
Under review as a conference paper at ICLR 2024

A OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCES

The Wasserstein-p metric between two probability distributions µX and ⌫Y is defined as,

Wp(µ, ⌫) =

✓
inf

�2�(µ,⌫)
E(x,y)⇠�kx� ykp

◆1/p

, (12)

where �(µ, ⌫) are all possible joint distributions where X,Y 2 D, (D, d) defines a metric space
(here, d = kx � ykp) and marginals satisfy

R
D �(x, y)dy = µ(x) and

R
D �(x, y)dx = ⌫(y). Note

that, while the distance is useful in itself, the optimal transport plan �⇤ is also interesting for some
applications.

Given samples from µ and ⌫, Wp(µ, ⌫) can be computed by solving the optimal transport problem,

�⇤ = argmin
�2Rm⇥n

+

X

i,j

�i,jMi,j (13)

s.t. �1 = [µ̂]m; �T 1 = [⌫̂]n; � � 0 (14)

where [µ̂]m and [⌫̂]n represent binned histograms derived from samples from µ and ⌫ with m and n
bins respectively. M is a m⇥n distance or cost matrix, Mi,j represents the cost d(x, y) to transport
mass from bin [µ̂]im to bin [⌫̂]jn.

It is also possible to avoid binning and compute the Wasserstein distance directly from samples. The
problem can then be formulated as,

�⇤ =argmin
�2Rn⇥n

+

X

i,j

�i,jMi,j (15)

s.t. �1 = 1; �T 1 = 1; � 2 {0, 1} (16)

where Mi,j now represents the cost of transporting point xi to yj . Each point is considered to
be sampled i.i.d. from their respective distributions. Unlike the previous case, we can no longer
transport a quanta of a point or mass i.e. fractional assignment is not meaningful, naturally leading
to a bipartiteness constraint. This is exactly same as Eq (1) and the optimal transport plan for the
problem is a linear sum assignment problem and can be computed using the hungarian algorithm.

B DATASETS

We train and evaluate on Syn2D, ShapeNet and ModelNet40 datasets.

Syn2D. We generate 2D synthetic point clouds by uniformly sampling 200 points on simple 2D
shapes of circles and squares. The circles are generated by uniformly sampling the center and radius
from (0, 1]. For the squares, we sample its center, rotation and scale uniformly from [�0.5, 0.5],
[0, ⇡

2], and [0.5, 1], respectively. We refer to the synthetic dataset as Syn2D (Fig. 2).

ShapeNet. ShapeNet Chang et al. (2015) is a richly-annotated, large-scale dataset of 3D shapes.
We train and evaluate our models using point clouds from one of the three categories in the ShapeNet
dataset : airplane, chair, and car. We sample 1024 points from the ShapeNet point clouds for training
and evaluate on a range of point cloud sizes.

ModelNet40. Chang et al. (2015) introduced the ModelNet project to provide a comprehensive
and clean collection of 3D CAD models for objects, compiled using a list of the most common object
categories. In our experiments, we evaluate our models trained with a single ShapeNet category on
the ModelNet40 dataset. ModelNet40 has 40 different categories.

ScanObjectNN. Uy et al. (2019) proposed the ScanObjectNN dataset, a real-world point cloud
object dataset based on scanned indoor scene data, in order to provide a more realistic benchmark
as compared to ModelNet40. In our experiments, we evaluate our models trained with a single
ShapeNet category on pairs of point clouds derived from the training set of ScanObjectNN dataset.

Table 3 provides a summary and statistics about of the datasets.

12

Under review as a conference paper at ICLR 2024

Table 3: Summary of datasets. The top five rows show statistics about the original point cloud
datasets, while the bottom four rows show statistics about the pair point cloud dataset that was used
for our evaluation and/or training.

SYN2D MODELNET40 SCANOBJECTNN SHAPENET AIRPLANE CAR CHAIR
CATEGORIES 2 40 15 55 1 1 1
FEATURE DIM 2 3 3 3 3 3 3
CARDINALITY 200 2048 2048 15000 15000 15000 15000
TRAIN SAMPLES 8000 9840 2309 35708 2832 2458 4612
VAL SAMPLES 2000 2468 581 5158 405 352 662
TRAIN PAIR SAMPLES 20000 - - - 10000 10000 10000
TRAIN CARDINALITY 200 - - - 1024 1024 1024
VAL PAIR SAMPLES 5000 2000 10000 - 2000 2000 2000
VAL CARDINALITY 200 1024 1024 - 256-8192 256-8192 256-8192

Further, we build pairs (U, V) of point clouds by randomly sampling pairs from the train or valida-
tion splits of point clouds datasets summarized in Table . We refer the first argument in the pair U
as the source and the second argument V as target.

