
Appendices
A Derivation of covariance for first-order autocorrelated errors

From et = ρet−1 + εt, we have

et = ρ(ρet−2 + εt−1) + εt (14)

= ρ2et−2 + ρεt−1 + εt (15)
= · · · (16)

= ρhet−h +

h−1∑
i=0

ρiεt−i. (17)

For any time step t, we can assume that there are infinite previous time steps before it (although the
data is finite). Thus,

et = lim
h→∞

(ρhet−h +

h−1∑
i=0

ρiεt−i). (18)

Notice that if ρ ≥ 1, et explodes to infinity because lim
h→∞

ρh =∞, so we assume |ρ| < 1. Then,

et = lim
h→∞

h−1∑
i=0

ρiεt−i. (19)

and the variance of et is:

Var(et) = lim
h→∞

h−1∑
i=0

Var(ρiεt−i) (20)

= lim
h→∞

h−1∑
i=0

ρ2iσ2 (21)

=
1

1− ρ2
σ2. (22)

Finally, combining Equation (17) and Equation (22), the covariance of xt and xt+h is:

Cov(et, et−h) = Cov(ρhet−h +
h−1∑
i=0

ρiεt−i, et−h) (23)

= ρhCov(et−h, et−h) (24)

=
ρh

1− ρ2
σ2, (25)

where the final line follows from Cov(et−h, εt−i) = 0,∀i ≤ h− 1 because εt−i is a Gaussian noise
that happens after time step t− h.

B Detailed descriptions and statistics of real-world datasets

• PeMSD4: Traffic data in San Francisco Bay Area from January 2018 to February 2018. Only the
total traffic flow series are used.

• PeMSD8: Similar to PeMSD4, but recorded in San Bernardino from July 2016 to August 2016.

• Traffic 1: Data from the California Department of Transportation describing road occupancy
rates, a number between 0 and 1, of the San Francisco Bay area freeways from 2015 to 2016.

1http://pems.dot.ca
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• ADI-920, ADI-945: Sensor values recorded from the plasma etcher machine in Analog Device
Inc. The raw data is in three-dimension because it is split up by wafer cycles, so we concatenate
all wafer cycles together and batch it without using data points from different wafer cycles.
ADI-920 and ADI-945 represent two different recipes.

• M4-Hourly, M4-Daily, M4-Weekly, M4-Monthly, M4-Quarterly, M4-Yearly: Six datasets
from the M4 competition with different sampling rate. Each dataset contains miscellaneous
series, categorized into six domains (micro, industry, macro, finance, demographic, other).
Originally, each series has different length and start time, but we crop out part of each dataset so
every series has the same start time and length without missing value.

• M5-L9, M5-L10: Raw data are Walmart unit sales of 3,049 products sold in ten stores in three
States (CA, TX, WI). The products can be categorized into 3 product categories (Hobbies, Foods,
and Household) and 7 product departments. M5-L9 is the level-9 aggregation and M5-L10 is the
level-10 aggregation 2.

• Air-quality 3: Recorded by gas multisensor devices deployed on the field in an Italian city.

• Electricity 4: Electricity consumption in kWh from 2012 to 2014.

• Exchange: exchange rate of eight countries (Australia, British, Canada, Switzerland, China,
Japan, New Zealand, and Singapore) from 1990 to 2016.

• Solar 5: Solar power production records in 2006 from photovoltaic power plants in Alabama
State.

Datasets length of dataset T number of series N sampling rate
PeMSD4 16,992 307 5 minute
PeMSD8 17,856 170 5 minute
Traffic 17,544 862 1 hour
ADI-920 288,098 30 2.5 seconds
ADI-945 103,073 30 2.5 seconds
M4-Hourly 744 121 1 hour
M4-Daily 4,208 1,493 1 day
M4-Weekly 2,191 43 1 week
M4-Monthly 816 203 1 month
M4-Quarterly 674 27 1 quarter
M4-Yearly 618 9 1 year
M5-L9 1,941 70 1 day
M5-L10 1,941 3049 1 day
Air-quality 9,357 13 1 hour
Electricity 26,304 321 1 hour
Exchange 7,588 8 1 day
Solar 52,560 137 10 minutes

C Hyperparameters of all NNs for time series forecasting

LSTM: number of layers = 2, hidden size = 64.

