Database v1
as our pre-training dataset for fair comparison. Here, we investigate the impact of pre-training on
different dataset sizes. Since previous work by Zhang et al. [87] showed minimal differences between
using experimental or predicted structures, we conduct experiments on the AlphaFold Database in
this section and do not use PDB as our pre-training dataset. We utilize the preprocessed clustered
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Table 7: Atom-level results of pre-training on different sizes of datasets on Atom3D tasks.

Pre-training Dataset Size PSR MSP PIP RES
Global ρ Mean ρ AUROC AUROC Acc.

AlphaFold DB v1 365K 0.829 0.546 0.698 0.884 0.460
Clustered AlphaFold DB 10K 0.816 0.501 0.586 0.880 0.444
Clustered AlphaFold DB 50K 0.797 0.498 0.648 0.879 0.450
Clustered AlphaFold DB 100K 0.805 0.540 0.685 0.882 0.454
Clustered AlphaFold DB 500K 0.848 0.537 0.599 0.880 0.459
Clustered AlphaFold DB 2.2M 0.840 0.560 0.700 0.882 0.460

AlphaFold Database provided in [6], which includes 2.2M non-singleton clusters with an average of
13.2 proteins per cluster and an average pLDDT of 71.59. For each cluster, we use the representative
structure from [6]. To explore the effects of dataset size, we pre-train our encoder using 10K, 50K,
100K, 500K, and 2.2M clusters in the database. The results, shown in Table 7, reveal a general trend
of increased performance with larger datasets. However, for certain tasks like MSP, the performance
does not consistently improve, possibly due to the limited size and variability of the downstream
datasets. Overall, scaling the model to the entire AlphaFold Database holds promise for achieving
performance gains.

F Results of Multimodal Pre-Training Baselines

Table 8: Atom-level results of multimodal pre-training baselines on Atom3D tasks.

Method PSR MSP PIP RES
Global ρ Mean ρ AUROC AUROC Acc.

GearNet-Edge 0.782 0.488 0.633 0.868 0.441

w
/p

re
-t

ra
in

in
g Residue Type Prediction 0.826 0.518 0.620 0.879 0.449

Residue Type & Distance Prediction 0.817 0.518 0.665 0.873 0.402
Residue Type & Angle Prediction 0.837 0.524 0.642 0.878 0.415
Residue Type & Dihedral Prediction 0.823 0.494 0.597 0.871 0.414

DiffPreT 0.821 0.533 0.680 0.880 0.452
SiamDiff 0.829 0.546 0.698 0.884 0.460

In Sec. 5, we include all pre-training baselines from existing works, which solely focus on unimodal
pre-training objectives and overlook the joint distribution of sequences and structures. In this
section, we introduce three additional pre-training baselines that leverage both sequence and structure
information. These baselines combine residue type prediction with distance/angle/dihedral prediction
objectives. Following established settings, we pre-train the encoder and present the results in Table 8.
While the Residue Type & Angle Prediction method achieves higher performance on PSR, there
are still substantial gaps compared to our DiffPreT and SiamDiff across other tasks. Notably, the
introduction of geometric property prediction tasks leads to a drop in performance on RES, indicating
that a simple combination of pre-training objectives diminishes the benefits of each individual
objective. Once again, these findings underscore the effectiveness of our methods in modeling the
joint distribution of protein sequences and structures.

G Results of Different Diffusion Models for Pre-Training

In Sec. 2, we consider joint diffusion models on protein sequences and structures for pre-training. In
this section, we explore the performance of different diffusion models when applied for pre-training.
The results are shown in Table 9.

First, we simply run diffusion models on protein sequences and structures for pre-training, both of
which achieve improvement compared with the baseline GearNet-Edge. By combining two diffusion
models, DiffPreT can achieve better performance on PIP and PSR. This advantage will be further
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Table 9: Results of different diffusion models for pre-training on atom-level Atom3D tasks.

