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A Proofs of Main Theoretical Results

This section includes detailed proofs of all of our main theoretical results for sparse approximate
reductions via piecewise linear approximation. For convenience we include definitions and theorem
statements from the main text, expanded in some cases to provide additional clarifying details. Recall
that our goal is to sparsely (and approximately) model the submodular function

f(S) =
∑
e∈E

fe(S ∩ e) =
∑
e∈E

ge(|S ∩ e|), for S ⊆ V (1)

using a graph, which we will do by showing how to sparsely model each component function fe
individually.

Terminology and notation For our results it will be convenient to interpret the ground set V as a set
of nodes in a hypergraph H = (V,E), where each e ∈ E is an individual hyperedge and fe is the
function which determines how to penalize different ways of splitting the hyperedge e. The function
f is then a notion of a generalized hypergraph cut function [4, 6, 9]. This terminology is particularly
convenient when talking about graph reduction strategies, since modeling a function fe will involve
treating each element in e as a node. We apply this terminology here, though note that all of the
results we show will apply more generally to approximately modeling a decomposable submodular
function using the cut properties of a graph.

Throughout the supplement we use [d] to denote the set {1, 2, · · · , d} for any positive integer d ∈ N.

A.1 CB-gadgets and their combinations

We use combinations of cardinality-based (CB) gadgets to model a function fe. Let k = |e|. The cut
properties of this gadget model the function fe(A) = ge(|A|) where

ge(x) = a ·min{x · (k − b), (k − x) · b}.
The following parameterized concave function corresponds to a combination of multiple CB-gadgets.

Definition 1 A k-node combined gadget function (CGF) of order J is a function ` : [0, k]→ R+ of
the form.

`(x) = z0 · (k − x) + zk · x+

J∑
j=1

aj min{x · (k − bj), (k − x) · bj}. (2)

where z0 and zk are non-negative parameters, and the J-dimensional vectors a = (aj) and b = (bj)
satisfy the following constraints:

bj > 0, aj > 0 for all j ∈ [J ] (3)
bj < bj+1 for j ∈ [J − 1] (4)
bJ < k. (5)
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The conditions on the vectors a and b come from natural observations about combining CB-gadgets.
Conditions (3) and (5) ensure that we do not consider CB-gadgets where with edge weights that are
zero. The ordering in condition (4) is for convenience, and the fact that bj values are all distinct
implies that we cannot collapse two distinct CB-gadgets into a single CB-gadget with new weights.

We now prove the connection between concave functions with few linear pieces and combined gadget
functions of small order J .

Lemma 1 The k-node CGF in (2) is nonnegative, piecewise linear, concave, and has exactly J + 1
linear pieces. Conversely, let `′ : [0, k] → R+ be concave and piecewise linear with J + 1 linear
pieces, and let mi be the slope of the ith linear piece and Bi be the ith breakpoint. Then `′ is
uniquely characterized as the k-node CGF parameterized by ai = 1

k (mi −mi+1) and bi = Bi for
i ∈ {1, 2, . . . J}, z0 = `′(0)/k, and zk = `′(k)/k.

Proof We break up the proof into its two directions.

First direction: the CGF is a special type of piecewise linear function. Nonnegativity follows quickly
from the positivity of z0, zk, and (ai, bi) for i ∈ [J ], and bJ < k. For other properties, we begin by
defining b0 = 0, bJ+1 = k, a0 = aJ+1 = 0 for notational convenience. This allows us to re-write
the function as

`(x) = z0 · (k − x) + zk · x+

J∑
j=1

aj min{x · (k − bj), (k − x) · bj} (6)

`(x) = z0 · (k − x) + zk · x+

J+1∑
j=0

aj min{x · (k − bj), (k − x) · bj} (7)

= kz0 + x(zk − z0) + k ·
J+1∑
j=0

aj min{x, bj} − x ·
J∑
j=1

ajbj (8)

= kz0 + x(zk − z0) + kx ·
∑
j:x<bj

aj + k ·
∑
j:x≥bj

ajbj − x ·
J∑
j=1

ajbj . (9)

Now for t ∈ {0} ∪ [J ] we define

β =

J∑
j=1

ajbj , βt =

t∑
j=1

ajbj , αt =

J+1∑
j=t+1

aj ,

and observe that βt is strictly increasing with t, and αt is strictly decreasing with t. For any
t ∈ {0} ∪ [J ], the function is linear over the interval [bt, bt+1), since for x ∈ [bt, bt+1), we have

`(x) = kz0 + x(zk − z0) + kx ·
∑
j:x<bj

aj + k ·
∑
j:x≥bj

ajbj − x
J∑
j=1

ajbj

= kz0 + x(zk − z0) + kx

J+1∑
j=t+1

aj + k ·
t∑

j=1

ajbj − x
J∑
j=1

ajbj

= kz0 + x(zk − z0) + kxαt + kβt − xβ.

Thus, ` is piecewise linear. Furthermore, the slope of the line over the interval [bt, bt+1) is (zk −
z0 − β + kαt), which strictly decreases as t increases. The fact that all slopes are distinct means that
there are exactly J + 1 linear pieces, and the fact that these slopes are decreasing means that the
function is concave over the interval [0, k].

Second direction: `′ is a CGF. We are now assuming that `′ : [0, k] → R+ is some concave and
piecewise linear function on [0, k] with J + 1 linear pieces, whose ith slope is mi and whose ith
breakpoint is Bi. Let ˆ̀be the CGF whose parameters are given in the lemma statement. By the proof
of the other direction, we know that ˆ̀, like `′, is a nonnegative piecewise linear concave function
on the interval [0, k], with exactly J + 1 linear pieces. Since a piecewise linear function on [0, k] is
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uniquely determined by its breakpoints, and endpoints, and slopes, we simply need to check that `′

and ˆ̀coincide at all of these.

The parameter choice z0 = `′(0)/k and zk = `′(k)/k guarantees that these functions match at inputs
0 and k. From the proof of the first direction we know that the ith breakpoint of ˆ̀will be bi = Bi, so
the functions match at breakpoints. It remains to check that their linear pieces have exactly the same
slope.

Let `j = `′(bj) for j ∈ {0} ∪ [J + 1], where we again have used b0 = 0 and bJ+1 = k for notational
convenience. The ith linear piece of `′ has the slope

mi =
`i − `i−1
bi − bi−1

.

From the proof of the first direction we know that the ith linear piece of ˆ̀, which is the linear piece
corresponding to the interval [bi−1, bi], has the slope

m̂i = zk − z0 −
J∑
j=1

ajbj + k

J∑
j=i

aj =
`k
k
− `0
k
−

J∑
j=1

ajbj + k

J∑
j=i

aj .

We can simplify several terms using the fact that aj = 1
k (mj −mj+1). First of all,

k

J∑
j=i

aj =

J∑
j=i

[mj −mj+1] = mi −mJ+1.

Secondly,

k

J∑
j=1

ajbj =

J∑
j=1

(mj −mj+1)bj = m1b1 −mJ+1bJ +

J∑
j=2

mj(bj − bj−1)

= (`1 − `0)−mJ+1bJ +

J∑
j=2

[`j − `j−1]

= (`1 − `0)−mJ+1bJ + `J − `1
= `J − `0 −mJ+1bJ .

Therefore, the slope of the ith linear piece of ˆ̀ is

m̂i =
`J+1

k
− `0
k
−

J∑
j=1

ajbj + k

J∑
j=i

aj

=
`J+1

k
− `0
k
− `J

k
+
`0
k

+
mJ+1bJ

k
+mi −mJ+1

=
`J+1 − `J

k
+
mJ+1bJ

k
−mJ+1 +mi

=
mJ+1(bJ+1 − bJ)

k
+
mJ+1bJ

k
−mJ+1 +mi

=
mJ+1(k − bJ)

k
+
mJ+1bJ

k
−mJ+1 +mi

= mi.

Thus, the functions coincide. 2

A.2 Finding the Optimal Piecewise Linear Approximation

Lemma 1 tells us that solving the sparse approximate reduction problem for a concave function g is
equivalent to finding a concave piecewise linear curve ` satisfying

g(i) ≤ `(i) ≤ (1 + ε)g(i) for all i ∈ {0, 1, 2, . . . k}, (10)
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Algorithm 1 GREEDYPLCOVER(g, ε)

Input: ε ≥ 0, concave function g
Output: piecewise linear ` with fewest linear pieces such that g(i) ≤ `(i) ≤ (1 + ε)g(i)
L ← ∅, u← 0 //u = smallest integer not covered by approximating line
while u ≤ k do

u′, L← NEXTLINE(g, u, ε) //line covering widest range [u, u’-1]
L ← L ∪ {L}, u← u′

end while
Return `(x) = minL∈L L(x)

Algorithm 2 NEXTLINE(g, u, ε)

Input: ε ≥ 0, concave function g, integer u ∈ {0, 1, . . . k}
Output: line L satisfying g(i) ≤ L(i) ≤ (1 + ε)g(i) for i ∈ {u, u+ 1, . . . , t} for max integer t.
if u ∈ {k − 1, k} then

//If only 1 or 2 points to cover, this can be done with one line.
Return k + 1, L = LINETHROUGH({k − 1, g(k − 1)}, {k, g(k)})

end if
L← LINETHROUGH({u, (1 + ε)g(u)}, {u+ 1, g(u+ 1)}) //First candidate line
u′ = u+ 2
while u′ ≤ k and L(u′) ≤ (1 + ε)g(u′) do

if L(u′) < g(u′) then
//New candidate line, to ensure we return an upper bounding line
L← LINETHROUGH({u, (1 + ε)g(u)}, {u′, g(u′)})

end if
u′ = u′ + 1

end while
Return u′, L

such that ` has a minimum number of linear pieces. This problem can be solved using Algo-
rithm 1, which uses the function NEXTLINE (Algorithm 2) as a subroutine. For this pseudocode,
LINETHROUGH is a conceptual subroutine that returns a line L when given two points that define
L. In practice this is implemented by storing those two points, or by storing one point and the line’s
slope.

