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ABSTRACT

Extending CLIP models to semantic segmentation remains challenging due to
the misalignment between their image-level pre-training objectives and the pixel-
level visual understanding required for dense prediction. While prior efforts have
achieved encouraging results by reorganizing the final layer and features, they of-
ten inherit the global alignment bias of preceding layers, leading to suboptimal
segmentation performance. In this work, we propose LHT-CLIP, a novel training-
free framework that systematically exploits the visual discriminability of CLIP
across layer, head, and token levels. Through comprehensive analysis, we reveal
three key insights: (i) the final layers primarily strengthen image–text alignment
with sacrifice of visual discriminability (e.g., last 3 layers in ViT-B/16 and 8 lay-
ers in ViT-L/14), partly due to the emergence of anomalous tokens; (ii) a subset of
attention heads (e.g., 10 out of 144 in ViT-B/16) display consistently strong visual
discriminability across datasets; (iii) abnormal tokens display sparse and consis-
tent activation pattern compared to normal tokens. Based on these findings, we
propose three complementary techniques: semantic-spatial reweighting, selective
head enhancement, and abnormal token replacement to effectively restore visual
discriminability and improve segmentation performance without any additional
training, auxiliary pre-trained networks, or extensive hyperparameter tuning. Ex-
tensive experiments on 8 common semantic segmentation benchmarks demon-
strate that LHT-CLIP achieves state-of-the-art performance across diverse scenar-
ios, highlighting its effectiveness and practicality for real-world deployment.

1 INTRODUCTION

Recent advances in vision-language pretrained models, such as CLIP Radford et al. (2021), have
demonstrated remarkable generalization and open-vocabulary recognition capabilities at the image
level, thereby opening up possibilities for transferring image-text alignment to pixel-level tasks. De-
spite this progress, they often underperform in dense prediction tasks like semantic segmentation,
primarily due to their limited capacity to localize fine-grained visual details Rao et al. (2022); Wang
et al. (2024). To address these limitations, several studies have incorporated trainable modules into
CLIP, typically relying on additional forms of supervision such as dense annotations for a restricted
set of categories Xu et al. (2022b;a); Xing et al. (2023); Li et al. (2024) or supplementary image-text
pairs Cha et al. (2023); Luo et al. (2023a); Ren et al. (2023); Xu et al. (2023c); Zhang et al. (2023).
Although these approaches have demonstrated improved segmentation performance, they incur sig-
nificant computational and annotation costs. Furthermore, the dependence on limited supervision
undermines the generalizability of the model, making it prone to overfitting the training distribution.

These challenges have sparked increasing interest in training-free methodsWang et al. (2024); Li
et al. (2023); Zhou et al. (2022a); Lan et al. (2024a); Hajimiri et al. (2025); Lan et al. (2024b); Shao
et al. (2024); Bousselham et al. (2024); Yang et al. (2024), which aim to adapt CLIP’s pre-trained
representations for semantic segmentation without additional training, while preserving its general-
ization capability. A key difficulty in this direction is enhancing visual representations for accurate
pixel-level predictions. For instance, MaskCLIPZhou et al. (2022a) computes similarity between
key features in the final attention layer to enrich patch embeddings. SCLIP Wang et al. (2024) re-
places the standard query-key attention with correlative self-attention (query-query and key-key).
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ClearCLIP Lan et al. (2024a) further removes residual connections and discards the FFN in the final
layer to reduce noise and improve spatial alignment. ResCLIP Yang et al. (2024) incorporates at-
tention maps from earlier layers to refine final-layer attention map. However, these methods largely
focus on modifying the final-layer attention, often leading to suboptimal ambiguous local relation-
ships and noisy segmentation. To address spatial limitations, some approaches incorporate features
from auxiliary backbones such as DINO Wysoczańska et al. (2024); Lan et al. (2024b), SAM Lan
et al. (2024b); Zhang et al. (2024), or diffusion models Corradini et al. (2024); Sun et al. (2024).
While effective, these methods incur significant computational and memory overhead.

Motivated by these limitations, we begin with a layer-wise analysis of visual discriminability and
text-semantic alignment within the CLIP vision encoder (see Section 2.2 for detailed definitions).
As shown in Figure 1, the final layers exhibit a clear trade-off: visual discriminability drops sharply
while semantic alignment improves only marginally. To understand the cause of this phenomenon,
we further examine internal token interactions and structural patterns across layers. Attention map
visualizations reveal that abnormal tokens emerge in deeper layers, attracting disproportionately
high attention from nearly all spatial positions. This behavior causes the majority of tokens to
converge on a small subset, thus disrupting the spatial coherence. Further analysis reveals that these
abnormal tokens have sparse, high-magnitude activations that remain consistent across positions,
layers, and samples. Complementary to prior assumptions that such tokens primally encode global
semantic content, our findings suggest they act more as bias components offsetting global mean
features, thereby facilitating alignment with text embeddings.

Based on the analysis, we propose LHT-CLIP, a training-free framework that leverages the inher-
ent properties of CLIP to enhance the visual discriminability while preserving semantic alignment.
LHT-CLIP comprises three complementary strategies: abnormal token replacement (ATR), spatial-
semantic reweighting (SSR), and selective head enhancement (SHE). Specifically, ATR identifies
abnormal tokens via sparsity thresholding and replaces them with neighboring tokens. SSR miti-
gates the degradation of visual discriminability in the final layers by upweighting residual pathways,
thereby restoring balance between spatial coherence and semantic alignment. Finally, SHE further
enhances visual discriminability by selectively aggregating features from high-discriminability at-
tention heads, using them as soft pseudo-masks to refine output features. Experimental results show
that LHT-CLIP consistently improves performance when integrated into diverse baselines, achieving
new state-of-the-art results on eight benchmark datasets.

Contributions. Our contributions can be summarized as follows:

• We conduct a throughout analysis of visual discriminability at the token, head, and layer levels.

• We propose, a novel training-free approach, terms LHT-CLIP. To the best of our knowledge, this
is the first work to explicitly modify the inference procedure prior to the final layer, enabling
improved spatial coherence without compromising semantic alignment.

• The extensive experiment results on open-vocabulary semantic segmentation tasks consistently
demonstrate the effectiveness of the proposed method.

2 ANALYSIS OF VISUAL DISCRIMINABILITY AND SEMANTIC ALIGNMENT

2.1 PRELIMINARIES

CLIP employs a Vision Transformer (ViT) Dosovitskiy et al. (2020) as its image encoder to gen-
erate visual representations that are aligned with corresponding textual descriptions. The vision
encoder first tokenizes an input image of size H × W × 3 by dividing it into a grid of non-
overlapping patches of size P × P , yielding h = H/P rows and w = W/P columns of patches.
Each patch is then linearly projected into a D-dimensional embedding space, xi ∈ RD, and aug-
mented with positional embeddings. An additional learnable [CLS] token is prepended to the
sequence and is later used for image-level prediction. The resulting token sequence is denoted as
X0 = [x0

cls,x
0
1, . . . ,x

0
hw] ∈ R(1+hw)×D. This sequence is passed through a stack of L Trans-

former encoder layers, each consisting of a multi-head self-attention (MSA) module followed by a
feed-forward network (FFN). Let LN(·) denotes layer normalization, the token representations are
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(a) VOC (ViT-B) (b) Context (ViT-B) (c) ADE (ViT-B) (d) COCO-Stuff (ViT-B)

(e) VOC (ViT-L) (f) Context (ViT-L) (g) ADE (ViT-L) (h) COCO-Stuff (ViT-L)

Figure 1: Layer-wise analysis of visual discriminability (blue) and semantic alignment (orange)
within the CLIP vision encoders across different datasets. The final layer is excluded from the
analysis to avoid discrepancies caused by prior modifications to the last-layer in different methods.

