
A Architectures, Hyper-parameters and Algorithms1

Our approach, named ORDER, uses a three-step training process. It involves: (1) Training a state2

encoder Φ; (2) Training a decision head h(a∣z); and (3) Training a proxy state encoder Φ̃.3

In the next parts of this section, we’ll explain the methods, structures, and settings we use in each of4

these steps. After that, we’ll talk about how we set up and carried out our experiments. This section5

is set up to help readers understand the three steps of ORDER, and how we put it into practice in our6

experiments.7

A.1 State Encoder8

In this section, we’ll break down the design of the state encoder, how we decided on the best9

hyper-parameters, and the process we used to train the state encoder.10

We used a grid search strategy to find the optimal hyper-parameters for our experiments. The selection11

of these parameters can be found in Table 1.12

Table 1: Choosing hyper-parameters for training the state encoder.

Hyper-parameter Final choice

Codebook dimension 2
of discrete codes 40

Feedforward dim of Σ 256

Training steps 2 × 105
Learning rate 5 × 10−3

Batch size 1024

The state encoder Φ in ORDER consists of a set of codebooks and factor encoders: Φ = {ei, ϕi∣i ∈13

1,2,⋯,M}. For our experiments, we made M the same as the number of dimensions in the14

observation. This allowed each observation dimension to match up with a state factor. We represented15

each factor encoder with a fully-connected layer, which means it has an input dimension of 1 and an16

output dimension equal to the codebook dimension.17

During the training of the state encoder, we used a state decoder Σ(z) to calculate the reconstruction18

term in the loss function (Equation (3) in the main text). The state decoder architecture is a three-layer19

MLP. Its input dimension equals the state representation dimension (which is the number of state20

factors times the dimension of the discrete code), and its output dimension is equal to the state21

dimension. We tried values of [64,128,256,512] for the feedforward dimension, and ultimately22

chose 256. For the commitment loss term β, we set it to 0.25, keeping it consistent with the original23

VQVAE paper [4]. We summarize the training process in Algorithm 1.24

A.2 Decision Head25

In the second phase of training, ORDER employs an arbitrary offline RL algorithm to instruct a26

decision head h(a∣z). The decision head is tasked with making decisions based on provided discrete27

state representations. These state representations are derived from a transformed dataset, denoted as28

Dz = {z, a, z′, r}. Here, z represents the discrete state representation generated by z = Φ(s). Thus,29

the decision head is guided by these state representations to execute actions effectively.30

ORDER has the flexibility to improve policy performance when added to existing offline RL algo-31

rithms, especially in situations dealing with different partially observable functions. In the second32

phase of our approach, we trained the decision head h(a∣z) using Implicit Q learning (IQL) [2],33

an established algorithm that we selected for this study. We’re optimistic that by combining our34

method with other cutting-edge offline RL algorithms, we could further elevate the results. We aim to35

investigate these possibilities in future research. In this section, we’ll discuss the IQL algorithm and36

elaborate on the specific architecture and hyper-parameters we employed in our project.37

IQL is a method used in offline reinforcement learning. It tackles two main goals: improving the38

policy that guides decision-making and limiting changes from the original policy to avoid mistakes39

1

Algorithm 1: Training state encoder Φ
Data: Offline dataset D.
Result: State Encoder Φ = {ei, ϕi∣i ∈ 1,2,⋯,M}.
N ← n; # The number of trainning steps
Initialize the state encoder Φ;
Initialize the state decoder Σ;
while N ≠ 0 do

Sample states: s ∼ D;
for i = 1,2,⋯,M do

compute factor embeddings for each state factor: êi = ϕi(si);
get the discrete latent variable for each factor by nearest lookup: zi = g(êi, ei);

end
Construct the discrete state representation: z = CONCAT(z1, z2,⋯, zM);
Compute the reconstruction by state decoder: Σ(z);
Compute the loss according to Equation (3) in the main text;
Backpropagate gradients to all parameters for minimizing the loss;
N ← N − 1;

end

due to shifts in the data distribution. The key idea in IQL is to view the value of a state (a measure of40

how good it is to be in that state) as something that can vary based on the action taken. By doing41

this, IQL can improve the policy without ever needing to consider actions that are not in the original42

dataset.43

The method works by switching between fitting a value function (which estimates the value of the44

best possible actions for a state):45

LV (ψ) = E(z,a)∼Dz
[Lτ2Qθ̂(z, a) − Vψ(z)]. (1)

and translating it into a Q-function, which doesn’t require a direct policy:46

LQ(θ) = E(z,a,z′,r)∼Dz
[r + +γVψ(z′) −Qθ̂(z, a)]