Method PIP RES PSR
AUROC Accuracy Global ρ Mean ρ

GearNet-Edge 0.868 0.441 0.782 0.488

w
/p

re
-t

ra
in

in
g DiffPreT 0.880 0.452 0.821 0.533

SiamDiff 0.884 0.460 0.829 0.546
Sequence Diffusion 0.879 0.456 0.802 0.508
Structure Diffusion 0.877 0.448 0.813 0.518
Torsional Diffusion 0.877 0.442 0.819 0.505

increased after using siamese diffusion trajectory prediction as shown in Table 3. It can be observed
that sequence diffusion achieves better performance than DiffPreT due to the consistency of objectives
between pre-training and RES tasks.

Besides, we also consider diffusion models on torsional angles of protein side chains for pre-training.
This method has shown its potential in the protein-ligand docking task [15]. For each residue, we
randomly select one side-chain torsional angle and add some noises drawn from wrapped Gaussian
distribution during the diffusion process. Then, we predict the added noises with the extracted atom
representations corresponding to the torsional angle. In Table 9, we can see clear improvements
on PIP and PSR tasks compared with GearNet-Edge. This suggests that it would be a promising
direction to explore more different diffusion models for pre-training, e.g., diffusion models on
backbone dihedral angles.

H Results of Pre-Training GVP

Table 10: Atom-level results of GVP on Atom3D tasks. Accuracy is abbreviated as Acc.

Method PSR MSP PIP RES Mean
RankGlobal ρ Mean ρ AUROC AUROC Acc.

GVP 0.809 0.486 0.610 0.846 0.481 8.6

w
/p

re
-t

ra
in

in
g

Denoising Score Matching 0.849 0.535 0.625 0.851 0.529 5.4
Residue Type Prediction 0.845 0.527 0.652 0.847 0.518 5.8
Distance Prediction 0.825 0.513 0.632 0.836 0.483 7.6
Angle Prediction 0.872 0.545 0.637 0.881 0.557 2.0
Dihedral Prediction 0.852 0.538 0.677 0.881 0.555 2.2
Multiview Contrast 0.848 0.518 0.656 0.833 0.490 6.4

DiffPreT 0.850 0.540 0.631 0.851 0.542 4.4
SiamDiff 0.854 0.548 0.673 0.863 0.554 2.2

To study the effect of our proposed pre-training methods on different backbone models, we show the
pre-training results on GVP [41, 42] in this section.

Setup. GVP constructs atom graphs and adds vector channels for modeling equivariant features.
The original design only includes atom types as node features, which makes pre-training tasks with
residue type prediction very difficult to learn. To address this issue, we slightly modify its architecture
to add the embedding of atom and corresponding residue types as atom features. Then, the default
configurations in Jing et al. [42] are adopted. We construct an atom graph for each protein by drawing
edges between atoms closer than 4.5Å. Each edge is featured with a 16-dimensional Gaussian RBF
encoding of its Euclidean distance. We use five GVP layers and hidden representations with 16
vector and 100 scalar channels and use ReLU and identity for scalar and vector activation functions,
respectively. The dropout rate is set as 0.1. The final atom representations are followed by two mean
pooling layers to obtain residue and protein representations, respectively. All other hyperparameters
for pre-training and downstream tasks are the same as those in App. D.
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Table 11: Spearman correlation on GB1 with the 2-vs-rest split.
Method Spearmanr ρ

CNN 0.320
ESM-1b 0.550

GearNet-Edge 0.651

w/ Multiview Contrast 0.714
w/ Residue Type Prediction 0.697
w/ Distance Prediction 0.685
w/ Angle Prediction 0.686
w/ Dihedral Prediction 0.661
w/ SiamDiff 0.747

Table 12: Comparison between SiamDiff with random torsional perturbation and sampling from a
rotamer library.