updated at each layer l as follow:

X̂ l = X l−1 + MSA(LN(X l−1)), (1)

X l = X̂ l + FFN(LN(X̂ l)). (2)

The CLIP model is originally trained on large-scale image–text pairs for open-vocabulary image
recognition tasks. To extend it to semantic segmentation, a natural approach is to compute the
similarity between the visual tokens XL = [xL

1 , . . . ,x
L
hw] from the final Transformer layer and

the textual embeddings of C category names, denoted by t ∈ RC×D. This results in a patch-
text similarity map of size hw × C. Denote tc as the embedding of the c-th class name, the final
segmentation prediction is obtained by applying an argmax operation over the class dimension of
this similarity map, as follows:

ĉ(xi) = argmax
c

⟨xL
i , tc⟩

∥xL
i ∥ · ∥tc∥

, (3)

Ideally, for effective semantic segmentation, the vision encoder should produce feature representa-
tions that satisfy two key properties:

• Visual discriminability: token features should exhibit high internal consistency within the same
semantic category while remaining clearly distinguishable from those of other categories, thereby
enabling accurate and clean segmentation results.

• Semantic alignment: token features should be well-aligned with their corresponding textual em-
beddings to enable semantically meaningful segmentation results.

Beyond their importance in open-vocabulary semantic segmentation, these two properties are also
highly relevant to the development of multimodal large language models. To preserve strong gener-
alization capability, the vision encoder of CLIP is often directly employed to extract visual represen-
tations without additional training, which are then used as inputs to downstream language models,
as exemplified by LLaVA Liu et al. (2023; 2024).

2.2 ANALYSIS OF VISUAL DISCRIMINABILITY AND SEMANTIC ALIGNMENT

Measures of visual discriminability and semantic alignment. To quantify visual discriminabil-
ity, we adopt the evaluation protocol proposed by Mukhoti et al. (2023). Specifically, let xl

i ∈ RD

and xl
j ∈ RD denote the features of two image patches i and j extracted from the l-th layer. Each

feature vector is ℓ2-normalized, and their cosine similarity is computed to serve as the prediction of
a binary classifier that determines whether the two patches belong to the same semantic category.
Given the corresponding semantic labels t(xi) and t(xj), the target label for classification is set
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to 1 if t(xi) = t(xj), and 0 otherwise. Performance on this binary classification task provides a
measure of visual discriminability, since effective representations should yield high cosine similar-
ity for patches from the same semantic class and low similarity otherwise. To evaluate semantic
alignment, we extract the intermediate representations xl

i ∈ RD from each individual visual token
at layer l, and project them into the final visual–text aligned space using the last ViT layer. Based on
these projected features, semantic alignment is quantified as the average accuracy between predicted
and ground-truth semantic labels, following Equation (3). To prevent contamination from extrane-
ous semantic information and noisy integration during the final attention computation, we follow
prior work Lan et al. (2024a); Zhou et al. (2022a) by replacing the attention matrix with an identity
matrix and removing both the FFN and residual connections of the last ViT layer.

Sharp decline in visual discriminability with marginal gains in semantic alignment in the final
layers. To analyze the layer-wise dynamics of visual discriminability and semantic alignment, we
investigate on four datasets: Pascal VOC Everingham & Winn (2011), PASCAL Context Mottaghi
et al. (2014), ADE20K Zhou et al. (2017), and COCO-Stuff Caesar et al. (2018). For each dataset,
we evaluate the ViT-B/16 and ViT-L/14 variants of the CLIP vision encoder using 1,000 randomly
selected training samples. As shown in Figure 1, we observe a consistent pattern across datasets:

• Visual discriminability follows an inverted U-shaped curve across layers: it increases in the early
stages but declines sharply in the deeper layers. For instance, in the ViT-B/16 model, the last two
layers preceding the final layer exhibit a pronounced reduction in visual discriminability, while in
the ViT-L/14 model, a similar decline is observed over the last seven layers.

• Semantic alignment exhibits an approximately monotonic increase across layers: it improves sub-
stantially in the early stages but gradually saturates in the later layers, yielding only marginal
gains thereafter.

These observations offer a nuanced understanding of why CLIP has proven effective for open-
vocabulary semantic segmentation. In particular, the strong semantic alignment observed in the
final layers explains why prior work can leverage last-layer features for aligning visual tokens with
textual categories. However, the significant decline in visual discriminability in last layers reveals a
key limitation as they may lack the fine-grained visual distinctions necessary for producing accurate
and precise segmentation masks. In this work, we aim to mitigate this limitation by proposing meth-
ods that jointly improve visual discriminability and preserve semantic alignment. Before introducing
our approach, we first investigate the underlying causes of the decline in visual discriminability.

Emergence of abnormal tokens with high norms and sparse activations. To understand the cause
of the sharp decline observed in the final layers, we analyze the attention maps among visual tokens
across different layers. As shown in Figure 2, deeper layers exhibit a small set of dominant tokens
that receive disproportionately high attention from nearly all visual tokens, causing most tokens
to focus on this subset, consistent with prior observations Darcet et al. (2023); Shao et al. (2024).
The presence of dominant tokens attracts visual tokens to become similar, thereby reducing visual
discriminability and degrading segmentation result. To further characterize these dominant tokens,
we compare their features with those of normal tokens. As illustrated in Figure 3, dominant tokens
exhibit sparse activation patterns, with only a few channels maintaining high activation. To quantify
this sparsity, we adopt the hoyer score Hoyer (2004):

H(xl
i) =

√
D − ∥xl

i∥1

∥xl
i∥2√

D − 1
∈ [0, 1], (4)

Let xl
i ∈ RD denote the feature vector of the i-th token at layer l. A higher score corresponds to

sparser activations. We employ this metric to quantify sparsity and to visualize its distribution across
layers and token positions in Figure 3(d). As shown in the figure, sparse high-norm abnormal tokens
begin to emerge in the middle layers and persist at the same positions in subsequent layers.

Abnormal tokens encode global information while being dominated by a bias-like component.
To further explore the information encoded in abnormal tokens, we analyze their pairwise cosine
similarity with normal tokens and the [CLS] token on the same images from the ImageNet Deng
et al. (2009) validation set. As shown in Figure 4(a), the cosine similarity with [CLS] increases while
the similarity with normal tokens decreases as the layer depth increases, suggesting that abnormal
tokens progressively align with global information and discard local details. Interestingly, when
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layer 1 layer 4 layer 7 layer 9 layer 11

Figure 2: Abnormal token phenomenon in attention maps across different layers of the ViT-B/16
model used as the CLIP vision encoder. Attention maps are computed with respect to specific visual
token positions, denoted by × (e.g., the “child” token in the top row and the “car” token in the
bottom row). Representative abnormal tokens are highlighted with orange boxes.

(a) Attention Map (b) Normal Token (c) Abnormal Token (d) Abnormal Token (e) Hoyer Map

Figure 3: Illustration of the sparsity and high-norm characteristics of abnormal tokens. Figure (a)
shows the attention map of the red anchor token ×. Figures (b)–(d) depict the channel activations
of a normal token (red ×) and two abnormal tokens (orange ⋆ and blue ⋆) highlighted in Figure (a).
Figure (e) presents the hoyer score distribution across layers and token positions.

analyzing their pairwise cosine similarity across different positions, layers, and data samples, we
find that these tokens exhibit consistently high similarity, with cosine values exceeding 0.98, as
shown in Figure 4. Complementary to prior discovery, this indicates that abnormal tokens primarily
act as bias components that offset global mean features, thereby facilitating text alignment in a
manner analogous to the bias term in final-layer classifiers under neural collapse Zhu et al. (2021);
Zhou et al. (2022b). However, both global information and bias-like components in abnormal tokens
are detrimental for segmentation tasks, which rely on fine-grained local understanding.