Theorem 2 Algorithm 1 solves the sparsest approximate reduction problem in O(k) operations.

Proof To prove Algorithm 1 finds the optimal result, we must confirm three things. First, the linear
pieces in L all upper bound the points {i, g(i)}. Second, for each i ∈ {0, 1, . . . , k}, one of the
lines satisfies L satisfying L(i) ≤ (1 + ε)g(i). Third, there is no collection of lines L′ of smaller
cardinality satisfying these conditions.

Greedy guarantee for Algorithm 2. Each linear piece L is found using Algorithm 2. For an integer u,
this subroutine finds the line L which satisfies

g(i) ≤ L(i) ≤ (1 + ε)g(i) for i ∈ {u, u+ 1, . . . , t}. (11)

for a maximum value of t ≤ k. To see why, note that Algorithm 2 finds the line that goes through
the point {u, (1 + ε)g(u)} and the point {v, g(v)} where v > u is the smallest integer such that
L(v+ 1) ≥ g(v + 1). If does so by sequentially considering lines through the point {u, (1 + ε)g(u)}
and points {u′, g(u′)} for increasing values of u′, updating the line at each step until it satisfies
L(u′) = g(u′) and L(u′ + 1) ≥ g(u′ + 1). By the concavity of g, this line will upper bound all
remaining points {i, g(i)}. Also by concavity, any upper bounding line with a smaller slope would
provide a worse approximation at {u, g(u)}, and therefore not provide the desired approximation at
u. Meanwhile, any upper bounding line with a larger slope would have a worse approximation at
every point {j, g(j)} when j > v, so it may not satisfy (11) for the largest value of t. Thus, the line
returned by Algorithm 2 provides an approximating line at u with the farthest reach.

Proof that greedy strategy is optimal. Algorithm 1 uses Algorithm 2 to greedily grow a collection
L of approximating lines. To see why this greedy strategy is optimal, consider any other collection
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L̂ that provides a (1 + ε) approximation everywhere, and we will show inductively that |L| ≤ |L̂|.
At the beginning we assume we have not seen any of the lines from either collection. At each step,
we require L and L̂ to produce a line that covers the smallest integer for which they previously did
not provide a cover. In the first step, L must provide a line that covers u1 = 0 and L̂ must also
provide a line that covers û1 = 0. After the first step, L produces a line covering {u1 = 0, 1, . . . , t}
where t, and L̂ produces a line covering {û1 = 0, 1, . . . , t̂}. Because Algorithm 2 is guaranteed to
find a line with a maximum reach, we have t̂ ≤ t, and we begin the next step with u2 = t+ 1 and
û2 = t̂ + 1 < t + 1. Assume inductively that at the ith step, L must provide a line covering an
integer ui and L̂ must provide a line covering ûi, where ui ≥ ûi. After this step, it is impossible for
L̂ to surpass L in such a way that ûi+1 > ui+1. This would imply that L̂ found a line that provides
a (1 + ε)-approximation for the entire range {ûi, ûi + 1, . . . , ûi+1} for ûi ≤ ui and ûi+1 > ui+1,
contradicting the fact that L finds the line that covers the set {ui, ui + 1, . . . , ui+1} for the largest
value of ui+1. We see therefore that ui ≥ ûi at every step, so it is impossible for L̂ to produce a set
of lines providing the desired approximation for the integers {0, 1, 2, . . . k} before L does.

Runtime guarantee. Regarding runtime, Algorithms 1 and 2 together visit each integer i ∈
{0, 1, 2, . . . , k} in turn once and performs a constant number of operations to check whether a
certain line provides a desired approximation to the point {i, g(i)}, and possibly to define a new
line if the approximation is not satisfied. Computing and storing the information needed to define
a line through two points is easily done in a few operations, so the overall work to find and store
all of L is O(k). Lines in L will already be sorted in terms of the value of their slopes, so in
O(|L|) ≤ O(k) time it is simple to compute intersection points of consecutive lines, and find the
slopes and breakpoints needed to fully define the piecewise linear function `(x) = minL∈L L(x). 2

A.3 Bounds on optimal reduction size

We now provide several bounds on the number of linear pieces needed to solve SpAR for different
concave functions g over an interval [0, k]. These can be viewed as stand-alone results about
approximating concave functions at integer points with piecewise linear curves. Given the equivalence
in Lemma 1, each of these results immediately implies a bound on number of CB-gadgets needed to
approximately model a concave cardinality function fe(A) = g(|A|).

Theorem 3 Let g : [0, k]→ R+ be concave and let ε ≥ 0. Algorithm 1 will return a piecewise linear
function ` with at most min{1 + bk/2c, 2 + 2dlog1+ε ke} linear pieces satisfying g(i) ≤ `(i) ≤
(1 + ε)g(i) for i ∈ {0, 1, 2, . . . k}. As ε→ 0, log1+ε k behaves as 1

ε log k.

Proof Let q be the piecewise linear curve obtained by performing linear interpolation on the points
{i, g(i)} for i ∈ {0, 1, 2, . . . , k}. This has k linear pieces and exactly matches g at integer points, so
we know we immediately have an upper bound of k linear pieces. In order to prove the logarithmic
upper bound, we will bound the number of linear pieces needed to approximate q on the entire
interval [1, k] by taking a subset of its linear pieces. Our argument follows similar previous results
for approximating a concave function with a logarithmic number of linear pieces [7].

We will prove the result first under the assumption that g (and therefore q) is a monotonically
increasing concave function. For any value y ∈ [1, k], not necessarily an integer, q(y) lies on a line
which we will denote by q(y)(x) = My · x + By, where My ≥ 0 is the slope and By ≥ 0 is the
intercept. When y = i is an integer, it may be the breakpoint between two distinct linear pieces, in
which case we use the rightmost line so that q(y) = q(i), where q(i)(x) = Mi · x + Bi has slope
Mi = g(i + 1) − g(i) and Bi = g(i) −Mi · i. For any z ∈ (y, k), the line g(y) provides a z/y
approximation to q(z) = q(z)(z), since

q(y)(z) = My · z +By ≤
z

y
(My · y +By) =

z

y
q(y) ≤ z

y
q(z).

Equivalently, the line q(y) provides a (1 + ε)-approximation for every z ∈ [y, (1 + ε)y]. Thus, it takes
J linear pieces to cover the set of intervals [1, (1 + ε)], [(1 + ε), (1 + ε)2], . . . , [(1 + ε)J−1, (1 + ε)J ]
for a positive integer J , and overall at most 1 + dlog1+ε ke linear pieces to cover all of [0, k].

If g and q instead are monotonically decreasing, then we can apply the above procedure to the
function q̂(x) = q(k − x). This is a monotonically increasing mirror image of q, and selecting an
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approximating subset of linear pieces of q̂ is equivalent to selecting an approximating subset of linear
pieces of q. If g is not monotonic and not the constant function g(x) = 0, then as a concave function,
the linear interpolation q will monotonically increase on an interval [0, r] for some integer r < k,
and then monotonically decrease on the interval [r, k]. We can apply the same procedures to find an
approximating cover for [0, r] and then another approximating cover for [r, k], and then combine the
two, for a total of 2 + 2dlog1+ε ke linear pieces. Since Algorithm 1 finds a minimum sized set of
linear pieces to cover g at integer points, it must also have at most this many linear pieces.

Finally, when ε is very small, we can do slightly better than use all k linear pieces that define q.
We can always produce a piecewise linear function matching g exactly at integer values by joining
consecutive disjoint pairs of points by a line, e.g., join {0, g(0)} and {1, g(1)} with a line, then join
{2, g(2)} and {3, g(3)} with a line, etc. This leads to a lower bound of bk/2c+ 1 lines needed for
any positive integer k. For ε = 0, Algorithm 1 will this set of linear pieces. 2

Lower bound for the square root function In order to prove a lower bound result, we will use the
following lemma of Magnanti and Stratila [7] on the number of linear pieces needed to approximate
the square root function.

Lemma A.1 (Lemma 3 in [7]) Let ε > 0 and φ(x) =
√
x. Let ψ be a piecewise linear function whose

linear pieces are all tangent lines to φ, satisfying ψ(x) ≤ (1 + ε)φ(x) for all x ∈ [l, u] for 0 < l < u.
Thenψ contains at least dlogγ(ε)

u
l e linear pieces, where γ(ε) = (1+2ε(2+ε)+2(1+ε)

√
ε(2 + ε))2.

There exists a piecewise linear function ψ∗ of this form with exactly dlogγ(ε)
u
l e linear pieces.1 As

ε→ 0, this values behaves as 1√
32ε

log u
l .