TPA: number of layers = 1, hidden size = 64, linear autoregressive size = 24.

AGCRN: number of layers = 1, hidden size = 64, embedding dimension = 10.

TCN: number of layers = 9, hidden size = 64.

Conv-T: number of layers = 3, number of attention head = 8, hidden size = 256, filter kernel size = 6.

DSANet: number of layers = 1, local filter size = 3, number of channels = 32, dropout = 0.1.
2Please see the competition guidelines (https://mofc.unic.ac.cy/m5-competition) for definition of aggrega-

tions.
3https://archive.ics.uci.edu/ml/datasets/Air+quality
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams2011
5http://www.nrel.gov/grid/solar-power-data
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D Time series regression

D.1 Task description

In time series regression, the target variable yt ∈ R at time step t only depends on the input variables
Xt ∈ RN at the same time step t. Thus, a time series regression dataset consists of T input-target
pairs: {(X1, y1), . . . , (XT , yT ). The goal is to find the optimal θ to minimize the MSE:

MSE =

T∑
t=1

e2t =

T∑
m=1

(yt − ŷt)2, (26)

where ŷt = f(Xt; θ) is the prediction of the model.

D.2 Datasets

We synthesize our data using Monte Carlo simulations. The data-generating function is

yt = tanh(
Xtθ + 1√

N
) + et, Xt ∈ RN , θ = 1 ∈ RN ,

Xt ∼ N (0, σ2
xI), σx = 0.2,

et = ρet−1 + εt, εt ∼ N (0, σ2) .

(27)

To compare different methods across a diverse set of datasets, we synthesize 30 random datasets for
each combination of all the following values:

• T ∈ {25, 50, 100, 200, 400},
• N ∈ {2, 3, 6, 12, 24},
• ρ ∈ {−0.9,−0.75, . . . , 0.75, 0.9}, and
• σ ∈ {0.0025, 0.005, 0.01, 0.02, 0.04}.

Thus, there are a total of 48, 750 runs for each method.

For each synthesized training set with T samples, we synthesize 100T samples as the testing set.
20% of the training set are split into the validation set, and the model with the best validation MSE
with 750 epochs is chosen. When N is small, to avoid good or bad luck, the validation MSE of the
first 5 epochs are ignored.

D.3 Models

The NN we use has six fully-connected layers with ReLU activation function and three residual
connections. The learning rate is 5 · 10−3 for θ and 10−2 for ρ̂, both with Adam optimizer.

D.4 Results

There are three methods to be compared. First is the without adjustment method, denoted as w/o.
Next is the modified Prais-Winsten method, which is described in the beginning in Section 4, denoted
as mPW. Finally is our method of adjustment, denoted as w/.

Pairwise comparison of w/, mPW, and w/o are shown in the subfigures in Figure 4. From the figures,
we see that on average, w/ is better than mPW, which is better than w/o. Moreover, looking at the
left subfigure, we see that the outperformance is greater when the true ρ value has larger magnitude.
Particularly, when abs(ρ) > 0.15, w/ beats mPW and w/o with statistical significance, and when
abs(ρ) ≤ 0.15, mPW is the best method on average, but all three methods have similar performances.
Finally, observing the right subfigure in Figure 4, we see that adjusting for autocorrelated errors,
using either w/ or mPW has greater improvement when the noise has a larger scale.