A subset of attention heads exhibits consistently strong visual discriminability. To enhance the
visual discriminability of last-layer features, a natural strategy is to exploit the more discriminative
intermediate features to construct a pseudo mask, guiding the reorganization of the final-layer fea-
tures, as indicated by the analysis in Figure 1. Inspired by recent studies Gandelsman et al. (2023);
Kang et al. (2025) showing that different attention heads capture distinct visual concepts, such as
number, shape and texture, we take a step further by investigating whether specific heads are par-
ticularly responsible for encoding visual discriminability. To identify such heads, we follow the
formulation introduced in Elhage et al. (2021); Gandelsman et al. (2023), which rewrites the MSA
output as a summation over H independent attention heads: MSA(LN(X l)) =

∑H
h=1 A

l
hV

l
hW

l
o ∈

R(1+hw)×D, where Al
h and Vl

h denote the attention and value matrices for the h-th head at layer
l, and Wl

o is the output projection matrix shared across all heads. Accordingly, the features of the
h-th head at layer l are expressed as:

X l,h = Al
hV

l
hW

l
o. (5)

In Figure 5, we show the distribution of visual discriminability across attention heads for ViT-B/16.
From the figure, we observe that the output features of certain attention heads, such as the 11th head
in the 6th layer, consistently exhibit high visual discriminability across different datasets, suggesting
that there are a subset of heads which are more effective in capturing locally distinguishable features.
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(a) Inter-token Similarity (b) Inter-layer Similarity (c) Inter-sample Similarity

Figure 4: Layer-wise cosine similarity among abnormal tokens across positions, layers and samples.

(a) Context (ViT-B) (b) ADE (ViT-B) (c) COCO-Stuff (ViT-B)

Figure 5: Head-wise visual discriminability analysis across multiple datasets using the ViT-B/16
backbone. The dashed lines in different colors denote the corresponding layer-wise visual discrim-
inability scores. For clarity, heads from three layers (i.e., the 6th, 7th, and 8th layers) are displayed.

3 METHOD FOR IMPROVING VISUAL DISCRIMINABILITY

In this section, we introduce our training-free framework, which comprises three components: Ab-
normal Token Replacement (ATR) in Section 3.1, Spatial-Semantic Reweighting (SSR) in Sec-
tion 3.2, and Selective Head Enhancement (SHE) in Section 3.3. Each component is complementary,
and together they work synergistically to enhance the visual discriminability of the CLIP model.

3.1 ABNORMAL TOKEN REPLACEMENT (ATR)

Identify and replace abnormal tokens with their neighbors. To mitigate the adverse effects of
anomalous tokens, we propose a simple and effective strategy to suppress their impact. As shown
in earlier analysis, these tokens are characterized by high norms and sparse activations. To identify
them systematically, we compare a norm-based and a sparsity-based criterion. Empirically, we find
that the sparsity-based approach is more robust to hyperparameter selection (see Appendix A.3.4);
therefore, we adopt the hoyer score H(xl

i) defined before as a sparsity-based criterion. Tokens
with scores exceeding a predefined threshold τ are deemed anomalous and grouped into the set
Al = {i|H(xl

i) > τ}. To mitigate their impact, each anomalous token at spatial position (m,n) ∈ A
is substituted with a weighted aggregation of its eight nearest neighbors:

xl
m,n =

∑m+1
i=m−1

∑n+1
j=n−1 1((i, j) /∈ A)xl

i,j∑m+1
i=m−1

∑n+1
j=n−1 1((i, j) /∈ A)

, ∀(m,n) ∈ A (6)

Here, 1(·) ensure that only normal tokens contribute to the replacement of anomalous ones. Empir-
ically, we find that applying this strategy before the penultimate layer leads to a performance drop,
likely due to the removal of inherent biases encoded in abnormal tokens, which substantially alters
the inference process. Therefore, we apply it only at the penultimate layer, i.e., with l = L− 1.

3.2 SPATIAL-SEMANTIC REWEIGHTING (SSR)

Upweight residual component to improve visual discriminability. After mitigating the impact of
anomalous tokens at the penultimate layer, the final features exhibit improved visual discriminabil-
ity (see Figure 6 in Appendix A.2.2). However, a critical challenge remains: anomalous tokens
appeared in earlier layers already degrade visual discriminability, limiting the effectiveness of final-
layer refinements. To address it, we propose a spatial–semantic reweighting strategy, based on our
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layer-wise analysis showing that the final layers provide only marginal gains in semantic alignment
while substantially reducing visual discriminability. Overall, the proposed strategy aims to enhance
the model’s spatial coherence while preserving its semantic alignment. Specifically, given the fea-
ture representation X l−1 at the l-th layer within the final few layers (e.g., layers 10–11 in ViT-B/16
and layers 17–23 in ViT-L/14), we reweight the forward pass by upweighting the residual pathway
and downweighting the attention and MLP submodules, as follows:

X̂ l = (1 + α)X l−1 + (1− α)MSA(LN(X l−1)), (7)

X l = (1 + α)X̂ l + (1− α)FFN(LN(X̂ l)), (8)
where α ∈ [0, 1] is a reweighting coefficient that controls the emphasis on the residual signal.
As α increases, the l-th block preserves more visually discriminative features from earlier layers
through the residual pathway, while reducing the adverse impact of noisy semantic aggregation in
the MSA and FFN submodules. To the best of our knowledge, prior work has primarily focused on
reforming the final layer or modifying its representations to improve performance. However, such
approaches inevitably inherit the global semantic alignment bias of the proceeding layers, leading
to suboptimal segmentation due to substantially reduced visual discriminability. In contrast, our
SSR strategy explicitly addresses this limitation by rebalancing residual and semantic contributions,
thereby improving the visual discriminability of intermediate features, as validated in Figure 7.

3.3 SELECTIVE HEAD ENHANCEMENT (SHE)

Construct pseudo masks from discriminative heads to further enhance penultimate features.
Based on the head-wise analysis, we leverage high-performing heads to construct soft pseudo masks,
which are used to enhance the visual discriminability of the penultimate features. Specifically, let
VDs

l,h denote the visual discriminability score of the h-th head in the l-th layer for dataset s ∈
{Context,ADE,Stuff}. To obtain a dataset-agnostic measurement, we compute the average score
(described in Section 2.2) across datasets, denoted as VDl,h. We then rank heads by their VDl,h

values (see Figure 8 and Figure 9) and select the top-k heads to form the setHk. The corresponding
features are aggregated as Xk = 1

k

∑
(l,h)∈Hk

X l,h, and a similarity map is constructed as S =

XkX
⊤
k /

∥∥Xk

∥∥2 to capture the pairwise similarity among visual tokens. To suppress the spurious
interactions between tokens from different semantic categories, we apply a thresholding operation
with a parameter β, yielding the filtered similarity map Sβ , where Sβ(i, j) = S(i, j) if S(i, j) ≥ β,
and Sβ(i, j) = 0 otherwise. This filtered similarity map Sβ serves as a soft pseudo-mask, which is
column-normalized and used to refine the final-layer features as XL−1 ← Norm(Sβ)X

L−1.

