
Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 IMPLEMENTATION DETAIL

Our experiments are conducted on ModelNet 3D Wharehouse, S3DIS, and SemanticKITTI dataset.
For the ModelNet 3D Wharehouse dataset, we train all models on the train set and evaluate on the
validation set. For the S3DIS, we train all models on area 1, 2, 3, 4, 6 and evaluate on area 5. For the
SemanticKITTI dataset, we train all models on splits 00-10 except 08 which is used for evaluation.
For each of the dataset, all ResNet-series models use the same training scheme, and all experiments
are implemented with Pytorch.

When training on the ModelNet 3D Wharehouse dataset, coordinates of point-cloud are randomly
scaled, translated, and jittered. We use SGD optimizer with momentum 0.9, weight-decay 10−4, and
initial learning rate 0.1 with cosine learning rate scheduler. Each mini batch is set to 32, and models
are trained for 300 epochs. For both training and inference phase, we only utilize x, y, z coordinates
without other features and set voxel size to 0.05. The experiments for ModelNet 3D Wharehouse are
all conducted on a Titan RTX GPU.

When training on the S3DIS dataset, we concatenate all subparts of an indoor scene to train and
validate on. Along x, y directions, scenes are randomly applied horizontal flip. RGB features are
randomly jittered, translated, and auto contrasted. Finally, we normalize and clip point-clouds. We
set voxel size to 0.05. We use SGD optimizer with momentum 0.9, weight-decay 10−4, and initial
learning rate 0.1 with polynomial learning rate scheduler. Each mini batch is set to 3, and models are
trained for 400 epochs on 2 Titan RTX GPUs.

When training on the SemanticKITTI dataset, coordinates of each point-cloud are randomly scaled
and rotated. We use SGD optimizer with momentum 0.9, weight-decay 10−4, and initial learning
rate 0.24 with cosine warmup learning rate scheduler. Each mini batch is set to 2, and models are
trained for 15 epochs on 4 Titan RTX GPUs. For both training and inference phase, we utilize x, y, z
coordinates as well as intensity feature and set voxel size to 0.05.

Most of our pretrained models come from open-sources, 1 2 3 4 5 6 , so we do not need to take time
and computational resources for pretraining. We use torchsparse 7 to produce sparse 3D convolutions.

Details of Section 4.1. In this section, we take the ResNet architecture, inflate the pretrained models
of different image dataset, and add linear input and output layers as shown in Section A.5. The
ResNet50 pretrained on ImageNet1K is directly taken from Pytorch. We use the same training
recipe provided by Pytorch to train the ResNet50 on Tiny-ImageNet. The pretrained ResNet50 on
ImageNet21K comes from (Ridnik et al., 2021).

Details of Section 4.2, Section 4.3 and 4.4. In this section, the ResNet pretrained models are taken
from the same sources as illustrated above.

For PointNet++ pretraining on ImageNet1K, we utilize the PointNet++ SSG version (Qi et al., 2017).
We break the images into pixels, and regard the pixels as a point-cloud, coordinates of which are the x,
y position in original image, with appending z = 1 to all pixels. Then we set center sampling number
to 1024 and 256 for first and second stage, the radius are set into 8 and 64 for them respectively. For
each center point, we will query 64 neighbouring points. The training recipe is also provided by
Pytorch.

For ViT models, we directly take the pretrained weights from Dosovitskiy et al. (2020). To apply it
on ModelNet 3D Wharehouse, we sample 256 centers and group 64 nearby points, regarding these
as "point-cloud patches". Then we use a linear embedding to project the point-cloud patches into a
sequence, and the ViT process them as same as the images. Except the linear embedding and the final

1https://pytorch.org/vision/stable/models.html
2https://github.com/Alibaba-MIIL/ImageNet21K
3https://github.com/hirokatsukataoka16/FractalDB-Pretrained-ResNet-PyTorch
4https://github.com/HRNet/HRNet-Semantic-Segmentation/tree/pytorch-v1.1
5https://github.com/rgeirhos/Stylized-ImageNet
6https://github.com/wielandbrendel/bag-of-local-features-models
7https://github.com/mit-han-lab/torchsparse

15



Under review as a conference paper at ICLR 2022

Table 6: ResNet50 results (evaluated on ModelNet 3D Wharehouse) of fintuning the mean and
variance in batch normalization layers on different datasets. IO indicates input and output layer, IOms
indicate input, output, mean and variance, IOmsWb indicates input, output and the whole BN.