B.1 AUGMENTATIONS

In order to improve generalization, we augment the datasets with point cloud pairs. We randomly
sample a point cloud pair (U, V) from the dataset and another noisy point cloud N by randomly
sampling points from N (0, 1) and scaling the whole point cloud by � ⇠ U(0.1, 1.1). Further, we
augment the point cloud pairs according to the following schemes:

• (U, V) : the originally sampled pair.
• (U,N) : target is replaced by the noisy point cloud.
• (U,U +N) : target is a corrupted version of U with additive noise N .

• (U, Ũ + N) : Ũ denotes a point cloud which is similar to U . For Syn2D, we perturb the
surface parameters (radius, scale, center, etc.) used for sampling U and sample points on
the perturbed surface. For ShapeNet, we independently sample different set of points from
the original surface.

• (U, V + N) : target is a corrupted version of a randomly sampled point cloud from the
dataset.

The resulting dataset constitutes 20% samples from each of the above splits. Validation splits are
generated randomly and independently for Syn2D, while for ShapeNet and ModelNet40, we use the
validation split provided. We also augment the validation split with the same scheme as discussed
above. The specifics of the pair point-cloud dataset is summarized in Table 3.

C MODELS

Transformers. Let X = [x1, · · · , xm] 2 Rm⇥dmodel be the input sequence (or set) of m vectors. A
transformer layer performs the following computation Vaswani et al. (2017) :

X 0 = LN (X + Multihead(X))

tl(X) = LN (X 0 + FFN(X 0))

where LN and FFN stand for layer norm and feed-forward network, respectively. Multihead denotes
a multi-head attention layer which allows the model to jointly attend to information from differ-
ent representation subspaces at different positions. It consists of a stack of H scaled dot-product
attention layers and computes key, query and value matrices, followed by a softmax as follows :

Kh = XWK
h , Qh = XWQ

h , Vh = XWV
h

Ah = soft-max

QhKh

>

dk

!
Vh

MultiHead(X) = Ā = concat (A1, · · · , AH)WO

13

Under review as a conference paper at ICLR 2024

The final output of the encoder can be written as a composition:

t(X) = tN (tN�1 (. . . (t1(X))))

MLP. The baseline MLP model predicts directly the distance and it does not use the matching
information. It has about 110K parameters in total. The point-wise MLP backbone g(.) is composed
of three hidden layer of sizes 4, 8 and 16, with ReLU non-linearity. It outputs a single embedding
of dimension 128 for each point cloud after aggregating the point level features. The embedding of
the point clouds are then concatenated and passed to the prediction head which is also an MLP with
four hidden layers of sizes 256, 128, 64 and 16, and outputs a single scalar which is interpreted as
the predicted distance.

DeepEMD. We use a transformer encoder backbone which transforms the raw input point clouds
into contextualized point level features. The transformer encoder is followed by the output layer
which computes the queries and keys and finally the attention matrix which is interpreted as the
matching as explained in § 3.2. The model constitutes about 803K learnable paramters, with 8
transformer encoder layers, each with 6 heads. The latent dimensions (dmodel, dkeys, etc.) for each
layer were all set to 78.

We use the ADAM optimizer with a constant learning rate of 0.001 for DeepEMD and 0.0001 for
the MLP.

D SINKHORN DISTANCE

The Sinkhorn distance Cuturi (2013) considers a regularized OT optimization problem :

�⇤ = argmin
�2Rm⇥n

+

X

i,j

�i,jMi,j + �⌦(�)

s.t. �1 = [µ̂]m; �T 1 = [⌫̂]n; � � 0

where � is the regularization coefficient and O(�) =
P

i,j �i,j log(�i,j) is a entropy regularization
term which makes the optimization problem smooth and strictly convex allowing for optimization
procedures such as the Sinkhorn-Knopp algorithm. In this paper, we use the Python Optimal Trans-
port (POT) python library Flamary et al. (2021) for computing the Sinkhorn distances. It is an
iterative algorithm and can be evaluated in O(N2) time complexity.

In our experiments, we used a regularization multiplier of 0.1. Reducing the multiplier typically
resulted in numerical issues for a larger portion of the samples, whereas increasing it led to greater
inaccuracies in estimation with the same computation time (for a fixed number of iterations). We
show the performance metrics with different regularisation parameters in Table 4.

Table 4: Effect of regularization parameter on Sinkhorn’s algorithm (100 iterations). Results on
ScanObjectNN dataset with 10000 samples. The second row shows number of instances which had
numerical issues.