4 EXPERIMENT RESULTS

Evaluation Protocol. We follow the evaluation protocol from prior works Wang et al. (2024); Lan
et al. (2024a); Hajimiri et al. (2025) and assess our method on eight widely used semantic segmenta-
tion benchmarks. We group them into two categories and use abbreviated names for clarity. The first
category excludes background and includes Pascal VOC Everingham & Winn (2011) (VOC20), Pas-
cal Context Mottaghi et al. (2014) (C59), COCO-Stuff Caesar et al. (2018) (Stuff), ADE20K Zhou
et al. (2017) (ADE), and Cityscapes Cordts et al. (2016) (City). The second includes background
and consists of VOC21, C60, and COCO-Object Caesar et al. (2018) (Object). We use ViT-B/16
and ViT-L/14 as the vision encoder of CLIP Radford et al. (2021), and report results using the mean
Intersection-over-Union (mIoU). All hyperparameters are tuned on 1,000 randomly sampled train-
ing images from {Context, ADE, Stuff } datasets and kept fixed without task-specific tuning during
evaluation, based on ablation study in Section 4.2. Additional details are provided in the appendix.

4.1 COMPARISON WITH EXISTING METHODS.

We compare our approach against a comprehensive set of open-vocabulary semantic segmen-
tation methods, including the direct baseline CLIP Radford et al. (2021), as well as several
state-of-the-art training-free approaches: MaskCLIP Zhou et al. (2022a), CLIPSurgery Li et al.
(2023), SCLIP Wang et al. (2024), NACLIP Hajimiri et al. (2025), ClearCLIP Lan et al. (2024a),
LAVG Kang & Cho (2024), and ResCLIP Yang et al. (2024). We also include several influen-
tial weakly supervised methods, such as GroupViT Xu et al. (2022a), ReCo Shin et al. (2022b),
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Table 1: Performance comparison of our approach with other methods on eight semantic segmenta-
tion benchmarks. Existing methods with our improvement are marked in gray .

Methods Training With a background class Without background class Avg.
VOC21 C60 Object VOC20 City C59 ADE Stuff

ReCo ✓ 25.1 19.9 15.7 57.7 21.1 22.3 11.2 14.8 23.5
GroupViT ✓ 52.3 18.7 27.5 79.7 18.5 23.4 10.4 15.3 30.7
TCL ✓ 51.2 24.3 30.4 77.5 23.1 30.3 14.9 19.6 33.9
CLIP ✗ 16.2 7.7 5.5 41.8 5.5 9.2 2.1 4.4 11.6
MaskCLIP ✗ 38.8 23.6 20.6 74.9 16.4 26.4 9.8 14.8 28.2
CLIPSurgery ✗ 55.2 18.7 27.5 79.7 18.5 23.4 10.4 15.3 31.1
LaVG ✗ 62.1 31.6 34.2 82.5 26.2 34.7 15.8 23.2 38.8
NACLIP ✗ 58.9 32.2 33.2 79.7 35.5 35.2 17.4 23.3 39.4

SCLIP ✗ 59.7 31.7 33.5 81.5 32.3 34.5 16.5 22.7 39.1
+LHT-CLIP (ours) ✗ 64.8 34.8 36.6 86.3 36.1 37.6 18.0 24.9 42.4 (+3.3)
ClearCLIP ✗ 57.0 32.2 32.5 82.3 32.8 35.8 17.3 24.0 39.2
+LHT-CLIP (ours) ✗ 63.8 35.2 35.6 85.7 37.8 38.8 19.2 25.8 42.7 (+3.5)
ResCLIP ✗ 60.0 32.7 34.0 85.5 35.6 35.8 17.7 23.8 40.6
+LHT-CLIP (ours) ✗ 63.9 35.5 35.2 86.9 38.2 38.2 19.1 25.5 42.8 (+2.2)

and TCL Cha et al. (2023). Unless otherwise specified, all reported results are taken directly from
the respective original papers and ResCLIP Yang et al. (2024). As our method is orthogonal to
approaches that primarily target improvements in the final-layer attention, we evaluate its effective-
ness when integrated with recent state-of-the-art methods that employ specialized attention mech-
anisms in the last layer, including SCLIP Wang et al. (2024), ClearCLIP Lan et al. (2024a), and
ResCLIP Yang et al. (2024). For fair comparison, we exclude the Semantic Feedback Refinement
module in ResCLIP, as it relies on the computationally expensive PAMR Araslanov & Roth (2020)
post-processing, which is inconsistent with our evaluation setting.

In Table 1, we summarize the performance of various previous methods on benchmark datasets
using the ViT-B/16 backbone. Our proposed LHT-CLIP consistently enhances the performance of
state-of-the-art approaches, including SCLIP Wang et al. (2024), ClearCLIP Lan et al. (2024a), and
ResCLIP Yang et al. (2024). Notably, when integrated with ResCLIP Yang et al. (2024), LHT-
CLIP achieves state-of-the-art results, outperforming leading weakly supervised methods. As a
plug-and-play solution, LHT-CLIP yields consistent improvements across all datasets compared to
the respective baselines, demonstrating its strong generalization capability. For comprehensiveness,
results on the ViT-L/14 backbone are provided in Table 6. In line with observations from Yang et al.
(2024), existing methods generally exhibit a performance drop exceeding 2% mIoU when adapting
to a different backbone; for instance, ClearCLIP Lan et al. (2024a) suffers a notable decline of 2.7%
mIoU. In contrast, when augmented with LHT-CLIP, this performance degradation is significantly
alleviated, highlighting the robustness of our approach. Across both backbones, LHT-CLIP delivers
substantial improvements over baseline methods, validating its effectiveness.

4.2 EXPERIMENTAL ANALYSIS

In this section, we conduct comprehensive ablation studies to validate the effectiveness of our pro-
posed method. We adopt SCLIP Wang et al. (2024) as the baseline, which enhances spatial correla-
tion by modifying the attention mechanism in the final layer, replacing the standard QK⊤ attention
with a combination of QQ⊤ + KK⊤. In addition, following prior work Lan et al. (2024a); Yang
et al. (2024), we remove the residual connections and FFN from the final transformer layer. For
experiments in this part, we highlight the optimal hyperparameter settings in gray .

Analysis of the hoyer threshold parameter τ . Our method relies on hoyer sparsity to identify
anomalous tokens, making the sparsity threshold τ a critical hyperparameter. In Table 2, We conduct
a systematic evaluation. At τ = 0.2, many normal tokens are misclassified, leading to excessive
smoothing and degraded performance. As τ increases to 0.4, performance steadily improves, but
plateaus between 0.5 and 0.8, with a decline observed beyond this range. The broad stable region
indicates a clear sparsity gap between normal and abnormal tokens, highlighting the robustness of
ATR to threshold selection. Based on this analysis, we fix τ = 0.5 for all experiments.
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Table 2: Study of hoyer sparsity threshold τ .

τ C60 Stuff C59 ADE Avg

τ = 0.2 1.3 1.2 1.5 0.6 1.2
τ = 0.4 33.0 24.4 36.6 17.9 28.0
τ = 0.5 33.0 24.4 36.7 17.9 28.0
τ = 0.8 33.0 24.4 36.6 17.9 28.0
τ = 0.9 32.4 24.0 36.0 17.6 27.5
baseline 32.4 24.0 36.0 17.6 27.5

Table 3: Study of (lstart, lend, α) in SSR module.

(lstart, lend, α) C60 Stuff C59 ADE Avg

baseline 32.4 24.0 36.0 17.6 27.5
(9, 11, 0.1) 32.7 23.7 36.5 17.7 27.7
(10, 11, 0.1) 33.1 24.3 36.9 18.0 28.1
(11, 11, 0.1) 32.7 24.4 36.4 18.0 27.9

(10, 11, 0.05) 32.8 24.3 36.4 18.0 27.9
(10, 11, 0.2) 32.6 23.9 36.5 17.8 27.7

Table 4: Study of number of selected heads k.

k C60 Stuff C59 ADE Avg

baseline 32.4 24.0 36.0 17.6 27.5
layer(l = 8) 32.8 24.8 36.4 17.7 28.0

k = 5 32.8 24.6 36.3 17.8 27.9
k = 10 33.0 25.1 37.0 18.3 28.4
k = 30 33.0 25.0 37.1 18.2 28.3
k = 50 32.8 25.0 37.0 18.1 28.2

Table 5: Combination of three strategies.