This result is concerned with approximating the square root function for all values on a continuous
interval. Therefore, it does not imply any bounds on approximating a discrete set of points of a
concave function. In fact, because we can always cover k points with k linear pieces, we know that
for any function f(k) of k, there is no lower bound of the form τ(ε)f(k) that holds for all ε > 0, if τ
is a function such that τ(ε)→∞ as ε→ 0. The best we can expect is a lower bound that holds for ε
values that may still go to zero as k →∞, but are bounded in such a way that we do not contradict
the O(k) upper bound. We prove such a result for the square root function using Lemma A.1 as a
black box. When ε falls below the bound we use in the following theorem statement, forming O(k)
linear pieces will be nearly optimal.

Theorem 4 Let g(x) =
√
x and ε ≥ k−δ for a constant δ ∈ (0, 2). Every piecewise linear `

satisfying g(i) ≤ `(i) ≤ (1 + ε)g(i) for i ∈ {0, 1, . . . k} contains Ω(logγ(ε) k) linear pieces where
γ(ε) = (1 + 2ε(2 + ε) + 2(1 + ε)

√
ε(2 + ε))2. This behaves as Ω(ε−1/2 log k) as ε→ 0.

Proof Let L∗ be the optimal set of linear pieces returned by running Algorithm 1 for the function
g(x) =

√
x. In order to show |L∗| = Ω(logγ(ε) k), we will construct a new set of linear pieces L that

has asymptotically the same number of linear pieces as L∗, but also provides a (1 + ε)-approximation
for all x in an interval [kβ , k] for some constant β < 1. Invoking Lemma A.1 will imply a lower
bound on the size of L, and in turn the number of linear pieces in L∗.
Observe that L∗ will include the line going through {0, g(0)} and {1, g(1)}, and may include the
line that goes through points {k − 1, g(k − 1)} and {k, g(k)} depending on ε and k. Otherwise, all
of the lines it includes go through exactly one point {i, g(i)} for some integer i. All of these lines
bound g(x) =

√
x above at integer points, but they may cross below g at non-integer values of x. To

apply Lemma A.1, we would like to obtain a set of linear pieces that are all tangent lines to g. We
accomplish this by replacing each linear piece with linear pieces that are tangent to g at some point.
For a positive integer j, let Lj denote the line tangent to g(x) =

√
x at x = j, which is given by

Lj(x) =
1

2
√
j

(x− j) +
√
j. (12)

We form a new set of linear pieces L made up of lines tangent to g using the following replacements:

1This additional statement is not included explicitly in the statement of Lemma 3 in [7], but it follows directly
from the proof of the lemma, which shows how to construct such an optimal function ψ∗.
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• Replace the line going through {0, g(0)} and {1, g(1)} with L1.
• If L∗ includes the line through {k − 1, g(k − 1)} and {k, g(k)}, replace it with Lk−1 and
Lk

• For a line crossing through a point {i, g(i)} for some integer i ∈ [2, k − 1], replace the line
with with Lj−1, Lj , and Lj+1.

By the concavity of g, this replacement can only improve the approximation guarantee at integer
points. Therefore, L provides a (1 + ε)-approximation at integer values, is made up strictly of lines
that are tangent to g, and contains at most three times the number of lines in L∗.
The concavity of g also tells us that if a single line L ∈ L provides a (1 + ε)-approximation at
consecutive integers i and i+1, thenL provides the same approximation guarantee for all x ∈ [i, i+1].
However, if two integers i and i+ 1 are not both covered by the same line in L, then this does not
apply and we cannot guarantee L provides a (1 + ε)-approximation for every x ∈ [i, i+ 1]. There can
be at most |L| intervals of this form, since these define intersection points between two consecutive
approximating linear pieces in L.

By Lemma A.1, we can cover an entire interval [i, i+ 1] for any integer i using a set of dlogγ(ε)
(
1 +

1
i

)
e linear pieces that are tangent to g somewhere in [i, i+ 1]. Since 1 +

√
ε ≤ γ(ε), it in fact takes

only one linear piece to cover [i, i+ 1] as long as i ≥ 1/
√
ε, since then we have 1 + 1/i ≤ 1 +

√
ε

and therefore logγ(ε)(1 + 1/i) ≤ logγ(ε)(1 +
√
ε) ≤ 1. Since ε ≥ k−δ, interval [i, i + 1] can be

covered by a single linear piece if i ≥ kδ/2. Therefore, for each interval [i, i+ 1], with i ≥ kδ/2, that
is not already covered by a single linear piece in L, we add one more linear piece to L to cover this
interval. This at most doubles the size of L.

The resulting set L will have at most 6 times as many linear pieces as L∗, and is guaranteed to provide
a (1 + ε)-approximation for all integers, as well as the entire continuous interval [kδ/2, k]. Since δ is
a fixed constant strictly less than 2, applying Lemma A.1 shows that L has at least⌈

logγ(ε)
k

kδ/2

⌉
= Ω(logγ(ε) k

1−δ/2) = Ω(logγ(ε) k)

linear pieces. Therefore, |L∗| = Ω(logγ(ε) k) as well. 2

A.4 Improved Bound for the Clique Function

When approximating the function g(x) = x(k − x) for an integer k, Algorithm 1 will in fact find a
piecewise linear curve with at most O(ε−1/2 log log 1

ε ) linear pieces. We prove this by highlighting
a different approach for constructing a piecewise linear curve with this many linear pieces, which
upper bounds the minimum number of linear pieces returned by Algorithm 1. We refer to this as the
clique function, since the submodular function fe defined by fe(A) = g(|A|) = |A|(|e| − |A|) is the
cut function for a complete graph (i.e., a clique) on a set of k = |e| nodes.

As we did with Algorithm 1, we want to build a set of linear pieces L that provides and upper
bounding (1 + ε)-cover of g at integer values in [0, k]. We start by adding the line g(0)(x) =
(g(1)− g(0))x+ g(0) = (k − 1) · x to L, which perfectly covers the first two points {0, g(0)} and
{1, g(1)}. In the remainder of the procedure we will find a set of linear pieces to (1 + ε)-cover g at
every value of x ∈ [1, k/2], even non-integer x. The fact that the function satisfies g(x) = g(k − x)
implies that we can double the number of linear pieces to ensure we also cover the interval [k/2, k].

We apply a greedy procedure similar to Algorithm 1, summarized in Algorithm 3. At each iteration
we consider a leftmost endpoint zi which is the largest value in [1, k/2] for which we already have
a (1 + ε)-approximation. In the first iteration, we have z1 = 1. We then would like to find a new
linear piece that provides a (1 + ε)-approximation for all values from zi to some zi+1, where the
value of zi+1 is maximized. We restrict to linear pieces that are tangent to g. The line tangent to g at
t ∈ [1, k/2] is given by

gt(x) = kx− 2tx+ t2 . (13)
We find zi+1 in two steps:

1. Step 1: Find the maximum value t such that gt(zi) = (1 + ε)g(zi).
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Algorithm 3 Find a (1 + ε)-cover for the clique function.

Input: Integer k, ε ≥ 0
Output: (1 + ε) cover for the clique function g(x) = x(k − x) for [1, k/2].
L = {g(0)}, where g(0)(x) = (k − 1)x
z = 1
do

t← z +
√
z(k − z)ε

z ← t
1+ε + kε

2(1+ε) + 1
2(1+ε)

(
k2ε2 + 4εt(k − t)

)1/2
L ← L ∪ {gt}, where gt(x) = kx− 2tx+ t2

while zi+1 < k/2
Return ` defined by `(x) = minL∈L L(x)

2. Step 2: Given t, find the maximum zi+1 such that gt(zi+1) = (1 + ε)g(zi+1).

After completing these two steps, we add the linear piece gt to L, knowing that it covers all values in
[zi, zi+1] with a (1 + ε)-approximation. At this point, we will have a cover for all values in [0, zi+1],
and we begin a new iteration with zi+1 being the largest value covered. We continue until we have
covered all values up until zi+1 ≥ k/2.

Lemma A.2 For any zi ∈ [1, k/2], the values of t and zi+1 given in steps 1 and 2 are given by

t = zi +
√
zi(k − zi)ε (14)

zi+1 =
t

1 + ε
+

kε

2(1 + ε)
+

1

2(1 + ε)

(
k2ε2 + 4εt(k − t)

)1/2
(15)

Proof The proof simply requires solving two different quadratic equations. For Step 1:

gt(zi) = (1 + ε)g(zi) ⇐⇒ kzi − 2tzi + t2 = (1 + ε)(zik − z2i )

⇐⇒ t2 − 2zit− εzik + (1 + ε)z2i = 0

Taking the larger solution to maximize t:

t =
1

2

(
2zi +

√
4z2i − 4(1 + ε)z2i + 4εkzi

)
= zi +

√
zi(k − zi)ε.

For Step 2:

gt(zi+1) = (1 + ε)g(zi+1) ⇐⇒ kzi+1 − 2tzi+1 + t2 = (1 + ε)(zi+1k − z2i+1)

⇐⇒ (1 + ε)z2i+1 + zi+1(−εk − 2t) + t2 = 0.

We again take the larger solution to this quadratic equation since we want to maximize zi+1:

zi+1 =
1

2(1 + ε)

(
εk + 2t+

√
ε2k2 + 4tεk + 4t2 − 4(1 + ε)t2

)
=

1

2(1 + ε)

(
εk + 2t+

√
ε2k2 + 4tε(k − t)

)
.

2

Since z1 = 1, if ε ≥ 1, then

z2 ≥
1

2(1 + ε)
(2kε) =

kε

1 + ε
≥ k

2
,

so after one step we have covered the entire interval [1, k/2]. We can therefore focus on ε < 1. We
are now ready to prove the result given in the main text.