2. (2)

The decision head is then created from this Q-function, without needing to consider actions not in the47

original dataset.48

Lh(δ) = E(z,a)∼Dz
[exp(β(Qθ̂(z, a) − Vψ(z)) loghδ(a∣z))]. (3)

IQL is easy to use and efficient, needing only an additional part that fits with an asymmetric L249

loss (a type of error measurement). We summarize IQL in Algorithm 2 and present the choice of50

hyper-parameters in Table 2.51

Algorithm 2: Training decision head by IQL [2]
Data: Converted offline dataset Dz .
Result: Decion head hδ(a∣z)
N ← n; # The number of trainning steps
Initialize parameters ψ, θ, θ̂, δ;
while N ≠ 0 do

Train value function: ψ ← λV∇LV (ψ);
Train Q function: θ ← λQ∇LQ(θ);
θ̂ ← (1 − α)θ̂ + αθ;
Train decision head: δ ← λh∇Lh(δ);
N ← N − 1;

end

2

Table 2: Choosing hyper-parameters for training the decision head.

Hyper-parameter Final choice

hidden layers in Qθ̂, Vψ and hδ networks 2
Dimension of hidden layers 256

Feedforward dimension of Σ 256

Training steps 1 × 106
Sampled context length 64

Batch size 64
α 0.05
τ 0.7
β 3.0

λQ, λV , λh 3 × 10−4

A.3 Proxy State Encoder52

In this section, we first explain the procedure for generating random masking variables, followed by53

an outline of the architecture, hyper-parameters, and algorithms for the proxy state encoder.54

Initially, the process of generating masking variables is denoted as m0∶t ∼Mη and summarized in55

Algorithm 3. This notation provides a concise mathematical description of the masking variable56

generation process, aiding in understanding the procedure involved.57

Algorithm 3: Generating random mask variables
Data: trajectory length t + 1, factor missing ratio η, the number of state factos M .
Result: mask variables m0∶t
initialize mask variables as a zero matrix: m0∶t = 0M×(t+1) ;
p ∼ U(0,1); # Sample a random variable to determine which scenario would be
adopted

if p ≤ 0.5 then
adopt the dynamical missing scenario
for i = 1,2,⋯,M do

for j = 0,1,⋯, t do
q ∼ U(0,1);
if q ≤ η then

mi
j = 1

end
end

end
else

adopt the factor reduction scenario
for i = 1,2,⋯,M do

q ∼ U(0,1);
if q ≤ η then

mi
0∶t = 11×(t+1)

end
end

end

Now, we delve into the architecture of the proxy state encoder. We start by initializing a random58

embedding to serve as the learnable mask token. This token has the same dimension as the discrete59

factor code. We then use a Gated Recurrent Unit (GRU) network [1] with a hidden layer as the60

trajectory encoder, denoted as ξ. This encoder takes the current observation representation and the61

action from the previous time step as inputs and generates a trajectory representation as its output.62

Following this, the prediction set, symbolized as Ω = {ωi∣i = 1,2,⋯,M}, comprises a series of linear63

3

layers. These layers take the trajectory representation as input and produce a categorical distribution64

over the discrete codes. This process is accomplished by injecting their output into a softmax function.65

The procedure for training the proxy state encoder is outlined in Algorithm 4. We also detail our final66

selection of hyper-parameters in Table 3. This systematic approach aids in achieving an effective67

training process for the proxy state encoder.68

Table 3: Choosing hyper-parameters for training the proxy state encoder.

Hyper-parameter Final choice

Factor missing ratio η 0.5

Dimension of mask token 2

Dimension of hidden layer in ξ 128
Training steps 2 × 105

Batch size 64
Learning rate 1 × 10−3

Algorithm 4: Training proxy state encoder Φ̃
Data: Offline dataset D, state encoder Φ, horizon length H , factor missing ration η, the number

of state factors M .
Result: State Encoder Φ̃ = {e[mask],Φ, ξ,Ω}.
N ← n; # The number of trainning steps
Initialize the learnable mask token e[mask];
Initialize the trajectory encoder ξ;
Initialize the prediction head set Ω;
while N ≠ 0 do

Sample the trajectory length: t ∼ U(0,H − 1);
Sample the random mask variable: m0∶t ∼Mη;
Sample the trajectory: τ0∶t ∼ D
Sample states: s0∶t ∼ D;
initialize the action as a zero vector: a−1 = 0;
initialize the trajectory representation as a zero vector: ν−1 = 0;
for n = 0,1,⋯, t do