Module mIoU ∆

ATR SSR SHE

baseline – – – 27.5 –
✓ ✓ – 28.6 +1.1
– ✓ ✓ 28.9 +1.4
✓ – ✓ 28.9 +1.4
✓ ✓ ✓ 29.2 +1.7

Analysis of spatial-semantic reweighting parameters α and number of layers. To evaluate the
impact of the reweighting strength α and the range of layers involved, from lstart to lend, we perform
a comprehensive sensitivity analysis. The results are summarized in Table 3. We observe that the
best performance is obtained when reweighting is applied to layers 10–11 in the ViT-B/16 backbone.
This aligns with our earlier findings that these layers experience a marked decline in visual discrim-
inability while yielding only marginal improvements in semantic alignment. Extending reweighting
to include layer 9 results in a slight gain in visual discriminability but introduces noisy semantic
signals, ultimately leading to a reduction in segmentation performance. In addition, we examine the
effect of varying the reweighting threshold parameter α. As α increases from 0 to 0.1, performance
improves steadily, indicating a beneficial balance between visual and semantic cues. However, fur-
ther increasing α leads to a performance drop, as it incorporates inaccurate semantic information
from earlier layers and significantly perturbs the input distribution of subsequent layers.

Analysis of the number of selected heads k. In Table 4, we study the effect of varying the number
of top-k attention heads selected for enhancement. For ViT-B/16 backbone, increasing k from 5
to 10 improves segmentation accuracy, as aggregating multiple visual discriminative heads helps
suppress spurious correlations. However, performance declines when k becomes too large due to
the inclusion of noisy or less informative heads, which introduce noisy cross-category interactions.
We also compare head- and layer-level selection (best l = 8), finding that head-level selection
consistently performs better, as discriminative heads are distributed across layers, while entire-layer
selection introduces irrelevant heads and degrades performance.

Study of combination effect. In prior parts, we show the effectiveness of each individual strategy
in Table 2, Table 3 and Table 4. The Table 5 further presents results of different combinations under
the same settings. The result highlights the complementary contributions of each strategy to the
overall segmentation performance, yielding average 1.7 mIoU improvement on these four datasets.

5 CONCLUSION

In this paper, we present a comprehensive analysis of the visual discriminability of pretrained CLIP
models at the token, layer, and head levels. Based on the analysis, we introduce LHT-CLIP, a
training-free framework that enhances visual discriminability while preserving semantic alignment.
LHT-CLIP comprises three complementary components: (1) abnormal token replacement, (2) spa-
tial–semantic reweighting, and (3) selective head enhancement. Our approach provides lightweight,
plug-and-play modules compatible with existing architectures. Extensive experiments on multi-
ple segmentation benchmarks show the effectiveness of LHT-CLIP consistently outperforms strong
baselines. Furthermore, since CLIP vision encoders are often frozen in MLLM training, our findings
offer practical guidance for improving visual understanding in broader MLLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the visual discriminability of pretrained vision–language models.
Our research does not involve the collection of new human or animal data, and all experiments are
conducted using publicly available datasets that have been widely adopted in prior work. We ac-
knowledge that vision–language models, including CLIP and its variants, may inherit biases present
in their training data. While our method is designed to enhance visual discriminability without addi-
tional training, it does not explicitly mitigate such biases. We encourage future research to examine
fairness, accountability, and transparency when deploying these models in real-world applications.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. Full implementation details,
including model architectures, hyperparameters, and experimental settings, are provided in the main
paper and appendix. Our method builds on publicly available pretrained CLIP and SigLIP models
and is evaluated on standard benchmark datasets commonly used in prior work. To further sup-
port reproducibility, we include our code in the supplementary material and will release the code,
configuration files, and detailed instructions upon publication.

THE USE OF LARGE LANGUAGE MODELS

Large language models were used exclusively to assist with writing polish, grammar correction, and
improving readability. They were not used for ideation, experiment design, analysis, or generating
research content. All technical contributions, experimental implementations, and results reported in
this paper are original work conducted by the authors.
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A APPENDIX

In the appendix, we first provide additional related literature in Appendix A.1. We then present ex-
tended experimental details and results for both the ViT-B/16 and ViT-L/14 vision encoders in Ap-
pendix A.2. For each model, we report the distribution of average head visual discriminability
scores across multiple datasets, conduct a component-wise analysis of their contributions to visual
discriminability, and provide qualitative comparisons along with additional supporting results and
visualizations. In Appendix A.3, we address key concerns, including hyperparameter selection,
applicability beyond CLIP, and a comparison between SSR and direct skip methods.

A.1 ADDITIONAL LITERATURE

Vision-language pre-training models. Deep learning is experiencing a significant paradigm shift
driven with the emergence of large-scale vision-language models. Among these, the Contrastive
Language-Image Pre-Training (CLIP) framework Radford et al. (2021) has achieved remarkable
success, largely attributed to its strong zero-shot and few-shot generalization capabilities in visual
recognition tasks, particularly image classification. Building on these strengths, an expanding body
of research has sought to further improve CLIP’s zero-shot performance through enhanced training
on large-scale image-text pairs Jia et al. (2021); Cherti et al. (2023); Schuhmann et al. (2022);
Zhai et al. (2023), or by enabling its efficient adaptation to novel downstream tasks using limited
labeled data Gao et al. (2024); Silva-Rodriguez et al. (2024); Sung et al. (2022); Yu et al. (2023);
Zhang et al. (2021). Nevertheless, as CLIP is pre-trained predominantly at the image level, its
learned representations, particularly the [CLS] token, are optimized to capture global semantics.
This coarse-grained supervision inherently limits their utility in dense prediction tasks, where fine-
grained spatial localization is critical.

Open-vocabulary Semantic Segmentation. Driven by the remarkable generalization capabilities
of large-scale vision-language models Radford et al. (2021); Jia et al. (2021); Cherti et al. (2023);
Schuhmann et al. (2022), a growing line of research has focused on open-vocabulary semantic seg-
mentation Ren et al. (2023); Liang et al. (2023); Luo et al. (2022; 2023b); Shin et al. (2022a); Xu
et al. (2023b;a); Li et al. (2024); Qorbani et al. (2025), which seeks to extend global cross-modal
alignment to fine-grained, pixel-level predictions. Existing approaches can be broadly categorized
into three groups: fully supervised, weakly supervised, and training-free methods, based on the level
of auxiliary supervision required for adaptation. Fully-supervised approaches Liang et al. (2023);
Luo et al. (2023b); Li et al. (2024); Qorbani et al. (2025) adapt pretrained CLIP models to semantic
segmentation by leveraging large-scale datasets with dense pixel-wise annotations for a predefined,
yet limited, set of categories. Although such supervision facilitates the learning of fine-grained spa-
tial representations, these methods often struggle to generalize to novel categories. Furthermore,
their reliance on labor-intensive, densely annotated datasets poses significant challenges to scalabil-
ity, limiting their applicability in real-world scenarios. Instead of requiring pixel-wise annotations,
weakly-supervised approaches leverage auxiliary datasets with image-level annotations to adapt pre-
trained CLIP models for semantic segmentation. These approaches commonly employ large-scale
image-text corpora, wherein textual descriptions explicitly reference the object categories present in
the corresponding images. Adaptation is achieved by enforcing cross-modal alignment through a
contrastive loss Xu et al. (2022a), analogous to the original CLIP pre-training objective. Although
such strategies alleviate the burden of dense supervision, they still rely on access to large-scale anno-
tated datasets. However, the auxiliary datasets are substantially smaller than those employed during
CLIP pre-training, which limits the generalization capability. Additionally, these methods presup-
pose prior knowledge of the categories present in each image, thereby constraining their applicability
in genuinely open-world segmentation scenarios.