� 0.08 0.1 0.12 0.14
FAIL 686 80 6 0
r 0.616 0.929 0.993 0.999
⇢ 0.708 0.965 0.997 0.999
⌧ 0.785 0.968 0.988 0.986
RE0.1 0.033 0.038 0.045 0.052
RE0.5 0.068 0.078 0.093 0.110
RE0.9 0.288 0.244 0.166 0.342
CS0.1 0.815 0.879 0.869 0.851
CS0.5 0.991 0.992 0.991 0.989
CS0.9 0.999 1.0 0.999 0.999
ACCURACY 21.29 20.049 18.49 17.22
B 20.72 19.439 18.09 17.03
Bcorr 10.97 9.961 8.98 8.23

The difficulty of choosing the regularisation parameter also makes it difficult for training generative
models with Sinkhorn as it often leads to numerical issues. We experimented with several variants

14

Under review as a conference paper at ICLR 2024

of Sinkhorn, including log-space Sinkhorn, log-stabilized Sinkhorn, Greenkhorn, etc. However, we
discovered that they either exhibited significantly slower performance compared to the vanilla vari-
ant, frequently failed to converge to a satisfactory optimal transport matrix within a finite timeframe,
or sometimes exhibited both issues.

E EXTENDED RESULTS

E.1 DISTANCE AND MATCHING ESTIMATION

We compare performance of different models and metrics in Table 5. The models were trained on a
single ShapeNet category and evaluated on the validation split of the same category. The numbers
are averaged over all training categories as well as four training seeds.

Table 5: Performance comparison of different metrics and models. The models are trained on a
single ShapeNet category and evaluated on the test split of the same category. The reported numbers
are averaged over all categories and four training seeds. The first six rows show distance estimation
metrics (see § 4.2), while the last six rows correspond to matching estimation metrics. The arrows
next to the metrics indicate whether higher (") or lower (#) values are better. Chamfer and Sinkhorn
are deterministic, thus variances are not reported. Further, our MLP model does not provide accuracy
and bipartiteness metrics.

MODEL CHAMFER SINKHORN MLP (OURS) DEEPEMD (OURS)
r (") 0.963 0.995 0.998± 0.0 1.0± 0.0
⇢ (") 0.953 0.997 0.998± 0.001 1.0± 0.0
⌧ (") 0.827 0.987 0.966± 0.003 0.988± 0.001

RE0.1 (#) 0.023 0.051 0.002± 0.0 0.007± 0.003
RE0.5 (#) 0.109 0.106 0.015± 0.001 0.017± 0.005
RE0.9 (#) 0.31 0.271 0.076± 0.006 0.032± 0.005
CS0.1 (") �0.173 0.831 �0.034± 0.049 0.964± 0.001
CS0.5 (") 0.85 0.986 0.798± 0.018 1.0± 0.0
CS0.9 (") 0.998 0.999 0.974± 0.003 1.0± 0.0

ACCURACY (") 11.677 28.407 - 64.648± 0.404
B (") 17.784 31.889 - 75.896± 0.521

Bcorr (") 5.626 16.658 - 55.719± 0.568

Tables 6 and 7 show the per-category performance comparison, averaged over four training seeds.

Table 6: Per-category distance estimation performance measures of different models and metrics
when train and test category are same. The reported number are averaged over four training seeds.

r ⇢ ⌧ RE0.1 RE0.5 RE0.9

TRAIN CATE MODEL/METRIC

AIRPLANE

CHAMFER 0.9797 0.9647 0.8519 0.0141 0.0962 0.3018
DEEPEMD 0.9998± 0.0 0.9997± 0.0 0.9879± 0.001 0.0039± 0.0014 0.0142± 0.0031 0.0306± 0.004
MLP 0.9992± 0.0001 0.9986± 0.0001 0.9722± 0.0018 0.002± 0.0003 0.0125± 0.0018 0.0772± 0.0038
SINKHORN 0.9998 0.9997 0.9881 0.0496 0.1104 0.2984

CAR

CHAMFER 0.9675 0.9564 0.8318 0.035 0.1167 0.324
DEEPEMD 0.9997± 0.0001 0.9998± 0.0 0.9891± 0.0006 0.006± 0.0047 0.0156± 0.0068 0.0302± 0.0097
MLP 0.9993± 0.0002 0.9988± 0.0004 0.9746± 0.0035 0.0018± 0.0002 0.0112± 0.001 0.0625± 0.012
SINKHORN 0.991 0.9941 0.9854 0.0531 0.1124 0.2986