In Figure 5, the values of abs(ρ − ρ̂) averaged over all runs are shown. Similar to the outcomes
in Figure 4, we see that w/ has better estimates of ρ when abs(ρ) > 0.15, and mPW has the upper
hand otherwise. The reason, we believe, lies in step 2 in the mPW method. When the scale of ρ is
small, there is little benefit in adjusting for autocorrelation, so the first iteration of step 2 in mPW will
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Figure 4: Pairwise comparison of three methods of training NN on the synthesized data with different
true ρ value (left) and different standard deviation of noise (right).
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Figure 5: abs(ρ− ρ̂) of neural network averaged over all runs for “w/” and “mPW” on the synthesized
data. Lines with higher opacity represent results that are run on data with larger variance of noise.
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Figure 6: The distribution of Durbin-Watson statistic under different data-generation processes. Each
row correspond to different true ρ value. The x-axis is the Durbin-Watson statistic from 0 to 4 and
the y-axis is the density of the distribution calculated over 3, 750 runs.

essentially train the model to near convergence just like the w/o method and will result in small-scale
ρ̂. In contrast, training (θ, ρ̂) together from the onset, as in w/, might result in a larger-scale ρ̂ because
the NN is not yet converged in the beginning.

D.5 Decrease in autocorrelation

After adjusting for autocorrelated errors, we expect the remaining autocorrelation in errors to stay
close to 0 no matter what the true ρ value is. Both mPW and w/ do exhibit such phenomenon as
shown in Figure 6. In the figure, the distribution of the remaining autocorrelation shifts from around
−1 to around 1 when no adjustment is made. Applying either mPW or w/ stabilize the distribution
around 0, especially using w/ because its distribution is more concentrated around 0
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Table 4: Statistics of the time series classification datasets.

Datasets number of number of max training train-test
classes series length split

Spoken Arabic Digits 10 13 93 75-25 split
Australian Sign Language 95 22 96 44-56 split
ECG 2 2 147 50-50 split
Pen-based Digits 10 2 8 2-98 split

Table 5: Accuracy and average relative improvement of all combinations of models and datasets
averaged over twenty runs. w/o implies without adjustment for autocorrelated errors, whereas w/
implies with adjustment. Best performance is in boldface and is superscribed with † if the p-value of
paired t-test is lower than 5%. Average relative improvement is the percentage of improvement of w/
over w/o averaged over all datasets for each model.

Models MLSTM-FCN FCN-SNLST
Datasets w/o w/ w/o w/
Spoken Arabic Digits 0.9929 0.9922 0.9935 0.9925
Australian Sign Language 0.9388 0.9446 0.9924 0.9918
ECG 0.8100 0.8300 0.8575 0.8670†

Pen-based Digits 0.9609 0.9631† 0.9530 0.9542
Avg. rel. improv. 0.81% 0.27%

E Time series classification

E.1 Task description

In time series classification, the dataset consists of M time series data {X(1), . . . ,X(m)} and we
want to classify each time series data into K classes. In other words, a target y(m) ∈ [1,K] is the
class label for the time series data X(m). The goal is to find the optimal θ to maximize accuracy
(ACC):

ACC =

∑M
m=1 1{y(m) = ŷ(m)}

M
. (28)

E.2 Datasets

We include four datasets from the Baydogan archive [45].

• Spoken Arabic Digits contains time series of mel-frequency cepstrum coefficients (i.e.,
frequency-domain speech signals) corresponding to spoken Arabic digits from 44 male and 44
female native Arabic speakers;

• Australian Sign Language consists of high-quality position trackings on 27 native signers’
hands for 95 signs;

• ECG contains electrocardiogram signals to classify between a normal heartbeat and a Myocardial
Infarction;

• Pen-based Digits consists of x and y-coordinates of hand-written digits on a pressure sensi-
tive tablet by 44 writers.

The statistics of the datasets can be found in Table 4

E.3 Models

Two state-of-the-art models are chosen:

• Multivariate Long Short-Term Memory Fully Convolutional Network (MLSTM-FCN) [34],

• Fully Convolutional Network with Stacked Neural Low-rank Sequence-to-Tensor transforma-
tions (FCN-SNLST) [59].
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Table 6: Statistics of the unsupervised anomaly detection datasets.