Theorem 5 Let g(x) = x · (k − x) for a positive integer k. For ε > 0, the approximating function `
returned by Algorithm 1 will have O(ε−1/2 log log ε−1) linear pieces.

8



Proof The result holds if we can show that Algorithm 3 outputs a collection L with at most
O(ε−1/2 log log 1

ε ) lines for any ε < 1. We get a loose bound for the value of t in Lemma A.2 by
noting that (k − zi) ≥ k/2 ≥ zi:

t = zi +
√
ziε(k − zi) ≥ zi +

√
z2i ε = zi(1 +

√
ε). (16)

Since we assumed ε < 1, we know that

t

1 + ε
≥ zi(1 +

√
ε)

1 + ε
> zi. (17)

Therefore, from (15) we see that

zi+1 > zi +
kε

2(1 + ε)
+

1

2(1 + ε)

(
k2ε2 + 4εt(k − t)

)1/2
(18)

> zi +
kε

2(1 + ε)
+

1

2(1 + ε)

(
k2ε2

)1/2
= zi +

kε

1 + ε
. (19)

From this we see that at each iteration, we cover an additional interval of length zi+1− zi > kε
1+ε , and

therefore we know it will take at most O(1/ε) iterations to cover all of [1, k/2]. This upper bound is
loose, however. The value of zi+1 − zi in fact increases significantly with each iteration, allowing the
algorithm to cover larger and larger intervals as it progresses.

Since z1 = 1 and zi+1 − zi ≥ kε
1+ε , we see that zj ≥ kε for all j ≥ 3. For the remainder of the proof,

we focus on bounding the number of iterations it takes to cover the interval [kε, k/2]. We separate
the progress made by Algorithm 3 into different rounds. Round j refers to the set of iterations that
the algorithm spends to cover the interval

Rj =
[
kε(

1
2 )

j−1

, kε(
1
2 )

j]
, (20)

For example, Round 1 starts with the iteration i such that zi ≥ kε, and terminates when the algorithm
reaches an iteration i′ where zi′ ≥ kε1/2. A key observation is that it takes less than 4/

√
ε iterations

for the algorithm to finish Round j for any value of j. To see why, observe that from the bound
in (18) we have

zi+1 − zi >
kε

2(1 + ε)
+

1

2(1 + ε)

(
k2ε2 + 4εt(k − t)

)1/2
>

1

2(1 + ε)
(4εt(k − t))1/2

≥ 1

2(1 + ε)

(
4εzi

k

2

)1/2

>

√
2

2

√
kε

(1 + ε)

√
zi.

For each iteration i in Round j, we know that zi ≥ kε(
1
2 )

j−1

, so that

zi+1 − zi >
√

2

2

√
kε

(1 + ε)

√
kε(

1
2 )

j−1

≥
√

2

2

kε
1
2+( 1

2 )
j

1 + ε
= C · k · ε

1
2+( 1

2 )
j

, (21)

where C =
√

2/(2(1 + ε)) is a constant larger than 1/4. Since each iteration of Round j covers an

interval of length at least C · k · ε
1
2+( 1

2 )
j

, and the right endpoint for Round j is kε(
1
2 )

j

, the maximum
number of iterations needed to complete Round j is

kε(
1
2 )

j

C · k · ε
1
2+( 1

2 )
j =

1

C
√
ε
. (22)

Therefore, after p rounds, the algorithm will have performed O(p · ε−1/2) iterations, to cover the
interval [1, kε(

1
2 )

p

]. Since we set out to cover the interval [1, k/2], this will be accomplished as soon

9



Algorithm 4 SPARSECARD(f, ε)

Input: ε ≥ 0, function f(S) =
∑
e∈E fe(S ∩ e) =

∑
e∈E ge(|S ∩ e|) on ground set V

Output: Set S′ ⊆ V satisfying f(S′) ≤ (1 + ε) minS⊆V f(S).
A ← ∅, E ← ∅ //initialize auxiliary node and edge set for reduced graph

for e ∈ E do
//Step 1: solve piecewise linear function approximation problem
`e ← GREEDYPLCOVER(ge, ε)

//Step 2: Construct graph gadget for e with auxiliary nodes Ae
Ge = (e ∪ Ae ∪ {s, t}, Ee)← CGFTOGADGET(`e)

//Step 3: Add new auxiliary nodes and edges for building graph G
A ← A∪Ae, E ← E ∪ Ee

end for
G = (V ∪ A ∪ {s, t}, E) //Build graph G modeling f
T = MINSTCUT(G) //Find minimum s-t cut
Return S′ = T ∩ V //Ignore auxiliary nodes

as p satisfies ε(
1
2 )

p

≥ 1/2, which holds as long as p ≥ log2 log2
1
ε :

ε(
1
2 )

p

≥ 1/2 ⇐⇒
(

1

2

)p
log2 ε ≥ −1

⇐⇒ log2 ε ≥ −2p

⇐⇒ log2

1

ε
≤ 2p

⇐⇒ log2 log2

1

ε
≤ p.

This means that the number of iteration of Algorithm 3, and therefore the number of linear pieces in
L, is bounded above by O(ε−1/2 log log 1

ε ). 2

A.5 Theoretical Guarantees for SPARSECARD

Algorithm 2 gives pseudocode for SPARSECARD, which relies on Algorithm 1 for finding a piecewise
linear approximation `e for each function ge, and Algorithm 5 for converting the piecewise linear
function into a combination of CB-gadgets that approximately models fe(A) = ge(|A|).

Theorem 6 Let n = |V | and R = |E|. When ε = 0, the graph constructed by SPARSECARD
will have O(

∑
e∈E |e|) nodes and O(

∑
e∈E |e|2) edges. When ε > 0, the graph will have O(n +∑

e∈E ε
−1 log |e|) nodes and O(ε−1

∑
e∈E |e| log |e|) edges. In either case, and the method will

return a set T satisfying f(T ) ≤ (1 + ε) minS⊆V f(S).

Proof Each auxiliary node in the graph construction for SPARSECARD is unique to its own CB-
gadget, but the source node s and sink node t are shared across all combined gadgets, and each node
v ∈ V will show up in multiple CB-gadgets. When ε = 0, we will need b|e|/2c + 1 CB-gadgets
to exactly model the function fe(A) = ge(|A|) for a node set e. This comes from Theorem 3 and
the fact that we need bk/2c + 1 linear pieces to exactly match the function ge at integer points
{0, 1, 2, . . . , k = |e|}. Overall then, the total number of auxiliary nodes is

|A| =
∑
e∈E

(b|e|/2c+ 1),

and when we include {s, t} and V , the total number of nodes is asymptotically still O(
∑
e∈E |e|).

Since each CB-gadget for e requires 2|e| directed edges, the number of edges due to CB-gadgets is∑
e∈E

2|e| · (b|e|/2c+ 1) = O(
∑
e∈E
|e|2).
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Algorithm 5 CGFTOGADGET(`e)

Input: Piecewise linear function `e on [0, k] where k = |e| for a set e
Output: Ge = (e ∪ Ae ∪ {s, t}, Ee): combination of CB-gadgets modeling f̂e(A) = `e(|A|).

// Extract information about linear pieces
J = ( # of linear pieces of `e)− 1
{m1,m2, . . . ,mJ+1} = slopes of linear pieces of `e
{b1, b2, . . . , bJ} = breakpoints of `e
z0 = `e(0)/k
zk = `e(k)/k

// Build collection of CB-gadgets
Ae ← ∅, Ee ← ∅
s← source node
t← sink node
for v ∈ e do

Add directed edge (s, v) of weight z0 to Ee
Add directed edge (v, t) of weight zk to Ee
for i = 1 to J do

// Edges for the i-th CB-gadget gadget
ai ← 1

k (mi −mi+1)
Ae ← Ae ∪ {ve,i}
Add directed edge (v, ve,i) of weight ai(k − bi) to Ee
Add directed edge (ve,i, v) of weight aibi to Ee

end for
end for
Return Ge = (e ∪ Ae ∪ {s, t}, Ee)

Adding in the edges between V and {s, t} increases the total number of edges by O(n). The bound
on the number of nodes and edges when ε > 0 follows the same steps, except we apply that fact that
each fe is approximately modeled using a set of O( 1

ε log |e|) CB-gadgets.

To prove the approximation result, let Ge = ({s, t} ∪ e ∪ Ae) be the small graph constructed in
Algorithm 5 via a combination of CB-gadgets to approximately model fe(A) = ge(|A|). By design,
for every A ⊆ e the cut properties of this small graph satisfy

min
B⊆Ae

cutGe
({s} ∪B ∪A) = `e(|A|). (23)

where `e is the piecewise linear function constructed by Algorithm 1 to approximate ge, and cutGe

is the cut function of the graph Ge. In other words, if you take any subset of the nodes in e and
rearrange auxiliary nodes Ae so that you get the minimum cut penalty subject to A being on the
source side, that penalty is `e(|A|) ≤ (1 + ε)ge(|A|) = (1 + ε)fe(A). The minimum s-t cut set in
the overall graph G is therefore

T = argminS⊆V

{∑
e∈E

min
B⊆Ae

cutGe
({s} ∪B ∪ (e ∩ S))

}
= argminS⊆V

{∑
e∈E

`e(|e ∩ S|)

}
.

