

Fig. R 1: Illustration of different zero-shot settings. \mathcal{O}^{train} (\mathcal{O}^{test}), \mathcal{R}^{train} (\mathcal{R}^{test}), and \mathcal{T}^{train} (\mathcal{T}^{test}) represent the set of object categories, relation categories, and triplet categories during the training (test) stage, respectively.

Fig._R 3: The error bar of HICO-DET. It comes from the results obtained by generating descriptions through five invocations of the LLM.

Fig._R 4: The confusion matrix on the HICO-DET dataset.

References

[1] Learning visual representation from modality-shared contrastive language-image pre-training. In *ECCV*, 2022. 1

Table_R 1: Performance (%) of combining with different SOTA pre-trained visual-language models on VG dataset. CLS* denotes the model uses class-based prompts to compute the training-free zero-shot similarity between the image and text.

		Predicate Classification							
Backbone	Method	R@20	R@50	R@100	mR@20	mR@50	mR@100		
	Baseline(CLS*)	8.2	15.1	21.5	7.9	16.4	22.4		
MS-CLIP [1]	RECODE*	9.2	17.3	24.7	8.3	15.4	22.6		
DECLIP [2]	Baseline(CLS*)	11.0	18.3	24.4	11.0	19.0	27.1		
	RECODE*	11.4	19.3	25.9	10.5	19.5	27.8		

Table_R 2: Comparison with SOTA VRD methods on the VG dataset. Note that none of these methods can be applied in the **training-free** zero-shot setting.

	No	Unseen	Training	Predicate Classification			
Model	Training	Relation	Data Source	zR@20zR@50 z		zR@100	
Motifs [3]	X	X	VG	8.9	15.2	18.5	
COACHER [4]	X	X	VG& ConceptNet	28.2	34.1	37.2	
DPL [5]	X	X	VG	6.0	7.7	9.3	
CaCao [6]	×	\checkmark	VG&CC3M&COCC) 17.2	21.3	23.1	
RECODE	 Image: A set of the set of the	✓	-	8.2	16.1	23.2	

Table_R 3: Ablation studies on the HICO-DET and VCOCO datasets.

			HICO-DET			VCOCO		
Cue	Spatial	Weight	Full Rare Non-Rare			Scenario 1	Scenario 2	
			30.9	30.7	31.0	25.5	28.6	
\checkmark			32.5	33.0	32.2	25.8	28.9	
\checkmark	\checkmark		32.6	33.0	32.4	25.7	28.8	
\checkmark		\checkmark	32.7	33.1	32.5	25.9	29.0	
\checkmark	\checkmark	\checkmark	32.7	33.2	32.5	26.0	29.0	

Table_R 4: Comparison with or without CoT on the VG dataset.

	Predicate Classification								
СоТ	R@20	R@50	R@100	mR@20	mR@50	mR@100			
X	9.5	17.3	24.6	10.2	18.0	25.6			
\checkmark	10.6	18.3	25.0	10.7	18.7	27.8			

Table_R 5: Analysis of key components on the VG dataset. Time (ms) represents the computation time of each triplet. The (\cdot) represents the time when spatial component is retrieved offline.

	Predicate Classification									
Cue	e Spatial	Weight	R@20	R@50	R@100	mR@20	mR@50	mR@100	Time (ms)	
			7.2	10.9	13.2	9.4	14.0	17.6	46.7	
\checkmark			7.4	12.3	16.6	9.0	14.0	19.5	61.2	
\checkmark	\checkmark		9.1	13.4	17.4	9.3	15.0	20.3	74.2 (61.2)	
\checkmark		\checkmark	7.9	13.4	17.7	9.3	14.7	20.5	61.2	
\checkmark	\checkmark	\checkmark	9.7	14.9	19.3	10.2	16.4	22.7	74.2 (61.2)	

- [2] Supervision exists everywhere: A data efficient contrastive language-image pre-training paradigm. In *ICLR*, 2022. 1
- [3] Neural motifs: Scene graph parsing with global context. In CVPR, 2018. 1
- [4] Zero-shot scene graph relation prediction through commonsense knowledge integration. In *ECML PKDD*, 2021. 1
- [5] Decomposed prototype learning for few-shot scene graph generation. arXiv preprint arXiv:2303.10863, 2023. 1
- [6] Visually-prompted language model for fine-grained scene graph generation in an open world. In *ICCV*, 2023. 1