Datasets number of max training sampling input
series length frequency signals

ADI Etcher 30 12,644 2 Mixed
CWRU Bearing 2 485,643 1200 Vibration
Chiron Mill 3 98,324 1000 Vibration
Harting Mill 3 55,137 200 Vibration

Hyperparameters ADI Etcher CWRU Bearing Chiron Mill Harting Mill
batch size 128 128 16 128
Learning rate 2e-4 1e-4 1e-4 1e-4
Epochs 50 50 50 50
Smooth size 1 1 128 1
Down-sample 1 1 2 1
STFT length 64 8 1024 32
Window size 8 4 23 64
Dropout rate 0.5 0.5 0 0
Number of GMMs 8 2 2 8
Model layers 3 1 4 6
Model size 256 2 512 128
Latent dimension 64 32 48 32
λe 0.03 0.03 0.5 0.03
ρ̂ dimension 1 1 1 1
Threshold type max mean max mean

Table 7: Hyperparameters of the TC-DAGMM model on each dataset.

E.4 Results

We closely follow the hyperparameters in the original papers [34, 59]. MLSTM-FCN is trained for
1000 epochs with batch size 128. Seq2Tens is trained until loss does not decrease for 300 epochs
with batch size 4. We adjust for autocorrelated errors in the input series and set ρ̂ as a scalar in all
cases. The results are shown in Table 5. In addition to accuracy (ACC), to aggregate results over
multiple datasets, the average relative improvement

1

D

D∑
d=1

(ACCw/, d − ACCw/o, d)

ACCw/o, d
· 100% (29)

is also reported, where D is the number of datasets, w/o denotes training without adjustment, w/
denotes with adjustment, and ACC is the averaged ACC over multiple runs.

From the table, we can observe that adjusting for autocorrelated errors is beneficial in most cases,
especially when there is room for improvement. For instance, since the accuracies of both models
on Spoken Arabic Digits and FCN-SNLST on Australian Sign Language are already very
close to 1, adjustments in these cases are not helpful. But for other cases, applying our method does
help. From the table, we can conclude that if the accuracy without adjustment reaches 0.99, then
adjusting for autocorrelated erorrs is not necessary.

Although our method is also effective on time series classification, the improvement is much smaller
when compared to the results in time series forecasting. The average relative improvements are much
smaller and the number of statistical significant cases are also lower. This is expected because the
target in classification is a discrete class label and the label is for a time series instead of just one time
step.
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F Unsupervised anomaly detection

F.1 Task description

Unsupervised anomaly detection is similar to time series classification because a time series instance
is either classified as a “normal” one or an anomaly. However, the difference is that the model is
trained in an unsupervised manner — it only has access to the normal data but not the anomalous
data. Thus, in unsupervised anomaly detection, a training dataset consists of only the M normal
inputs {X(1), . . . ,X(M)}. In testing, input-target pairs that includes both normal and anomalous data
are provided to measure the performance of the model.

Similar to time series classification, given f and θ, accuracy (ACC) is one of the metrics we use.
Another metric is the area under curve (AUC) of the receiver operating characteristic (ROC) curve,
which is a more straightforward overall metric for unsupervised training.

F.2 Datasets

For unsupervised anomaly detection, we focus on four manufacturing datasets following [44]:

• ADI Etcher [12, 28, 41]: internal sensor readings from a Lam Research plasma etcher in a
production line at ADI. A fault is defined when the etched wafer fails the subsequent electronic
test.

• CWRU Bearing [40]: vibration data from a spinning fan supported by circular ball bearings col-
lected by Case Western Reserve University (CWRU). Faults occurr when defects are introduced
to the inner raceway, outer raceway, or balls in the bearing using electro-discharge machining.

• Chiron Mill: axis accelerometer data from a Chiron milling machine. The normal data uses
new tools whereas the anomalies use worn tools.

• Harting Mill: three axis vibration data from a milling machine collected by Harting. Faults
are introduced by switching off the cooling system in the milling machine.

The statistics of the datasets are shown in Table 6.