If S∗ = argminS⊆V f(S) =
∑
e∈E fe(S ∩ e) is the minimizer of the original decomposable

submodular function, then we have

f(S∗) ≤ f(T ) =
∑
e∈E

`e(|e∩T |) ≤ (1+ε)
∑
e∈E

ge(|e∩T |) = (1+ε)
∑
e∈E

fe(e∩T ) = (1+ε)f(T ).

2

B Improved Approach for Symmetric Functions

In many applications of decomposable submodular function minimization, some or all of the com-
ponent functions fe are symmetric, meaning that for every A ⊆ e they satisfy fe(A) = fe(e\A).
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Another common assumption is that fe(e) = fe(∅) = 0. These two conditions are typically as-
sumed in applications where fe represents a generalized cut penalty for a hyperedge e in some
hypergraph [9, 4, 6, 10, 2]. Symmetry implies that if a hyperedge is partitioned into sets A and e\A,
it does not matter which side of the cut each set is on. The condition fe(e) = fe(∅) = 0 reflects the
fact that there should be no cut penalty if a hyperedge e is completely contained on one side of the
cut other the other.

Assuming these two conditions leads simply to a special case of the more general functions we
considered above, which can therefore be handled using the reduction technique outlined previously.
However, there is a slightly more efficient graph reduction technique for symmetric functions that
requires roughly half the number of edges. While this makes no different for our asymptotic results,
cutting down the number of edges in the reduced graph by a factor of two can be very worthwhile in
practice. We therefore provide details for this more efficient reduction strategy. In addition to the
symmetric property, we will assume that all functions fe we consider satisfy fe(e) = fe(∅) = 0.
Slight adjustments can be made to also handle the case where the function is not symmetric but still
satisfies fe(e) = fe(∅) > 0. Note that the reduction here is what we use when modeling the clique
submodular function fe(A) = |A||e\A| that arises frequently in hypergraph clustering applications
and image segmentation.

B.1 The symmetric cardinality-based gadget

The more efficient graph reduction strategy relies on a different type of CB-gadget designed specifi-
cally for symmetric functions. This gadget is parameterized by positive scalars a and b, and includes
two auxiliary nodes e′ and e′′. For each node v ∈ e, there is a directed edge from v to e′ and a
directed edge from e′′ to v, both of weight a. Lastly, there is a directed edge from e′ to e′′ of weight
a · b. This CB-gadget models the following symmetric submodular function:

fa,b(A) = a ·min{|A|, |e\A|, b}. (24)
We previously showed that any submodular cardinality-based function fe on a ground set e can
be modeled with a combination of bk/2c symmetric CB-gadgets where k = |e| [9]. Recall that
these authors showed how to use k − 1 asymmetric CB-gadgets to model more general submodular
cardinality-based functions. Although each symmetric CB-gadget has two auxiliary nodes and
asymmetric CB-gadgets has one auxiliary node, note that symmetric CB-gadgets have only one extra
edge. Therefore, modeling a symmetric function with bk/2c symmetric CB-gadgets is more efficient
(i.e., requires fewer edges overall) than using k − 1 asymmetric CB-gadgets. The same type of
savings is possible when approximately modeling symmetric submodular functions with symmetric
CB-gadgets.

B.2 Sparse reduction for symmetric concave cardinality functions

Previously we defined a function fe to be a concave cardinality function if fe(A) = ge(|A|) for
some concave function ge. If fe is additionally symmetric, then we will use the fact that fe(A) =
he(min{|A|, |e\A|}) for some concave and monotonically increasing function he. If k = |e|, then
fe has only r = bk/2c different output penalties. The symmetric function in (24), which is modeled
by the symmetric CB-gadget, can be defined by fa,b(A) = ha,b(min{|A|, |e\A|}) where

ha,b(x) = a ·min{x, b} . (25)
If we combine multiple functions of the form (25) for different parameters (a, b), then we reach the
symmetric analog of the combined gadget function from Definition 1.

Definition 2 For an integer k and r = bk/2c, a type-r symmetric combined gadget function (r-Sym-
CGF) of order J is a function ` : [0, r]→ R+ of the form:

`(x) =

J∑
j=1

aj min{x, bj}, (26)

where the parameters (aj) and (bj) satisfy

bj > 0, aj > 0 for all j ∈ [J ] (27)
bj < bj+1 for j ∈ [J − 1] (28)
bJ ≤ r. (29)
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We similarly obtain have a symmetric analog of the sparse approximate reduction problem.

Definition 3 Let h : [0, r]→ R+ be a nonnegative concave increasing function and fix ε ≥ 0. The
symmetric sparsest approximate reduction (Sym-SpAR) problem seeks a type-r symmetric CGF `
with minimum order J so that

h(i) ≤ `(i) ≤ (1 + ε)h(i) for all i ∈ {0, 1, 2, . . . r}. (30)

B.3 Connection to piecewise linear approximation

Just as we did for asymmetric functions, we can relate the symmetric sparse approximate reduction
(Sym-SpAR) problem to piecewise linear function approximation. The equivalence result and
resulting piecewise linear approximation problem is very similar in spirit, though a few subtle and
important changes are required due to differences in the symmetric and asymmetric CB-gadgets. For
the symmetric case we are approximating a monotonic concave function on an interval [0, bk/2c],
rather than an arbitrary concave function on an interval [0, k]. When approximating such a curve, it
ends up being important for the last linear piece to have a slope of zero, otherwise the resulting graph
reduction for fe will have one more CB-gadget that is strictly necessary, and therefore will not quite
be optimally sparse. Asymptotically this makes little difference, but in practice, including one more
CB-gadget than necessary for each function fe will lead to an unnecessary increase in runtime. In
order to ensure we in fact optimally solve Sym-SpAR and implement the most efficient approach, we
carefully outline the necessary changes we need to make for symmetric functions.

The class of piecewise linear functions we consider for the symmetric problem is slightly more
specific than the functions we used for the general case, so we include a precise definition.

Definition 4 For r ∈ N, Fr is the class of functions f : [0,∞] −→ R+ such that:

1. f(0) = 0

2. f is a constant for all x ≥ r
3. f is increasing: x1 ≤ x2 =⇒ f(x1) ≤ f(x2)

4. f is piecewise linear

5. f is concave (and hence, continuous).

Lemma 1 in the main text provided an exact relationship between asymmetric combined gadget
functions (Definition 1) and a certain class of piecewise linear functions. The following results are
the analog for symmetric combined gadget functions.

Lemma 7 The function ` in (26) is in the class Fr, and has exactly J positive sloped linear pieces,
and one linear piece of slope zero.

Proof Define b0 = 0 for notational convenience. The first three conditions in Definition 4 can be
seen by inspection, recalling that 0 < aj and 0 < bj ≤ r for all j ∈ [J ]. Observe that ` is linear over
the interval [bi−1, bi) for i ∈ [J ], since for x ∈ [bi−1, bi),

`(x) =

J∑
j=1

aj ·min{x, bj} =

i−1∑
j=1

ajbj + x ·
J∑
j=i

aj .

In other words, the ith linear piece of `, defined over x ∈ [bi−1, bi) is given by `(i)(x) = Ii + Six,

where the intercept and slope terms are given by Ii =
∑i−1
j=1 ajbj and Si =

∑J
j=i aj . For the first J

intervals of the form [bi−1, bi), the slopes are always positive but strictly decreasing. Thus, there are
exactly J positive sloped linear pieces. The final linear piece is a flat line, since `(x) =

∑J
j=1 ajbj

for all x ≥ bJ . The concavity of ` follows directly from the fact that it is a continuous and piecewise
linear function with decreasing slopes. 2

Lemma 8 Let `′ be a function in Fr with J + 1 linear pieces. Let bi denote the ith breakpoint of `′,
and mi denote the slope of the ith linear piece of `. Define vectors a, b ∈ RJ where b(i) = bi and
a(i) = ai = mi −mi+1 for i ∈ [J ]. Then `′ is the type-r CGF of order J parameterized by vectors
(a, b).
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Proof Since `′ is in Fr, it has J positive-sloped linear pieces and one flat linear piece, and therefore
it has exactly J breakpoints: 0 < b1 < b2 < . . . < bJ . Let b = (bj) be the vector storing these
breakpoints. For convenience we define b0 = 0, though b0 is not stored in b. By definition, `′ is
constant for all x ≥ r, which implies that bJ ≤ r.

Let `i = `′(bi). For i ∈ [J ], the positive slope of the ith linear piece of `′, which occurs in the range
[bi−1, bi], is given by

mi =
`i − `i−1
bi − bi−1

. (31)

The ith linear piece of `′ is given by

`(i)(x) = mi(x− bi−1) + `i−1 for x ∈ [bi−1, bi]. (32)

The last linear piece of `′ is a flat line over the interval x ∈ [bJ ,∞), i.e., mJ+1 = 0. Since `′ has
positive and strictly decreasing slopes, we can see that ai = mi −mi+1 > 0 for all i ∈ [J ].

Let ˆ̀be the type-r CGF of order-J constructed from vectors (a,b):

ˆ̀(x) =

J∑
j=1

aj ·min{x, bj}. (33)

We must check that ˆ̀= `′. By Lemma 7, we know that ˆ̀ is in Fr and has exactly J + 1 linear pieces.
The functions will be the same, therefore, if they share the same values at breakpoints. Evaluating ˆ̀

at an arbitrary breakpoint bi gives:

ˆ̀(bi) =

i−1∑
j=1

aj · bj

+ bi ·

 J∑
j=i

aj

 =

i−1∑
j=1

aj · bj

+ bi ·mi. (34)

We first confirm that the functions coincide at the first breakpoint:

ˆ̀(b1) = b1 ·m1 = b1 ·
`1 − `0
b1 − b0

= b1
`1
b1

= `1.

