
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Animatable 3D Gaussian: Fast and High-Quality Reconstruction
of Multiple Human Avatars

Anonymous Authors

A OVERVIEW
In the supplementary material, we introduce the calculation process
of bone transformation and discuss the feasibility of optimizing the
joint positions in canonical space. Furthermore, we provide more
visualization results. We encourage the reader to watch the video
for our high-quality results.

B CACULATION OF BONE TRANSFORMATION
We introduce bone transformation in Sec. 3.2. In this section, we
provide the detailed calculation process of Eq. 7 and discuss the
need to optimize the joint positions in canonical space.

We combine posed translation𝑇𝑡 and rotation angle 𝜔𝑡
1 to obtain

the posed transformation 𝐵𝑡
𝑝𝑜𝑠𝑒𝑑,1 of the root joint:

𝐵𝑡
𝑝𝑜𝑠𝑒𝑑,1 =

[
R(𝜔𝑡

1) 𝑇𝑡
0 1

]
, (20)

where R(·) denotes a function that converts the Euler angle to a
rotation matrix.

Similarly, we combine the local positions 𝐽𝑖 and rotation angles
𝜔𝑡
𝑖
of the remaining joints to obtain their local posed transforma-

tions:
𝐵𝑡
𝑙𝑜𝑐𝑎𝑙_𝑝𝑜𝑠𝑒𝑑,𝑖 =

[
R(𝜔𝑡

𝑖
) 𝐽𝑖

0 1

]
. (21)

Next, we calculate the posed transformation for each joint in
turn according to the connection order:

𝐵𝑡
𝑝𝑜𝑠𝑒𝑑,𝑖

= 𝐵𝑡
𝑙𝑜𝑐𝑎𝑙_𝑝𝑜𝑠𝑒𝑑,𝑖𝐵

𝑡
𝑝𝑜𝑠𝑒𝑑,𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖 ) , (22)

where 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖) refers to the parent joint index of joint 𝑖 . The
calculation starts from the root joint.

In order to obtain the bone transformation from canonical space
to posed space, we need the canonical transformations of joints. To
simplify the calculation, we assume that the local rotation matrix of
the canonical joints is the identity matrix, which can be achieved by
preprocessing.We first calculate the local canonical transformations
as follows:

𝐵𝑡
𝑙𝑜𝑐𝑎𝑙_𝑐𝑎𝑛,𝑖 =

[
𝐼 𝐽𝑡
0 1

]
. (23)

As with Eq. 22, we compute the canonical transformation for
each joint in turn:

𝐵𝑡𝑐𝑎𝑛,𝑖 = 𝐵𝑡
𝑙𝑜𝑐𝑎𝑙_𝑐𝑎𝑛,𝑖𝐵

𝑡
𝑐𝑎𝑛,𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖 ) . (24)

Finally, we obtain the bone transformation mentioned in Eq. 7
by multiplying the inverse canonical transformation and the posed
transformation:

𝐵𝑡𝑖 = 𝐵𝑡
𝑝𝑜𝑠𝑒𝑑,𝑖

· (𝐵𝑡𝑐𝑎𝑛,𝑖 )
−1 . (25)

Through the above calculation, we realized the mapping from
the canonical joint positions J, the posed rotation angle S𝑡 and
the posed root translation 𝑇𝑡 to the bone transformation B𝑡 . In
other words, pose-guided deformation only relates to the joint
position in canonical space. Therefore, we can implement different

deformations for different humans by optimizing joint positions in
canonical space.

C IMPLEMENTATION DETAILS
We extend the CUDA kernels of the 3D Gaussian rasterizer to
achieve 3D Gaussian deformation and use the tiny-cuda-nn to im-
plement the hash-encoded parameter field.

NetworkArchitecture. To facilitate expansion, we build a hash-
encoded network for each parameter. For spherical harmonic coef-
ficients and vertex displacement, we use a hash table of length 217
and a multi-layer perceptron with two hidden layers of 64 nodes
each. For time-dependent ambient occlusion, we use a hash table
of length 219 and a multi-layer perceptron with two hidden layers
of 64 nodes each.

Training Details. Since our method requires rapid convergence
over several epochs, we set a fixed learning rate for each param-
eter. We use second-order spherical harmonics and optimize all
coefficients at the beginning to speed up convergence. In order to
learn both time-independent spherical harmonic colors and time-
dependent ambient occlusion, we do not enable ambient occlusion
until the fifth epoch.


	A Overview
	B Caculation of Bone Transformation
	C Implementation Details