F.3 Models

Temporal Convolutional Deep Autoencoding Gaussian Mixture Model (TC-DAGMM) is used. This
model is based on the Deep Autoencoding Gaussian Mixture Model (DAGMM) [65] framework, but
several changes are made so that the model can be successfully trained on the manufacturing data.
The changes that influence the training process include

• We adopt Temporal Convolutional Networks (TCN) as the encoder in the DAGMM framework
so that the model can look at multiple time steps per example.

• We adopt transposed convolution TCN as the decoder in the DAGMM framework.
• We do not let the Estimation Network in the DAGMM framework estimate the covariance matrix

for the Gaussian Mixture Model (GMM). Instead, we fix the covariance matrix as an identity
matrix. Consequently, the error term involving the covariance matrix is eliminated.

• Shortening transformations (smoothing, down-sampling, and short-time Fourier transform
(STFT)) are applied on the raw data to deal with lengthy time series.

• Sliding window with size W slices the shortened time series and the model only looks at one
slice at a time.

If we use T (m) to denote the length of the time series data X(m) after shortening, then there are
T (m) −W + 1 anomaly scores s(m)

t , each for one slice of X(m). That is,

s
(m)
t = f(X

(m)
t:t+W−1; θ), ∀t ∈ [1, T (m) −W + 1] . (30)

We define the anomaly score s(m) for the whole X(m) by either the mean or the max of the T (m) −
W + 1 anomaly scores:

s(m) = mean({s(m)
t }T

(m)−W+1
t=1 ) or s(m) = max({s(m)

t }T
(m)−W+1

t=1 ) . (31)
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Accuracy
Datasets w/o w/
ADI Etcher 0.9227 0.9252†
CWRU Bearing 0.9857 0.9786

Chiron Mill 0.7333 0.7625†

Harting Mill 0.9379 0.9481†
Avg. rel. improv. 1.15%

Area under curve
Datasets w/o w/
ADI Etcher 0.9585† 0.9525
CWRU Bearing 1.000 1.000
Chiron Mill 0.7222 0.7593†
Harting Mill 0.9977 0.9977
Avg. rel. improv. 1.14%

Table 8: Accuracy (upper), area under curve (lower), and average relative improvement of TC-
DAGMM on all datasets averaged over twenty runs. w/o implies without adjustment for autocorrelated
errors, whereas w/ implies with adjustment. Best performance is in boldface and is superscribed with
† if the p-value of paired t-test is lower than 5%. Average relative improvement is the percentage of
improvement of w/ over w/o averaged over all datasets for each model.

Finally, during testing, the anomaly threshold is set as two standard deviations from the mean of M
anomaly scores in the training set:

anomaly threshold = mean({s(m)}Mm=1) + 2 std({s(m)}Mm=1) . (32)

That is, any time series data X(•) is classified as an anomaly if the anomaly score s(•) is higher than
the anomaly threshold during test time.

F.4 Hyperparameters

Manufacturing datasets exhibit different characteristics from one dataset to another. Empirically, it is
difficult to train a NN on different manufacturing datasets with the same hyperparameters. Thus, we
tune the hyperparameters for each dataset to achieve the best possible results, but the hyperparameters
are identical within the same dataset with or without adjustment. The tuned hyperparameters are
listed in Table 7, where λe is the weight of energy loss in the DAGMM framework.

F.5 Results

The results are shown in Table 8. In addition to accuracy (ACC) and area under curve (AUC), we
also report the average relative improvement on both metrics, defined similar to equation (29).

From the table, we can observe that adjusting for autocorrelated errors is beneficial or at least harmless
in most cases. Analogous to the cases in time series classification, adjustment is more helpful when
there is room of improvement in the base model. The relative improvement is slightly better than that
in time series classification, probably because the DAGMM framework contains an autoencoding
structure.

22


	Appendices
	Derivation of covariance for first-order autocorrelated errors
	Detailed descriptions and statistics of real-world datasets
	Hyperparameters of all NNs for time series forecasting
	Time series regression
	Task description
	Datasets
	Models
	Results
	Decrease in autocorrelation

	Time series classification
	Task description
	Datasets
	Models
	Results

	Unsupervised anomaly detection
	Task description
	Datasets
	Models
	Hyperparameters
	Results