CHAIR

CHAMFER 0.9431 0.9382 0.7976 0.0192 0.1133 0.3037
DEEPEMD 0.9997± 0.0 0.9997± 0.0001 0.9866± 0.0013 0.0103± 0.0088 0.0225± 0.0118 0.0356± 0.012
MLP 0.9965± 0.0013 0.9959± 0.0015 0.9504± 0.0079 0.0037± 0.0006 0.0214± 0.0023 0.0881± 0.0124
SINKHORN 0.9942 0.9969 0.9886 0.049 0.0955 0.2167

E.2 OUT-OF-DISTRIBUTION GENERALIZATION

Table 8 shows the out-of-distribution generalization performance for our models. The trained model
on a particular ShapeNet category is evaluated on the validation split of other ShapeNet categories.

15

Under review as a conference paper at ICLR 2024

Table 7: Per-category matching estimation performance measures of different models and metrics
when train and test category are same. The reported number are averaged over four training seeds.

CS0.1 CS0.5 CS0.9 ACCURACY B B CORR
TRAIN CATE MODEL/METRIC

AIRPLANE

CHAMFER �0.0813 0.8446 0.9973 10.1768 16.7437 4.7461
DEEPEMD 0.9643± 0.0027 1.0± 0.0 1.0± 0.0 61.9119± 0.9043 73.3128± 1.1746 52.2082± 1.246
MLP �0.0492± 0.0533 0.7766± 0.0263 0.9722± 0.003 - - -
SINKHORN 0.8314 0.9871 0.9994 25.2956 29.018 13.9732

CAR

CHAMFER �0.246 0.8615 1.0 13.7079 20.7186 6.8617
DEEPEMD 0.9585± 0.0025 1.0± 0.0 1.0± 0.0 67.7243± 0.6554 78.7286± 0.797 59.6723± 0.9245
MLP 0.017± 0.0652 0.8388± 0.0187 0.9804± 0.0029 - - -
SINKHORN 0.8043 0.9845 0.9993 31.1621 35.5971 19.3105

CHAIR

CHAMFER �0.1929 0.8442 0.9976 11.145 15.8883 5.2694
DEEPEMD 0.9703± 0.0007 1.0± 0.0 1.0± 0.0 64.3079± 0.4712 75.6459± 0.657 55.2757± 0.7011
MLP �0.0695± 0.1211 0.7793± 0.0438 0.97± 0.0072 - - -
SINKHORN 0.8558 0.9876 0.9992 28.7644 31.0521 16.69

The numbers are averaged over these other categories as well as four training seeds. Tables 9 and
10 show the performance in the same setting but for each test category separately.

Table 8: Out-of-distribution (category) generalization for our models and comparison with other
metrics (Chamfer and Sinkhorn). The models are trained on a single ShapeNet category and evalu-
ated on other ShapeNet categories. The reported numbers are averaged over these categories as well
as four training seeds. The first five rows show distance estimation metrics (see § 4.2), while the
last five rows correspond to matching estimation metrics. The arrows next to the metrics indicate
whether higher (") or lower (#) values are better.

MODEL MLP (OOD) MLP DEEPEMD (OOD) DEEPEMD
r (") 0.98± 0.019 0.998± 0.001 0.999± 0.001 1.0± 0.0
⇢ (") 0.976± 0.02 0.998± 0.001 0.999± 0.0 1.0± 0.0
⌧ (") 0.886± 0.04 0.966± 0.004 0.977± 0.003 0.988± 0.001
RE0.1 (#) 0.014± 0.003 0.002± 0.0 0.009± 0.009 0.007± 0.005
RE0.5 (#) 0.065± 0.018 0.015± 0.002 0.024± 0.012 0.017± 0.007
RE0.9 (#) 0.319± 0.132 0.076± 0.009 0.05± 0.011 0.032± 0.008
CS0.1 (") �0.208± 0.089 �0.034± 0.074 0.933± 0.004 0.964± 0.002
CS0.5 (") 0.714± 0.047 0.798± 0.027 1.0± 0.0 1.0± 0.0
CS0.9 (") 0.963± 0.006 0.974± 0.004 1.0± 0.0 1.0± 0.0
ACCURACY (") - - 54.35± 1.16 64.648± 0.606
B (") - - 67.922± 1.343 75.896± 0.782
Bcorr (") - - 44.293± 1.445 55.719± 0.851

Table 9: Per-category distance estimation performance measures of different models and metrics
when train and test category are different. The reported number are averaged over four training
seeds.