Training-free open-vocabulary semantic segmentation. Training-free methods explore the fea-
sibility of employing frozen CLIP models to generate segmentation masks in the absence of ad-
ditional data for adaptation. Some approaches rely on auxiliary models pre-trained on large-scale
datasets such as DINO Wysoczańska et al. (2024); Lan et al. (2024b), SAM Zhang et al. (2024),
or Stable Diffusion Corradini et al. (2024); Sun et al. (2024), which incur significant computa-
tional and memory overhead. An alternative line of research seeks to enhance CLIP’s capability for
dense visual representation by modifying the inference pipeline of its visual encoder. For instance,
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MaskCLIP Zhou et al. (2022a) removes the self-attention module in the final Transformer layer and
demonstrates that the resulting value embeddings encode local visual features that align effectively
with textual prompts. CLIP-Surgery Li et al. (2023) introduces a dual-path structure that replaces the
original self-attention with value-value attention to better preserve semantic consistency, mitigating
the tendency to attend to unrelated regions. Building on this idea, GEM Bousselham et al. (2024) and
SCLIP Wang et al. (2024) generalize the approach by incorporating correlative self-attention mecha-
nisms, such as query-query and key-key interactions. ClearCLIP Lan et al. (2024a) further simplifies
the architecture by removing the final feed-forward layer and associated residual connections, which
were found to contribute to noisy segmentation outputs. Additionally, NACLIP Hajimiri et al. (2025)
imposes explicit spatial regularization, encouraging each token to primarily attend to its neighbors
to improve the spatial coherence.

Taking into account both generalization ability and computational costs, this work aims to advance
existing training-free methods for open-vocabulary semantic segmentation. While prior training-
free approaches predominantly rely on features extracted from the final layer of the visual encoder,
we instead conduct a comprehensive analysis across token, head, and layer levels. Building on this
multi-level analysis, we propose recipe at each level to enhance the spatial representation capacity
of CLIP, thereby improving segmentation performance within a training-free framework.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 ADDITIONAL IMPLEMENTATION DETAILS.

We adopt CLIP Radford et al. (2021) with ViT-B/16 and ViT-L/14 backbones, implemented in MM-
Segmentation Contributors (2020). Following the protocol of Yang et al. (2024), input images are re-
sized to 336 pixels on the shorter side, except for Cityscapes, which is resized to 560 pixels to accom-
modate higher resolution. Inference is conducted with a sliding-window strategy using 224 × 224
crops and a stride of 112 pixels. Consistent with TCL Cha et al. (2023), we avoid computationally
intensive post-processing methods that hinder fair comparison, such as PAMR Araslanov & Roth
(2020) (used in TCL Cha et al. (2023), NACLIP Hajimiri et al. (2025)) and DenseCRF Krähenbühl
& Koltun (2011) (used in ReCo Shin et al. (2022b)). For textual inputs, we employ the standard
ImageNet prompts Radford et al. (2021) without additional prompting strategies. Based on the ab-
lation study in Section 4 and Appendix A.2.4, the following configuration is fixed across all dataset
evaluations without task-specific tuning

• ViT-B/16: The hoyer threshold is set to τ = 0.5, and the reweighting operation is applied to layers
[10, 11] (i.e., the two layers preceding the final one), with a reweighting coefficient of 0.1. The
top-10 attention heads with the highest visual discriminability are selected using a filter threshold
of β = 0.7, corresponding to the following (layer, head) pairs: (8,9), (8,8), (7,10), (9,12), (7,3),
(9,4), (5,1), (9,6), (4,11), and (8,6).

• ViT-L/14: The hoyer threshold is set to τ = 0.4 and the reweighting is applied to layers [17, 23]
with a coefficient of 0.1. Top-performing heads are selected using the same threshold β = 0.7,
with the top-30 (layer, head) pairs identified as: (11, 3), (9, 3), (7, 9), (11, 6), (10, 10), (9, 13), (3,
10), (4, 14), (10, 6), (6, 9), (7, 12), (14, 16), (11, 8), (10, 13), (8, 4), (8, 8), (10, 8), (9, 4), (2, 11),
(9, 6), (8, 1), (14, 1), (16, 2), (4, 13), (13, 11), (11, 14), (7, 4), (14, 11), (13, 13), and (3, 13).

All experiments are conducted using eight NVIDIA RTX A5000 GPUs, each with 24 GB of memory.

A.2.2 EFFECTS OF INDIVIDUAL COMPONENTS EFFECTS ON VISUAL DISCRIMINABILITY

Complementary and effective for visual discriminability. The ablation study in Section 4 con-
firms the effectiveness of each individual strategy for segmentation performance. As shown in Fig-
ure 6, we further analyze their contributions to visual discriminability by examining how progres-
sively integrating these strategies improves the quality of the final representations. Similar to the
definition of visual discriminability, we treat the token-wise similarity score as the output of a binary
classifier predicting whether two tokens belong to the same category, and plot the ROC curves of
penultimate-layer features. A higher area under the curve (AUC) indicates stronger visual discrim-
inability. The results show that each strategy individually improves AUC, while their combination
yields substantial gains in visual discriminability. For the ViT-B/16 backbone, AUC increases from
0.7560 to 0.8320 on VOC, 0.7406 to 0.8270 on Context, 0.7205 to 0.8282 on ADE, and 0.7278 to
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(a) VOC (ViT-B) (b) Context (ViT-B) (c) ADE (ViT-B) (d) Stuff (ViT-B)

(e) VOC (ViT-L) (f) Context (ViT-L) (g) ADE (ViT-L) (h) Stuff (ViT-L)

Figure 6: ROC curves of the penultimate-layer output features for ViT-B/16 and ViT-L/14 backbones
across four datasets. Each curve corresponds to an incremental combination of strategies. The results
demonstrate consistent improvements in AUC with each added strategy, culminating in significantly
higher visual discriminability when all are applied.

(a) VOC (ViT-L) (b) Context (ViT-L) (c) ADE (ViT-L) (d) COCO-Stuff (ViT-L)

Figure 7: Layer-wise visual discriminability (blue) and semantic alignment (orange) for ViT-L/14 on
four benchmarks. Solid lines denote the baseline CLIP (Raw) performance, while dashed lines indi-
cate results after applying the proposed SSR strategy. The application of SSR notably improves vi-
sual discriminability in final layers and consistently enhances semantic alignment across all datasets.

0.8175 on COCO-Stuff. Similarly, for ViT-L/14, AUC rises from 0.7081 to 0.8460 on VOC, 0.6574
to 0.8126 on Context, 0.6383 to 0.8208 on ADE, and 0.6447 to 0.8174 on COCO-Stuff. These
improvements highlight the complementary nature of the proposed strategies and their collective
effectiveness in enhancing visual discriminability across diverse benchmarks.