For any fixed i ∈ {2, 3, . . . , J},

ˆ̀(bi)− ˆ̀(bi−1) =

i−1∑
j=1

ajbj

+ bimi −

i−2∑
j=1

ajbj

− bi−1mi−1

= ai−1bi−1 + bimi − bi−1mi−1

= (mi−1 −mi)bi−1 + bimi − bi−1mi−1

= mi(bi − bi−1) = `i − `i−1.

Since `′(b1) = ˆ̀(b1) and `′(bi) − `′(bi−1) = ˆ̀(bi) − ˆ̀(bi−1) for i ∈ {2, 3, . . . , t}, we have
`′(bi) = ˆ̀(bi) for i ∈ [J ]. Therefore, `′ and ˆ̀are the same piecewise linear function. 2

B.4 Other adjustments for symmetric function graph reductions

Given the equivalence results in Lemma 7 and 8, we can see again that in order to model a symmetric
concave cardinality function using symmetric CB-gadgets, we need to solve a piecewise linear
approximation problem. Specifically, we need to approximate a concave and increasing function h
at integer points {0, 1, 2, . . . , r} with a minimum number of positive sloped linear pieces, and one
flat linear piece. To do so, we run Algorithms 1 and 2 to get a collection of lines L, and make the
following adjustments to ensure the last linear pieces is flat:

• If the last line in L has negative slope, remove it.

• If the last two lines provide a (1 + ε)-approximation at the point {r − 1, h(r − 1)}, and the
last line has a positive slope, remove the last line.
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Whether or not we apply one of the above two steps, we finish by adding the line L(x) = h(r) to L.
This adjustment ensures that we still provide a (1 + ε)-approximation at all integers {0, 1, . . . r}, we
include one line of slope zero, and we do not keep more positive sloped lines than necessary.

We also apply slight adjustments to our graph construction procedure in the case of a symmetric
concave cardinality function fe. We apply the same basic approach as in Algorithm 5, except we
use the symmetric CB-gadget construction and use Lemma 8 to determine parameters for these
CB-gadgets from the piecewise linear approximation. Finally, observe that the asymptotic bounds
we prove for approximating certain concave functions with piecewise linear approximations in
Section 3.3 also apply to the symmetric case, which only differs in how the last linear piece in the
approximation is found. Similarly, the asymptotic number of auxiliary nodes and edges we need to
model different kinds of concave cardinality functions does not change for the symmetric case, as the
symmetric graph construction and the general asymmetric construction differ only by a factor of two
in terms of the number of auxiliary nodes and edges needed.

C Experiment Details

We implemented our sparse reduction techniques in the Julia programming language, and used an
implementation of the push-relabel maximum flow algorithm to solve the minimum s-t cuts for
SPARSECARD. To ensure reducibility, we provide additional details for our experimental results.

C.1 Parameter Settings for Image Segmentation Experiments

The continuous optimization methods for DSFM that we compare against are implemented in C++
with a MATLAB front end. The Incidence Relation AP (IAP) method is an improved version of the
AP method [8]. Li and Milenkovic [5] showed that the runtime of the method can be significantly
faster if one accounts for so-called incidence relations, which describe sets of nodes that define
the support of a component function. In our experiments we also ran the standard AP algorithm as
implemented by Li and Milenkovic, but this always performed noticeably worse that IAP in practice,
so we only report results for IAP. Neither of these methods require setting any hyperparameters.

Li and Milenkovic [5] also showed that accounting for incidence relations leads to improved parallel
runtimes for ACDM and RCDM, but this does not improve serial runtimes. To simulate improved
parallel runtimes, the implementations ACDM and RCDM of these authors include a parallelization
parameter α = K/R, where K is the number of projections performed in an inner loop of these
methods, and R is the number of component functions. In theory, the K projections could be
performed in parallel, leading to faster overall runtimes. The comparative parallel performance
between methods can be simulated by seeing how quickly the methods converge in terms of the
number of total projections performed. Note however that the implementations themselves are serial,
and only simulate what could happen in a parallel setting.

In our experiments our goal is to obtain the fastest possible serial runtimes. Li and Milenkovic [5]
demonstrated that the minimum number of total projections needed to achieve convergence to within
a small tolerance is typically achieved when α is quite small. When projections are performed in
parallel, choosing a larger α may still be advantageous. However, since our goal is to obtain the fast
serial runtimes, we chose a small value α = 0.01, based on the results of Li and Milenkovic. We also
tried larger and smaller values of α in post-hoc experiments on all four instances of DSFM, though
this led to little variation in performance.

In addition to α, ACDM relies on an empirical parameter c controlling the number of iterations in an
outer loop. We used the recommended default parameter c = 10. In general it is unclear how to set
this parameter a priori to obtain better than default behavior on a given DSFM instance. In order to
highlight the strength of SPARSECARD relative to ACDM, we additionally tried post-hoc tuning of c
on each dataset to see how much this could affect results. We ran ACDM on each of the four instances
of DSFM (2 image datasets × 2 superpixel segmentations each) for all c ∈ {10, 25, 50, 100, 200},
three different times, for 50R projections (i.e., on average we visit and perform a projection step at
each component function 50 times). This took roughly 30-45 seconds for each run. We then computed
the average duality gap for each c and each instance over the three trials, and re-ran the algorithm for
even longer using the best value of c for each instance. The result is shown as ACDM-best in Figure 1
in the main text. SPARSECARD still maintains a clear advantage over this method on the instances
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that involve 200 superpixels (i.e., very large region potentials). Our method also obtains better
approximations for the smallplant dataset with 500 superpixels for the first 40 seconds, after which
point ACDM-best converges to the optimal solution. Nevertheless, we would not have been able to
see this improved behavior without post-hoc tuning of the hyperparameter c for ACDM. Meanwhile,
SPARSECARD does not rely on any parameter except ε, and it is very easy to understand how setting
this parameter affects the algorithm as it directly controls the sparsity and a priori approximation
guarantee for our method.

We remark finally that that Li and Milenkovic [5] also considered and implemented an alternate
version of RCDM (RCDM-greedy) with a greedy sampling strategy for visiting component functions
in the method’s inner loop. Despite being advantageous for parallel implementations, we found that
in practice that this method had worse serial runtimes, so we did not report results for it.

C.2 Hypergraph Localized Clustering Experiments

Background on HyperLocal. For our local hypergraph clustering experiments, we inserted SPAR-
SECARD as a subroutine into the method HYPERLOCAL, which finds a cluster S in a hypergraph
H = (V,E) that is localized around an input set Z ⊂ V . It does so by minimizing the following
ratio cut objective:

φ(S) =
cutH(S)

vol(Z ∩ S)− βvol(Z̄ ∩ S)
, subject to vol(Z̄ ∩ S) ≥ 0. (35)

Here, Z̄ = V \Z denotes the complement set of Z. For a node set T ⊆ V , vol(T ) denotes volume of
T , i.e., the sum of node degrees. The term vol(Z ∩ S) in the denominator rewards a high overlap
between the output cluster S and the input set Z. The second term −βvol(Z̄ ∩ S) is a penalty for
including too many nodes outside the input set Z. This is tuned by a locality parameter β > 0.
For smaller values of β, the algorithm will explore a larger region in the hypergraph in search for
good clusters. The function cutH is a generalized hypergraph cut function that can be viewed as a
decomposable submodular function

cutH(S) =
∑
e∈E

fe(e ∩ S), (36)

where fe determines the penalty for how the hyperedge e is split among two clusters.

HYPERLOCAL minimizes (35) by solving a sequence of hypergraph s-t cut problems, which can also
be viewed as DSFM problems. These s-t cut problems are solved using the previous exact graph
reduction techniques for concave cardinality functions fe that the authors designed in earlier work [9].
However, the existing implementation of HYPERLOCAL only uses the δ-linear component function,
which takes the form

fe(A) = min{|A|, |e\A|, δ} for A ⊆ e, (37)

for a parameter δ ≥ 1. One of the major benefits of this hyperedge cut penalty is that it can be
modeled exactly and sparsely using a single CB-gadget with parameters a = 1 and b = δ.

HyperLocal + SparseCard. Alternative hyperedge cut penalties have the potential to produce
improved results in some applications. However, exact reduction techniques for alternate penalties
can become infeasible if they require too many CB-gadgets to model, as this results in a very dense
reduced graph. This will no longer be a problem when we use SPARSECARD as a subroutine for
HYPERLOCAL. Our updated version of HYPERLOCAL takes in a parameter ε ≥ 0 and any set
of concave cardinality penalties {fe}e∈E . We then use SPARSECARD (i.e., a sparse approximate
reduction followed by solving a graph s-t cut problem), to solve the sequence of hypergraph s-t
cut problems needed to minimize a ratio objective of the form (35). We specifically consider the
following three alternative cut penalties in our experiments:

Clique penalty: fe(A) = (|e| − 1)−1|A||e\A|

Square root penalty: fe(A) =
√

min{|A|, |e\A|}
Sublinear power (x0.9) penalty: fe(A) = (min{|A|, |e\A|})0.9.