r ⇢ ⌧ RE0.1 RE0.5 RE0.9

TRAIN CATE TEST CATE

AIRPLANE
AIRPLANE 0.9998± 0.0 0.9997± 0.0 0.9879± 0.001 0.0039± 0.0014 0.0142± 0.0031 0.0306± 0.004
CAR 0.9989± 0.0006 0.9997± 0.0001 0.9864± 0.001 0.0035± 0.0005 0.016± 0.0036 0.0308± 0.0039
CHAIR 0.9981± 0.0003 0.9983± 0.0003 0.9689± 0.0016 0.0044± 0.0011 0.0212± 0.0033 0.0491± 0.0048

CAR
AIRPLANE 0.9993± 0.0002 0.9989± 0.0003 0.9766± 0.0017 0.0092± 0.0065 0.0256± 0.011 0.0634± 0.0114
CAR 0.9997± 0.0001 0.9998± 0.0 0.9891± 0.0006 0.006± 0.0047 0.0156± 0.0068 0.0302± 0.0097
CHAIR 0.9978± 0.0001 0.9981± 0.0002 0.9671± 0.0017 0.0045± 0.0019 0.0206± 0.006 0.0525± 0.0022

CHAIR
AIRPLANE 0.999± 0.0004 0.9983± 0.0008 0.9751± 0.0047 0.0164± 0.0114 0.034± 0.0127 0.0631± 0.0092
CAR 0.9987± 0.0007 0.9996± 0.0001 0.9867± 0.0007 0.0141± 0.0116 0.0275± 0.014 0.0422± 0.0139
CHAIR 0.9997± 0.0 0.9997± 0.0001 0.9866± 0.0013 0.0103± 0.0088 0.0225± 0.0118 0.0356± 0.012

E.3 DEEPEMD AS A LOSS

Fig. 9 shows more samples with the input point cloud and the reconstructed output from SetVAE
when trained with EMD, Chamfer or DeepEMD as the reconstruction loss.

16

Under review as a conference paper at ICLR 2024

Table 10: Per-category matching estimation performance measures of different models and metrics
when train and test category are different. The reported number are averaged over four training
seeds.

CS0.1 CS0.5 CS0.9 ACCURACY B B CORR
TRAIN CATE TEST CATE

AIRPLANE
AIRPLANE 0.9643± 0.0027 1.0± 0.0 1.0± 0.0 61.9119± 0.9043 73.3128± 1.1746 52.2082± 1.246
CAR 0.9347± 0.004 1.0± 0.0 1.0± 0.0 61.4086± 0.9383 72.6142± 1.3357 51.6545± 1.3383
CHAIR 0.926± 0.0045 0.9994± 0.0001 1.0± 0.0 48.9237± 0.9275 63.1441± 1.0583 38.1275± 1.1302

CAR
AIRPLANE 0.9279± 0.0027 0.9997± 0.0 1.0± 0.0 50.7472± 1.1176 66.2± 1.0652 40.6049± 1.3128
CAR 0.9585± 0.0025 1.0± 0.0 1.0± 0.0 67.7243± 0.6554 78.7286± 0.797 59.6723± 0.9245
CHAIR 0.9218± 0.0035 0.9994± 0.0001 1.0± 0.0 47.7712± 1.1373 63.8324± 1.1691 37.6786± 1.2958

CHAIR
AIRPLANE 0.9401± 0.0031 0.9998± 0.0 1.0± 0.0 53.7969± 0.8777 67.1421± 1.0913 43.3759± 1.0926
CAR 0.945± 0.0006 1.0± 0.0 1.0± 0.0 63.4508± 0.5761 74.5965± 0.7858 54.3188± 0.8313
CHAIR 0.9703± 0.0007 1.0± 0.0 1.0± 0.0 64.3079± 0.4712 75.6459± 0.657 55.2757± 0.7011

Airplane Chair Car

EM
D

C
ha

m
fe

r
D

ee
pE

M
D

(o
ur

s)

Figure 9: Reconstruction on validation data with SetVAE trained with differnt reconstruction losses
: EMD (top), Chamfer (middle) and DeepEMD surrogate (bottom). Training with DeepEMD as a
loss consistently achieves lower reconstruction EMD as compared to Chamfer loss.

17

	Introduction
	Related Work
	Method
	Predicting the distance
	Predicting bipartite matching

	Experiments
	Datasets
	Performance Measures
	Results
	DeepEMD used as a loss

	Conclusion and Future Work
	Optimal Transport and Wasserstein Distances
	Datasets
	Augmentations

	Models
	Sinkhorn Distance
	Extended Results
	Distance and Matching Estimation
	Out-of-distribution generalization
	DeepEMD as a loss