Layers Tiny-ImageNet ImageNet1K ImageNet21K FractalDB1K FractalDB10K

IO 67.666 81.199 73.744 83.347 80.105

IOms 83.793 82.942 84.076 72.326 79.66

IOmsWb 89.992 89.87 90.721 89.263 89.344

From scratch 90.316 90.316 90.316 90.316 90.316

Table 7: ResNet18, 50, 152 results (evaluated on ModelNet 3D Wharehouse) of finetuing the mean
and variance in batch normalization layers.

Layers ResNet18 ResNet50 ResNet152

IO 71.029 81.199 64.627

IOmv 81.888 82.942 82.658

IOmvWb 88.574 89.87 90.438

From Scratch 90.397 90.316 90.276

output classifier, all the models are kept same as the origin version. For the experiments on S3DIS
and SemanticKITTI, the architecture detail of ResNet18 is shown in A.5 listing 2.

For SimpleView model, all the experiment settings are as same as Goyal et al. (2021a). The only
difference is to use or not use the pretrained ResNet18. For HRNetV2-W48, we directly use the
ImageNet1K pretrained model and Cityscape pretrained model from (Sun et al., 2019).

We conduct three trials on the few-shot experiments. For each trial, we change the random seed but
keep all the others are same. To plot the training speed curve, we directly use the training log without
any other change like smoothing.

A.2 FINETUNING THE MEAN AND VARIANCE OF BATCH NORMALIZATION.

For the first group of experiments, ResNet50 FIP either has IO or IO+BN finetuned. In addition to
these two experimental setting, we also investigate fintuning input, output layers, and mean, variance
of normalization layers, while fixing the convolution layer weights, normalization layer weights and
bias. The full experiments result with this extra setting is reported in Table 6 and 7. We can observe
that compared with only finetuning input and output layers, updating mean and variance can also
largely improve the performance of point-cloud recognition. As suggested in Section 5.2 in the main
paper, updating mean and variance is also to push the finetuned pretrained image model to generate
point-cloud representation as similar as image representation.

A.3 MORE VISUALIZATION OF NETWORK DISSECTION.

We present more visualization results based on the technique of network dissection, as shown in
Figure 5. We can observe that for most cases, although there is no obvious visual concept transferring,
the pretrained filters are prone to cluster similar objects on ModelNet 3D Wharehouse dataset.

A.4 DETAILS OF FIRST-WASSERSTEIN DISTANCE ON RESNET18.

We list all the results in each layer of ResNet18, as shown in Table 8. We can observe that for each
layer, the first-wasserstein distance is largely reduced when finetuning more parameters. Interestingly,
we also find that the distance between training-from-scratch on ModelNet 3D Wharehouse and image
models are not too far, which may indicate the image and point-cloud could be represented similar
even no transferring.

16



Under review as a conference paper at ICLR 2022

Table 8: First-wasserstein distance between distance between different features of all 16 layers in
ResNet18

Image Model FIP/IO FIP/IO-BN FIP/ALL Training from
scratch

Average 2.1× 102 0.27 0.093 0.15

Layer 1 1.9 0.2 0.094 0.12

Layer 2 1.1 0.064 0.11 0.048

Layer 3 1.3 0.24 0.068 0.095

Layer 4 2.6 0.14 0.051 0.077

Layer 5 1.1 0.23 0.039 0.082

Layer 6 3 0.21 0.025 0.063

Layer 7 5.4 0.29 0.05 0.15

Layer 8 13 0.26 0.051 0.097

Layer 9 12 0.28 0.04 0.095

Layer 10 26 0.2 0.077 0.13

Layer 11 54 0.27 0.032 0.13

Layer 12 2.2× 102 0.25 0.076 0.094

Layer 13 1.9× 102 0.29 0.028 0.11

Layer 14 7.7× 102 0.16 0.075 0.041

Layer 15 9.5× 102 0.29 0.081 0.088

Layer 16 1.2× 103 0.89 0.59 1

A.5 DETAILS OF USED ARCHITECTURES

1 Class 3DRes_cls(nn.Module):
2 def __init__(self, res_block):
3 super().__init__() # res_block means the residual block as same

as the conventional ResNet.
4 self.input_layer = nn.Sequential(
5 sparse_conv3d(input_dim, layer1_Idim, k=3, s=1),
6 sparse_bn(layer1_Idim))
7

8 self.layer1 = inflated_resnet_layer1(res_block, layer1_Idim,
layer1_Odim)

9 self.layer2 = inflated_resnet_layer2(res_block, layer2_Idim,
layer2_Odim)

10 self.layer3 = inflated_resnet_layer3(res_block, layer3_Idim,
layer3_Odim)