All of these penalties requireO(|e|) CB-gadgets to model exactly using previous reduction techniques.
These penalties satisfy the normalizing condition that fe(A) = 1 when |A| = 1, though if desired
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they could be scaled by a constant. Scaling the clique penalty |A||e\A| by (|e| − 1)−1 has several
other additional desirable properties that have led to its use in numerous other hypergraph clustering
frameworks [11, 3, 1].

Experimental setup and parameter settings. We follow the same experimental setup as our
previous work [10] for detecting localized clusters in the Stackoverflow hypergraph. We focus on
the same set of 45 local clusters, all of which are question topics involving between 2,000 and
10,000 nodes. For each cluster, we generate a random seed set by selecting 5% of the nodes in the
target cluster uniformly at random, and then add neighboring nodes to the seed set to grow it into a
larger input set Z to use for HYPERLOCAL (see [10] for details). We set δ = 5000 for the δ-linear
hyperedge cut function and set the locality parameters to be β = 1.0 for all experiments. With this
setup, using HYPERLOCAL with the δ-linear penalty will then reproduce our original experimental
setup [10]. Our goal is to show how using SPARSECARD leads to fast and often improved results for
alternative penalties that could not previously been used.

Summary of experimental findings. In the main text we showed average runtimes and F1 scores
for cluster detection across the 45 clusters using four hyperedge cut penalties. Using δ-linear penalty
corresponds to a previous approach. Using the clique, square root, and sublinear power penalties
demonstrate the utility of SPARSECARD. We highlight three main takeaways from these results in
Table 3 in the main text.

1. SPARSECARD leads to improved results that would not be possible with previous techniques.
In particular, the clique and sublinear power penalty often obtain better F1 scores than
the δ-linear penalty, but we would not be able to use these without our sparse reduction
techniques. Given that the hypergraph has thousands of hyperedges with over a thousand
nodes, using O(|e|2) edges to model these splitting penalties for each e ∈ E is infeasible.
Furthermore, we previously demonstrated that discarding all hyperedges above 50 nodes
and performing an exact clique expansion leads to poor detection results (and even so the
reduced graph is quite dense) [10].

2. Approximate reductions lead to significantly improved runtimes, while still approximating
the original hyperedge cut function extremely well. We saw almost no difference in F1
scores when using ε = 1.0, ε = 0.1, and ε = 0.01, although larger ε values led to much
faster runtimes. This matches our observation in image segmentation experiments that
for a parameter ε, SPARSECARD will tend to provide much better than just a (1 + ε)
approximation in practice.

3. Our approximate reductions are efficient and useful even for the hardest functions to model.
Theorem 4 in the main text showed that the square root function exhibits worst case behavior
in terms of the number of CB-gadgets needed to approximately model it. Nevertheless, our
results on the Stackoverflow hypergraph indicate that we can obtain approximations and
runtimes for this penalty that are nearly as fast as other penalties. For the Stackoverflow
dataset, this penalty does not perform particularly well in terms of F1 scores, but this shows
us SPARSECARD can provide an efficient and useful way to model any concave cardinality
penalty that one may encounter in different applications.

Extended experimental results. In order to further confirm the three main findings highlighted
above, we provide extended results on the Stackoverflow hypergraph. Results in the main text are
shown for two values of ε, a single seed set for each cluster, and were obtained by running experiments
on a laptop with 8GB of RAM. In order to run a larger number of experiments, we additionally ran
experiments on a machine with 4 x 18-core, 3.10 GHz Intel Xeon gold processors with 1.5 TB RAM.
We generated 10 different randomly selected seed sets for each cluster, and ran each method for
each of the ten seed sets on each cluster. We used three different approximation parameters for the
three alternative penalties, ε ∈ {1.0, 0.1, 0.01}. This amounts to solving 450 localized clustering
experiments using ten different methods.

In Figure 2 we show the change in runtime and the change in F1 score that results from using different
values of ε for each alternative hyperedge cut function. Using a larger values ε = 1.0 leads to
significantly faster runtimes, but virtually indistinguishable F1 scores. In Figure 1 we show the mean
F1 score for each cluster (across the ten random seed sets) obtained by the δ-linear penalty and the
three alternative penalties when ε = 1.0. The clique penalty obtained the highest average F1 score on
26 clusters, the δ-linear obtained the highest average score on 10 clusters, and the sublinear penalty
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Figure 1: Average F1 score obtained for each localized clustering using 4 different hyperedge cut
penalties. For clique, x0.9, and the square root penalties, we used an approximate reduction with
ε = 1.0. The clique penalty had the highest average F1 score on 26 clusters, the δ-linear had the
highest on 10 clusters, and x0.9 had the highest average score on the remaining 10 clusters.

obtained the best average score on the remaining 9 clusters. In Tables 1 through 4 we give more
detailed results for each individual cluster.
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Table 1: Runtime and F1 scores for detecting local clusters from size 2018 to size 2536 in a
Stackoverflow question hypergraph using HyperLocal [9] + SPARSECARD. For each cluster, we
generated 10 random seed sets by randomly sampling 5% of the cluster, and ran HyperLocal +
SPARSECARD with five different hyperedge cut penalty functions on each seed set. We report
standard deviation across the ten seed sets for each cluster. Without SPARSECARD, it would not be
possible to run the experiment using the clique, x0.9, or sqrt cut penalties, as existing exact graph
reduction strategies produce a graph that is far too dense. The # Best column indicates the number of
times, out of the ten seed sets, that using the given penalty function leads to the highest F1 score for
each cluster. We highlight the best results in bold. In some cases, answers are the same to within
the reported 3 significant figures, but the bolded number highlights which method had slightly better
unrounded F1 scores.

Cluster Size Penalty F1 Runtime # Best

system-verilog 2018 δ-linear 0.555 ±0.02 5.9 ±3.8 7
clique 0.546 ±0.02 8.0 ±2.0 0
sqrt 0.456 ±0.05 7.4 ±2.2 0
x0.9 0.552 ±0.01 6.2 ±0.8 3

abap 2056 δ-linear 0.508 ±0.12 11.8 ±9.0 3
clique 0.549 ±0.06 12.9 ±7.0 0
sqrt 0.382 ±0.07 20.4 ±12.5 0
x0.9 0.557 ±0.06 9.8 ±5.4 7

axapta 2074 δ-linear 0.766 ±0.05 22.4 ±13.3 0
clique 0.781 ±0.04 23.6 ±15.2 9
sqrt 0.565 ±0.09 41.6 ±31.2 0
x0.9 0.764 ±0.05 26.1 ±16.8 1

apache-nifi 2092 δ-linear 0.572 ±0.06 6.7 ±2.1 1
clique 0.601 ±0.07 7.6 ±1.6 3
sqrt 0.419 ±0.13 8.4 ±1.6 0
x0.9 0.605 ±0.07 6.9 ±1.2 6

google-sheets-formula 2142 δ-linear 0.587 ±0.19 4.9 ±1.0 1
clique 0.601 ±0.19 8.7 ±2.0 7
sqrt 0.415 ±0.13 8.2 ±2.6 0
x0.9 0.569 ±0.17 5.7 ±1.0 2

office-js 2402 δ-linear 0.578 ±0.04 7.2 ±2.0 9
clique 0.557 ±0.05 7.7 ±1.2 0
sqrt 0.421 ±0.05 9.1 ±2.2 0
x0.9 0.568 ±0.04 7.8 ±1.1 1

netlogo 2520 δ-linear 0.868 ±0.01 20.8 ±12.1 2
clique 0.869 ±0.01 22.0 ±15.2 6
sqrt 0.726 ±0.15 34.3 ±20.5 0
x0.9 0.866 ±0.02 23.0 ±14.3 2

dax 2528 δ-linear 0.424 ±0.03 7.3 ±2.3 0
clique 0.436 ±0.04 8.3 ±1.0 10
sqrt 0.342 ±0.05 9.1 ±2.4 0
x0.9 0.425 ±0.04 8.0 ±1.1 0

plone 2536 δ-linear 0.243 ±0.14 2.8 ±0.3 7
clique 0.241 ±0.14 5.2 ±0.9 3
sqrt 0.102 ±0.04 8.0 ±2.0 0
x0.9 0.155 ±0.1 4.2 ±0.5 0
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Table 2: Results for Stackoverflow clusters from size 2574 to size 3506.
Cluster Size Penalty F1 Runtime # Best

netsuite 2574 δ-linear 0.735 ±0.06 28.8 ±18.7 4
clique 0.733 ±0.07 28.5 ±17.1 1
sqrt 0.512 ±0.12 37.5 ±24.1 0
x0.9 0.738 ±0.07 28.1 ±18.1 5

jq 2596 δ-linear 0.557 ±0.14 3.8 ±1.0 10
clique 0.501 ±0.14 5.7 ±0.9 0
sqrt 0.355 ±0.09 8.0 ±1.7 0
x0.9 0.255 ±0.13 4.7 ±0.7 0

marklogic 2612 δ-linear 0.67 ±0.14 4.7 ±1.2 7
clique 0.653 ±0.15 7.1 ±1.6 2
sqrt 0.373 ±0.12 8.7 ±1.8 0
x0.9 0.659 ±0.14 5.7 ±0.4 1

alfresco 2694 δ-linear 0.576 ±0.13 13.0 ±7.6 1
clique 0.59 ±0.11 15.5 ±7.9 9
sqrt 0.429 ±0.09 20.4 ±9.3 0
x0.9 0.552 ±0.18 15.0 ±8.5 0