Method PIP MSP RES PSR
AUROC AUROC Accuracy Global ρ Mean ρ

SiamDiff 0.884 0.698 0.460 0.829 0.546
w/ rotamer library 0.877 0.631 0.449 0.834 0.521

Experimental results. The results are shown in Table 10. Among all pre-training methods, SiamDiff,
angle prediction and dihedral prediction are the top three. This is different from what we observe in
Table 1, where residue type and distance prediction are more competitive baselines. We hypothesize
that this is because GearNet-Edge includes angle information in the encoder while GVP does not.
Therefore, GVP will benefit more from pre-training methods with supervision on angles. Nevertheless,
we find that SiamDiff is the only method that performs well on different backbone models.

I Results on Protein Engineering Task

To further prove the effectiveness of our proposed pre-training methods, we add experiments on the
GB1 dataset from FLIP [16]. As this is a protein engineering task with mutated sequences, we assume
that the backbone structure remains unchanged after mutation, to save costs in generating mutant
structures. We only keep CA atoms in the wild type protein structure as the input to the encoder.
We benchmark residue-level methods in Table 11 in the attached file, alongside CNN and ESM-1b
baselines from the FLIP paper.

According to Table 11, we observe that modeling structural information is beneficial compared
with using only sequential information, even under the assumption that all mutants share the same
backbone structure. Among all pre-training methods, SiamDiff demonstrates the most significant
improvements over the baseline, once again validating the effectiveness of our method.

J Effects of Approximate Conformer Generation

In SiamDiff, we introduce approixmate conformer generation mechanism by randomly rotating tor-
sional angles. We hypothesize that highly realistic conformers are not vital for better representations.
To confirm, an extra rebuttal experiment is performed in Table 12. Instead of random perturbation,
we sample from a rotamer library [62] based on residue types and backbone angles. Table 12 shows
random torsional perturbation still outperforms sampling from a rotamer library in most tasks, con-
firming our hypothesis. This can be attributed to the fact that the objective of pre-training is to learn
common information between diverse views through mutual prediction, as SimCLR and SimSiam.
Considering this perspective, introducing random torsional noise allows us to generate more diverse
conformers compared to solely relying on realistic conformer distributions.
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(A) GearNet-Edge representations with random initialization
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(B) GearNet-Edge representations pre-trained with first-stage SiamDiff
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(C) GearNet-Edge representations pre-trained with two-stage SiamDiff
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Figure 4: Visualization of GearNet-Edge representations on 4 randomly selected proteins from
AlphaFold Database with sequence and structure noises at different levels. Three models are employed
for extracting representations: (A) without pre-training, (B) with first-stage SiamDiff, and (C) with
two-stage SiamDiff pre-training. For each protein, we consider t = 1, ..., 100 noise levels and
randomly generate 32 noisy samples for each noise level using the scheme in SiamDiff. Samples
with small noise levels are highlighted in blue, while those with large noise levels are marked in red.

K Visualization of SiamDiff Embeddings upon Noises

To explore pre-training insights, we visualize UMAP representations of 4 random AlphaFold DB
proteins in Fig. 4. Several interesting phenomena can be observed:

• Randomly initiated representations in Fig. 4A form a clear, continuously color-changing trajectory
(blue to red). This confirms that the forward diffusion process gradually adds noise to proteins,
leading to smooth changes in their representations, as expected for diffusion models.

• After pre-training with large noise scales, the encoder maintains the color smoothness of the
trajectory, which is desired for effective denoising during the backward diffusion process. Intrigu-
ingly, pre-training narrows the trajectory compared to the broader trajectory without pre-training,
particularly at the two ends. This suggests that first-stage pre-training clusters proteins with
similar levels of added noise, even for large and diverse noises. This clustering property proves
useful for detecting large perturbations in downstream tasks, such as mutation stability prediction
in MSP, as opposed to the diverse representation distributions in Fig. 4A.

• Continuing with small noise scale pre-training, the trajectory becomes much narrower in the
middle and even breaks for some proteins. This indicates that by focusing on only slightly
perturbed samples during pre-training, our model becomes capable of discerning proteins with
small and large noises, making it more effective for fine-grained downstream tasks like PSR and
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PIP. However, the red end of the trajectory is thicker than that in Fig. 4B, which may imply some
forgetting behavior in the second-stage pre-training.
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