11 self.layer4 = inflated_resnet_layer4(res_block, layer4_Idim,
layer4_Odim)

12

13 self.output_layer = nn.Sequential(
14 global_average_pooling,
15 nn.Linear(layer4_Odim, class_num),
16 nn.bn(class_num))
17

18 def forward(self, x):
19 x = self.input_layer(x)
20 x = self.layer1(x)
21 x = self.layer2(x)
22 x = self.layer3(x)
23 x = self.layer4(x)

17



Under review as a conference paper at ICLR 2022

24 return self.output_layer(x)

Listing 1: Pseudo code of inflated ResNet with linear input and output for classification

1 Class 3DRes_seg(nn.Module):
2 def __init__(self, res_block):
3 super().__init__() # res_block means the residual block as same

as the conventional ResNet.
4 self.input_layer = nn.Sequential(
5 sparse_conv3d(input_dim, layer1_Idim, k=3, s=1),
6 sparse_bn(layer1_Idim),
7 sparse_ReLU(True),
8 sparse_conv3d(layer1_Idim, layer1_Idim, k=3, s=1),
9 sparse_bn(layer1_Idim),

10 sparse_ReLU(True),
11 sparse_conv3d(layer1_Idim, layer1_Idim, k=3, s=2),
12 sparse_bn(layer1_Idim),
13 sparse_ReLU(True))
14

15 self.layer1 = inflated_resnet_layer1(res_block, layer1_Idim,
layer1_Odim)

16 self.layer2 = inflated_resnet_layer2(res_block, layer2_Idim,
layer2_Odim)

17 self.layer3 = inflated_resnet_layer3(res_block, layer3_Idim,
layer3_Odim)

18 self.layer4 = inflated_resnet_layer4(res_block, layer4_Idim,
layer4_Odim)

19

20 self.up1 = sparse_deconv(layer4_Odim, layer4_Odim, k=2, s=2),
21 self.decode1 = self.Sequential(
22 res_block(layer4_Odim+layer3_Odim, layer3_Odim),
23 res_block(layer3_Odim, layer3_Odim))
24

25 self.up2 = sparse_deconv(layer3_Odim, layer3_Odim, k=2, s=2)
26 self.decode2 = self.Sequential(
27 res_block(layer3_Odim+layer2_Odim, layer2_Odim),
28 res_block(layer2_Odim, layer2_Odim))
29

30 self.up3 = sparse_deconv(layer2_Odim, layer2_Odim, k=2, s=2)
31 self.decode3 = self.Sequential(
32 res_block(layer2_Odim+layer1_Odim, layer1_Odim),
33 res_block(layer1_Odim, layer1_Odim))
34

35 self.up4 = sparse_deconv(layer1_Odim, layer1_Odim, k=2, s=2)
36 self.decode4 = self.Sequential(
37 res_block(layer1_Odim+layer1_Odim, layer1_Odim),
38 res_block(layer1_Odim, layer1_Odim))
39

40 self.output_layer = nn.Sequential(
41 nn.Linear(layer1_Odim, class_num))
42

43 def forward(self, x):
44 x_i = self.input_layer(x)
45 x1 = self.layer1(x_i)
46 x2 = self.layer2(x1)
47 x3 = self.layer3(x2)
48 x4 = self.layer4(x3)
49

50 x3_ = self.decoder1(cat(x3, self.up1(x4)))
51 x2_ = self.decoder2(cat(x2, self.up2(x3_)))
52 x1_ = self.decoder3(cat(x1, self.up3(x2_)))
53 xi_ = self.decoder4(cat(x_i, self.up4(x1_)))
54 return self.output_layer(xi_)

Listing 2: Pseudo code of inflated ResNet for segmentation

18



Under review as a conference paper at ICLR 2022

Unit 17

B
ro

d
en

M
o

d
el

n
et

Unit 127

Unit 16

M
o

d
el

n
et

Unit 38

B
ro

d
en

Unit 78 Unit 82

Unit 42

B
ro

d
en

M
o

d
el

n
et

Unit 420

Unit 35

M
o

d
el

n
et

Unit 102

B
ro

d
en

Unit 227 Unit 394

Unit 177

B
ro

d
en

M
o

d
el

n
et

Unit 487

Unit 169

M
o

d
el

n
et

Unit 198

B
ro

d
en

Unit 427 Unit 438

Unit 98

B
ro

d
en

M
o

d
el

n
et

Unit 246

Unit 80

M
o

d
el

n
et

Unit 109

B
ro

d
en

Unit 129 Unit 141

Figure 5: More network dissection results.

19