lotus-notes 2877 δ-linear 0.417 ±0.06 4.4 ±1.3 9
clique 0.379 ±0.06 5.5 ±0.9 0
sqrt 0.344 ±0.06 8.5 ±1.5 0
x0.9 0.386 ±0.06 5.1 ±0.6 1

stata 2907 δ-linear 0.798 ±0.05 6.6 ±1.4 1
clique 0.798 ±0.05 10.0 ±2.0 5
sqrt 0.454 ±0.05 9.2 ±2.4 0
x0.9 0.792 ±0.05 8.6 ±1.6 4

wso2esb 2912 δ-linear 0.303 ±0.05 7.8 ±6.6 2
clique 0.325 ±0.09 8.7 ±5.0 4
sqrt 0.214 ±0.08 11.6 ±5.9 0
x0.9 0.325 ±0.1 7.3 ±2.7 4

mdx 3007 δ-linear 0.365 ±0.12 8.4 ±4.2 0
clique 0.536 ±0.04 8.9 ±3.3 2
sqrt 0.45 ±0.04 9.5 ±3.4 0
x0.9 0.569 ±0.03 7.5 ±1.8 8

docusignapi 3348 δ-linear 0.82 ±0.01 37.8 ±12.9 1
clique 0.82 ±0.01 41.3 ±16.5 0
sqrt 0.803 ±0.06 53.7 ±21.8 6
x0.9 0.821 ±0.0 41.7 ±12.8 3

xslt-2.0 3426 δ-linear 0.221 ±0.08 4.8 ±1.4 7
clique 0.215 ±0.08 6.7 ±1.3 0
sqrt 0.202 ±0.06 8.2 ±1.5 0
x0.9 0.207 ±0.06 4.6 ±0.6 3

wolfram-mathematica 3478 δ-linear 0.582 ±0.04 4.5 ±1.0 2
clique 0.586 ±0.05 6.9 ±0.7 3
sqrt 0.381 ±0.04 9.2 ±2.1 0
x0.9 0.534 ±0.13 5.3 ±0.8 5

aem 3506 δ-linear 0.535 ±0.07 25.4 ±27.1 1
clique 0.545 ±0.1 24.4 ±21.8 7
sqrt 0.324 ±0.14 31.8 ±23.1 0
x0.9 0.513 ±0.12 19.9 ±17.5 2
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Table 3: Results for Stackoverflow clusters from size 3620 to size 5476.
Cluster Size Penalty F1 Runtime # Best

sparql 3620 δ-linear 0.438 ±0.03 8.6 ±4.2 0
clique 0.446 ±0.09 9.9 ±1.8 3
sqrt 0.419 ±0.04 10.5 ±3.6 1
x0.9 0.501 ±0.06 8.7 ±2.3 6

codenameone 3677 δ-linear 0.898 ±0.02 15.6 ±9.7 4
clique 0.898 ±0.02 20.4 ±12.2 4
sqrt 0.713 ±0.11 24.7 ±19.9 0
x0.9 0.897 ±0.02 18.8 ±10.9 2

vhdl 4135 δ-linear 0.572 ±0.05 8.2 ±6.4 1
clique 0.63 ±0.03 10.9 ±6.8 5
sqrt 0.415 ±0.03 13.8 ±5.9 0
x0.9 0.621 ±0.04 8.5 ±5.1 4

verilog 4153 δ-linear 0.479 ±0.02 6.4 ±1.7 1
clique 0.519 ±0.04 8.2 ±1.2 1
sqrt 0.398 ±0.07 9.6 ±2.2 0
x0.9 0.528 ±0.05 7.1 ±1.0 8

racket 4188 δ-linear 0.28 ±0.11 4.0 ±0.7 1
clique 0.347 ±0.14 6.0 ±1.0 7
sqrt 0.295 ±0.13 8.6 ±1.9 1
x0.9 0.259 ±0.14 4.7 ±0.6 1

xslt-1.0 4480 δ-linear 0.2 ±0.05 5.5 ±1.4 5
clique 0.2 ±0.05 6.9 ±1.2 2
sqrt 0.193 ±0.04 8.7 ±2.5 1
x0.9 0.193 ±0.04 4.7 ±0.8 2

common-lisp 4632 δ-linear 0.237 ±0.11 4.3 ±0.8 0
clique 0.414 ±0.09 5.9 ±0.7 10
sqrt 0.258 ±0.07 8.5 ±2.4 0
x0.9 0.166 ±0.11 5.4 ±0.6 0

sapui5 4746 δ-linear 0.612 ±0.09 23.8 ±23.3 2
clique 0.642 ±0.06 27.6 ±25.0 7
sqrt 0.385 ±0.12 39.7 ±29.0 0
x0.9 0.617 ±0.08 22.8 ±19.9 1

xpages 4818 δ-linear 0.796 ±0.05 35.5 ±19.0 2
clique 0.793 ±0.06 36.0 ±19.4 2
sqrt 0.655 ±0.13 53.1 ±29.9 1
x0.9 0.808 ±0.06 37.4 ±21.2 5

openerp 4884 δ-linear 0.406 ±0.1 8.4 ±5.3 2
clique 0.429 ±0.14 9.6 ±4.1 6
sqrt 0.295 ±0.09 15.5 ±5.9 0
x0.9 0.393 ±0.16 8.2 ±3.0 2

julia 5295 δ-linear 0.624 ±0.08 8.9 ±2.7 3
clique 0.653 ±0.05 11.3 ±3.0 3
sqrt 0.376 ±0.05 19.1 ±4.2 0
x0.9 0.627 ±0.07 9.4 ±1.4 4

sitecore 5476 δ-linear 0.543 ±0.18 19.9 ±19.1 1
clique 0.595 ±0.13 17.4 ±13.2 9
sqrt 0.322 ±0.13 30.3 ±21.3 0
x0.9 0.441 ±0.24 14.3 ±12.7 0
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Table 4: Results for Stackoverflow clusters from size 5536 to size 9859.
Cluster Size Penalty F1 Runtime # Best

ibm-mobilefirst 5536 δ-linear 0.825 ±0.02 52.1 ±37.6 2
clique 0.828 ±0.02 58.5 ±42.0 4
sqrt 0.63 ±0.09 80.9 ±48.0 0
x0.9 0.825 ±0.03 57.3 ±38.4 4

ocaml 5590 δ-linear 0.601 ±0.02 6.6 ±1.4 4
clique 0.591 ±0.04 9.1 ±1.9 3
sqrt 0.346 ±0.04 9.4 ±2.7 0
x0.9 0.59 ±0.04 7.0 ±0.8 3

spring-integration 5635 δ-linear 0.691 ±0.0 7.7 ±2.4 0
clique 0.691 ±0.0 12.0 ±3.3 8
sqrt 0.65 ±0.06 17.9 ±5.4 1
x0.9 0.69 ±0.0 7.4 ±1.3 1

tcl 5752 δ-linear 0.527 ±0.12 5.2 ±0.9 8
clique 0.436 ±0.15 7.6 ±1.5 2
sqrt 0.372 ±0.06 11.4 ±3.1 0
x0.9 0.333 ±0.2 6.3 ±1.1 0

mule 5940 δ-linear 0.603 ±0.15 11.8 ±11.3 1
clique 0.642 ±0.12 13.6 ±9.1 9
sqrt 0.365 ±0.05 19.5 ±9.7 0
x0.9 0.577 ±0.16 11.8 ±8.7 0

scheme 6411 δ-linear 0.247 ±0.1 6.0 ±1.4 2
clique 0.36 ±0.07 8.4 ±2.3 5
sqrt 0.329 ±0.04 9.6 ±1.8 2
x0.9 0.283 ±0.11 5.4 ±1.4 1

typo3 6414 δ-linear 0.646 ±0.09 49.3 ±37.6 1
clique 0.664 ±0.07 41.7 ±29.1 7
sqrt 0.473 ±0.1 52.9 ±28.2 0
x0.9 0.643 ±0.08 37.5 ±24.3 2

cypher 6735 δ-linear 0.547 ±0.02 14.3 ±2.8 2
clique 0.553 ±0.01 13.9 ±1.9 7
sqrt 0.5 ±0.03 20.7 ±5.7 0
x0.9 0.538 ±0.04 12.6 ±1.7 1

wso2 7760 δ-linear 0.559 ±0.07 17.7 ±12.0 2
clique 0.577 ±0.05 18.6 ±13.7 6
sqrt 0.313 ±0.07 30.4 ±12.9 0
x0.9 0.561 ±0.07 17.0 ±13.0 2

data.table 8108 δ-linear 0.114 ±0.01 5.0 ±0.9 0
clique 0.148 ±0.04 5.9 ±1.3 7
sqrt 0.156 ±0.02 16.2 ±4.2 0
x0.9 0.163 ±0.02 4.7 ±0.2 3

prolog 9086 δ-linear 0.644 ±0.02 11.7 ±3.7 7
clique 0.638 ±0.03 11.6 ±1.5 1
sqrt 0.44 ±0.03 17.1 ±3.8 0
x0.9 0.626 ±0.04 8.8 ±1.1 2

google-bigquery 9859 δ-linear 0.352 ±0.19 7.7 ±2.8 1
clique 0.486 ±0.11 10.0 ±2.9 8
sqrt 0.228 ±0.07 18.4 ±3.6 0
x0.9 0.387 ±0.18 9.4 ±1.9 1
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