Compute the partial observation representation according to Equation (4) in the main text:
x = Φ[mask](sn,mn);

Compute the trajectory representation: νn = ξ(xn, an−1, νn−1);
for i = 1,2,⋯,M do

Compute the true discrete code of factor i: zi = gi(ϕi(si), ei) ;

Infer the discrete code of factor i: z̃i ∼ ωi(⋅∣νn);
end

end
Compute the loss: [1

M ∑
M
i (1 −mi

t) logωi(z̃i = zi∣νt)];
Backpropagate gradients to all parameters for minimizing the loss;
N ← N − 1;

end

B Additional Experimental Settings69

In this section, we provide more details about our experimental setup and share some extra exper-70

imental outcomes. To make sure our results are reliable, we run all experiments with 5 different71

random seeds, and each of these seeds is used in 10 individual runs. Also, for every test episode, we72

set the maximum number of steps per episode to 1000.73

4

Table 4: Choosing hyper-parameters for training the IQL_R.

Hyper-parameter Final choice

hidden layers in Q , value, and policy networks 2
Dimension of hidden layers in GRU networks 128

Dimension of DQN networks [256,256]
Dimension of value networks [256,256]
Dimension of policy networks [256,256]

Action embedding size 16
Observation embedding size 32

Reward embedding size 16

Training steps 1 × 106
Sampled context length 64

Batch size 64
α 0.05
τ 0.7
β 3.0

λQ, λV , λh 3 × 10−4

Table 5: Average normalized score of our model and IQL_R under single specific observation
functions.

Observation function Dataset IQL_ORDER IQL_R

Mask-P

HalfCheetah-medium-v2 35.35 33.76
Hopper-medium-v2 75.23 70.23

Walker2d-medium-v2 7.35 3.45

Mask-V

HalfCheetah-medium-v2 42.10 40.12
Hopper-medium-v2 54.41 44.56

Walker2d-medium-v2 7.34 14.23

Sampling Various Partial Observation Functions. In our experiments, we evaluate our models74

and the baselines under different partial observation functions. These observation functions are75

regulated by the random mask variables m0∶H , where H represents the episode length. Here, mi
t = 176

suggests that at time step t, the i-th state factor is not observed, otherwise, it is observed. In every77

test run, given the missing scenario and factor missing ratio η, we select this mask variable based on78

Algorithm 3. It’s important to note that since the scenario is pre-set, there’s no need to sample the79

variable p to decide which scenario will be used.80

IQL baselines. For the IQL_FA and IQL_FZ baselines, we employ the same hyper-parameters as81

those utilized in the training of the decision head (refer to Section A.2 for details). For the IQL_R82

baseline, we combine IQL [2] with a cutting-edge method for online RL in POMDPs [3] to construct83

this baseline. This strategy employs a unique recurrent neural network architecture to address partial84

observability and is compatible with any actor-critic algorithms. Specifically, we substitute the85

fully-connected networks in the IQL implementation with the recurrent architectures suggested in86

the method. We use the official implementation of the recurrent architecture for our experiments1.87

Following this, we employ a grid search strategy to finalize our choice of hyper-parameters, the88

details of which are reported in Table 5.89

On the other hand, in our experiments, IQL_R underperforms in all scenarios when observation90

functions are diverse and uncertain. However, it’s noteworthy that IQL_R fares well in settings91

where the observation functions are singular and stable. Specifically, we use two commonly adopted92

observation functions on locomotion tasks [3]. First, we mask the position information of robots93

(denoted as Mask-P), and second, we mask the velocity information of robots (denoted as Mask-V).94

We provide the average testing performance in Table 5. These results indicate that while IQL_R95

1https://github.com/twni2016/pomdp-baselines

5

struggles to formulate effective policies under varied and dynamic partial observation settings, it can96

perform well when the observation function is singular and fixed in the offline setting. A possible97

explanation for this is that the diverse partial observation function leads to enhanced non-stationarity98

of dynamics, which makes direct policy training on these cases challenging and often results in highly99

unstable training.100

References101

[1] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,102

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-103

decoder for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter104

Daelemans, editors, EMNLP, pages 1724–1734, 2014.105

[2] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit106

Q-learning. In ICLR, 2022.107

[3] Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free RL can be a108

strong baseline for many POMDPs. In ICML, pages 16691–16723, 2022.109

[4] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NeurIPS, 30,110

2017.111

6

	Architectures, Hyper-parameters and Algorithms
	State Encoder
	Decision Head
	Proxy State Encoder

	Additional Experimental Settings