Effectiveness of SSR in enhancing visual discriminability of preceding layers. Since our SSR
strategy is applied not only to the penultimate layer but also to earlier layers, we further present
the layer-wise curves of visual discriminability and semantic alignment after applying SSR in Fig-
ure 7. As illustrated in the figure, the visual discriminability of the final few layers is significantly
enhanced, demonstrating the effectiveness of the proposed SSR strategy for visual discriminability
improvement. Moreover, semantic alignment also exhibits consistent improvements, as improved
visual discriminability reduces spurious semantic aggregation from other noisy tokens.
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(a) Heads 1-66

(b) Heads 67-172

Figure 8: Distribution of average visual discriminability score for individual attention heads across
three datasets (Context, ADE, and Stuff) using the ViT-B/16 model, with the heads from final layer
excluded. Bars are sorted in descending order of average visual discriminability.

A.2.3 HEAD AUC DISTRIBUTIONS

In Section 3, we presented the distribution of a subset of head-level visual discriminability scores
across multiple datasets, employing ViT-B/16 as the visual encoder. In practice, we observed that
the discriminability of head features is also degraded by the presence of abnormal tokens in the
final layers. To fully realize the potential of head features, therefore, we apply abnormal token
replacement to head features. Similarly, we consistently find that certain heads exhibit significantly
higher visual discriminability than others. Since we select the top-k heads based on their average
visual discriminability across multiple datasets, we additionally present the distribution of average
visual discriminability scores for all heads in descending order in Figure 8 for ViT-B/16 and Figure 9
for ViT-L/14, to facilitate reference and reuse in future research.

A.2.4 ADDITIONAL EXPERIMENTS ON VIT-L/14

In Table 6, we present a detailed comparison of open-vocabulary semantic segmentation models
on multiple benchmarks using the ViT-L/14 backbone. LHT-CLIP consistently improves the per-
formance of leading methods, including ClearCLIP Lan et al. (2024a), NACLIP Hajimiri et al.
(2025), and ResCLIP Yang et al. (2024). In particular, integrating LHT-CLIP with ResCLIP achieves
state-of-the-art results. As a plug-and-play module, LHT-CLIP provides consistent gains across all
datasets, highlighting its robustness and generalization. As noted in Yang et al. (2024), many meth-
ods suffer performance drops exceeding 2% mIoU when switching from ViT-B/16 to ViT-L/14; for
example, ClearCLIP declines by 2.7%. In contrast, LHT-CLIP largely mitigates this degradation,
demonstrating strong cross-backbone robustness. These results further validate its effectiveness in
enhancing open-vocabulary segmentation across both ViT-B/16 and ViT-L/14 architectures.

Additionally, in Table 7, Table 8, Table 9, and Table 10, we present detailed analyses of the hoyer
threshold parameter, the spatial-semantic reweighting configuration, the number of selected attention
heads, and the ablation analysis of individual components, respectively, for the ViT-L/14 model.
Consistent with the ViT-B/16 results, the optimal configuration is achieved with a moderate sparsity
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(a) Heads 1-88

(b) Heads 89-176

(c) Heads 177-264

(d) Heads 265-352

Figure 9: Distribution of average visual discriminability score for individual attention heads across
three datasets (Context, ADE, and Stuff) using the ViT-L/14 model, with the heads from final layer
excluded. Bars are sorted in descending order of average visual discriminability.

level (τ = 0.4), a reweighting coefficient α = 0.1 applied to layers 17–23, and the top-k heads
with k = 30. Therefore, we adopt these settings as fixed hyperparameters for ViT-L/14 across
all benchmarks, without any dataset-specific tuning. Moreover, the ablation study confirms the
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Table 6: Performance comparison of our approach with other methods on eight semantic segmenta-
tion benchmarks following the evaluation protocol in Section 4. Our results are marked in gray.

Methods Training With a background class Without background class Avg.
VOC21 C60 Object VOC20 City C59 ADE Stuff

CLIP ✗ 9.8 4.2 3.9 18.8 4.0 5.6 2.1 2.8 6.4
MaskCLIP ✗ 24.4 10.0 9.9 30.0 11.8 12.6 7.8 10.1 14.6
CLIPSurgery ✗ 47.7 27.2 27.5 80.5 32.1 31.5 16.4 17.3 35.0
SCLIP ✗ 44.4 22.3 24.9 60.3 32.2 20.5 7.1 13.1 28.1

ClearCLIP ✗ 48.7 28.3 29.7 80.0 27.9 29.6 15.0 19.9 34.9
+LHT-CLIP (ours) ✗ 62.8 33.9 33.5 85.9 40.5 39.0 20.3 26.1 42.7 (+7.8)
NACLIP Hajimiri et al. (2025) ✗ 52.2 28.7 30.4 78.7 31.4 32.1 17.3 21.4 36.5
+LHT-CLIP (ours) ✗ 63.4 34.0 33.4 84.6 40.8 39.0 20.5 25.9 42.7 (+6.2)
ResCLIP Yang et al. (2024) ✗ 55.7 29.7 30.8 81.3 32.8 33.6 17.9 22.9 38.1
+LHT-CLIP (ours) ✗ 63.4 34.0 33.4 85.9 40.9 39.0 20.5 26.0 42.9 (+4.8)

Table 7: Study of hoyer sparsity threshold τ .

τ C60 Stuff C59 ADE Avg

τ = 0.2 2.4 2.8 3.8 2.3 2.8
τ = 0.4 29.7 22.5 33.6 17.8 25.9
τ = 0.5 29.2 22.2 33.3 17.6 25.6
τ = 0.8 28.9 22.0 33.0 17.4 25.3
τ = 0.9 28.9 22.0 33.0 17.4 25.3
baseline 28.6 21.7 32.5 17.3 25.0

Table 8: Study of (lstart, lend, α) in SSR module.

(lstart, lend, α) C60 Stuff C59 ADE Avg

baseline 28.6 21.7 32.5 17.3 25.0
(14, 23, 0.1) 30.8 21.2 33.9 16.9 25.7
(17, 23, 0.1) 31.4 23.1 34.7 17.8 26.8
(19, 23, 0.1) 30.9 23.0 34.2 17.9 26.5
(17, 23, 0.05) 30.3 22.5 33.6 17.5 26.0
(17, 23, 0.2) 31.6 22.1 34.8 17.8 26.6

effectiveness of each individual component and their complementary effect. As shown in Table 10,
their combination leads to a substantial improvement of 5.1 mIoU, achieving a final score of 30.1
mIoU across the four benchmark datasets.

A.2.5 QUALITATIVE RESULTS

In Figure 10, we present a qualitative comparison between CLIP-based training-free baseline meth-
ods and their counterparts integrated with LHT-CLIP. As shown in the figure, the integration of
LHT-CLIP consistently leads to more accurate and visually coherent segmentation results. The en-
hanced models produce cleaner segmentation maps with reduced noise, improved spatial consistency
among same-category objects, and better delineation of object boundaries, all while preserving the
original text-image alignment capabilities of the baseline methods.

A.2.6 EFFICIENCY COMPARISON

In Table 11, we report efficiency results on the Context59 dataset using an A5000 GPU with the ViT-
B/16 backbone, taking ClearCLIP as the baseline. We further analyze the computational overhead
introduced by each strategy. Compared to the prior state-of-the-art ResCLIP, our method removes
the costly PAMR post-processing step in its Semantic Feedback Refinement module while simulta-
neously improving segmentation performance. Consequently, inference speed increases from 3.0 to
8.2 FPS, and computational cost decreases from 141.34G to 102.65G FLOPs.

A.3 DISCUSSION

A.3.1 HYPERPARAMETER SELECTION

While LHT-CLIP introduces several hyperparameters, these are guided by universal patterns consis-
tently observed across datasets, such as the sparsity of abnormal tokens, the trade-off between visual
discriminability and semantic alignment, and the presence of shared visually discriminative heads.
Building on these consistent phenomena, we emphasize three key points:
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Table 9: Study of number of selected heads k.

k C60 Stuff C59 ADE Avg

baseline 28.6 21.7 32.5 17.3 25.0
k = 1 32.0 24.3 35.0 18.6 27.5
k = 10 32.8 24.6 36.0 19.2 28.2
k = 30 33.1 24.9 36.3 19.5 28.5
k = 60 33.1 24.9 36.3 19.5 28.5
k = 100 33.0 24.8 36.4 19.5 28.4

Table 10: Combination of three strategies.

Methods Module mIoU ∆

ATR SSR SHE

baseline – – – 25.0 –
✓ ✓ – 28.1 +3.1
– ✓ ✓ 29.2 +4.2
✓ – ✓ 29.0 +4.0

Ours ✓ ✓ ✓ 30.1 +5.1

Table 11: Efficiency comparison of individual strategies.

Models FLOPs(G) ↓ Params(M) ↓ Speed(FPS) ↑

CLIP 106.10 149.6 13.7
ResCLIP 141.34 149.6 3.0

baseline 100.70 149.6 13.9
+ATR 100.88 149.6 12.9
+SSR 100.88 149.6 11.7
+SHE 102.65 149.6 8.2

1. Generalizable. The hyperparameters are generalizable across datasets. In practice, we found that
values selected on a small subset of training data (e.g., 1,000 randomly selected training samples
from {Context, ADE, COCO-Stuff}) also perform well on other datasets, indicating that they are
not overfitted to specific datasets. As shown in Section 4.1 and Appendix A.2.4, we apply the same
hyperparameters to all datasets without specific tuning, underscoring their strong generalizability.

2. Robustness. The method is robust to a wide range of hyperparameter values, which means that
precise tuning is not required to achieve strong performance. This is demonstrated in our ablation
studies Section 4.2 and Appendix A.2.4, where the results remain consistent in various hyperpa-
rameter settings.

3. Reliable initialization. Additionally, our analysis provides interpretable heuristics for selecting
hyperparameters. For example, in the case of an SSR starting layer, one can use the observed
turning point in visual discriminability or semantic alignment as a reliable initialization.

Taken together, while several hyperparameters are introduced, we believe these properties support
the practical usability of our method without requiring extensive or fragile hyperparameter tuning.

A.3.2 APPLICABILITY BEYOND CLIP

To evaluate the generalizability of our approach beyond the CLIP model, we further assessed it on
the SigLIP model Zhai et al. (2023). In particular, we employed the ViT-B variant as the SigLIP vi-
sion encoder and conducted experiments on five datasets without a background category, as summa-
rized in Table 12. Consistent with our findings for CLIP, the vanilla SigLIP model performs poorly
on these datasets, yielding an average score of only 22.1. Interestingly, we observed that prior work
such as ClearCLIP Lan et al. (2024a), which removes the FFN and residual connections while al-
tering the attention mechanism in the final transformer layer, performs even worse than the vanilla
SigLIP model. We believe that this degradation arises from architectural differences between CLIP

Table 12: Performance of the ViT-B variant as the SigLIP vision encoder. The best results are
obtained when combined with our proposed LHT-CLIP method, as highlighted in gray .

Method VOC20 City C59 ADE Stuff Avg

SigLIP 48.0 20.5 18.6 11.5 12.1 22.1
SigLIP+ClearCLIP 5.7 2.9 1.7 0.6 1.6 2.3
SigLIP+LHT-CLIP 59.1 23.2 23.1 13.8 15.3 26.9
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Table 13: Comparison between SSR and direct skip methods using the ClearCLIP as the baseline
method and ViT-L/14 as the CLIP vision encoder. The best results are obtained when combined
with our proposed LHT-CLIP method, as highlighted in gray .

Method VOC21 C60 Obj VOC20 City C59 ADE Stuff Avg

ClearCLIP 48.7 28.3 29.7 80.0 27.9 29.6 15.0 19.9 34.9
ClearCLIP+direct-skip 60.3 33.7 32.1 77.3 40.8 38.8 20.1 23.7 40.8
ClearCLIP+LHT-CLIP 62.8 33.9 33.5 85.9 40.5 39.0 20.3 26.1 42.7

and SigLIP, particularly the replacement of CLIP’s linear projector with the AttentionPool projector
in SigLIP. In this setting, modifying the final transformer layer, as done in ClearCLIP, may substan-
tially disrupt the input distribution to the AttentionPool projector, thereby hindering performance.
For this reason, we adopt the vanilla SigLIP model as our baseline.

In contrast to prior approaches that focus exclusively on modifying the final transformer layer, our
method is guided by a fine-grained analysis of visual discriminability and semantic alignment across
token, head, and layer levels. Rather than restricting improvements to the last stage, we introduce
targeted modifications at earlier layers of the model, leading to more robust and generalizable infer-
ence. As shown in Table 12, our approach delivers a notable gain of 4.8 points in average segmen-
tation performance, improving from 22.1 to 26.9.

A.3.3 COMPARISON BETWEEN SSR AND DIRECT SKIP METHODS

Recent work on the Perception Encoder Bolya et al. (2025) highlights the effectiveness of directly
selecting an earlier layer’s output for segmentation. This approach is conceptually related to our
spatial–semantic reweighting (SSR) strategy, which emphasizes residual pathways by amplifying
their contribution to counteract the dominance of deeper layers. In Table 13, we present a systematic
comparison between our SSR method and the direct-skip strategy, using ViT-L/14 as the CLIP vision
encoder and adopting ClearCLIP as the baseline.

Although directly leveraging earlier layer outputs provides some improvement over baseline CLIP
performance, our experiments show that SSR consistently achieves superior results. For example,
when augmented with ATR and SHE, directly skipping layers 20–23 of the ViT-L encoder and
feeding the output of layer 19 into layer 24 yields an average performance of 40.8, higher than the
baseline ClearCLIP score of 34.9, but still below the performance of our full LHT-CLIP method
(42.7), as reported in Table 13.

A.3.4 COMPARISON OF NORM-BASED AND SPARSITY-BASED CRITERIA FOR ATR

We regard ATR as a flexible framework that functions by detecting and replacing emergent abnor-
mal tokens. As discussed in Section 2, these tokens exhibit two distinctive characteristics: unusu-
ally large activation magnitudes and sparse activation patterns. To evaluate the effectiveness of a
magnitude-based criterion for abnormal token detection, we conduct additional experiments using
ViT-B/16 as the vision encoder, with ClearCLIP as the baseline method.

The norm-based approach identifies abnormal patches by computing the activation norm of each
visual patch, classifying those above a threshold γ as abnormal. Empirically, we find that this
method achieves its best average performance of 27.9 across the four datasets used in Table 14
when the threshold is set to γ = 14, which is comparable to the performance of our sparsity-based
ATR method (28.0). However, the norm-based method is more sensitive to threshold selection. For
example, the overall performance drops to 26.8 when γ = 12 and 27.6 when γ = 16, whereas the
sparsity-based approach remains more stable under hyperparameter variations in Table 2.
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Table 14: Study of norm threshold γ. The best results and corresponding γ are highlighted in gray .

τ C60 Stuff C59 ADE Avg

γ = 12 31.7 23.0 35.7 16.9 26.8
γ = 13 32.7 23.9 36.6 17.5 27.7
γ = 14 32.8 24.2 36.8 17.8 27.9
γ = 15 32.6 24.3 36.7 17.8 27.8
γ = 16 32.2 24.1 36.6 17.6 27.6
baseline 32.4 24.0 36.0 17.6 27.5

Image GT SCLIP +LHT-CLIP ClearCLIP +LHT-CLIP

Figure 10: Qualitative comparison between CLIP-based training-free baseline methods and their
counterparts integrated with TLH-CLIP.
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