
Proceedings of Machine Learning Research vol 272:1–34, 2025 36th International Conference on Algorithmic Learning Theory

Minimax-optimal and Locally-adaptive
Online Nonparametric Regression

Paul Liautaud PAUL.LIAUTAUD@SORBONNE-UNIVERSITE.FR
Sorbonne Université, CNRS, LPSM, F-75005 Paris, France

Pierre Gaillard PIERRE.GAILLARD@INRIA.FR
Université Grenoble Alpes, INRIA, CNRS, Grenoble INP, LJK, Grenoble, 38000, France

Olivier Wintenberger OLIVIER.WINTENBERGER@SORBONNE-UNIVERSITE.FR

Sorbonne Université, CNRS, LPSM, F-75005 Paris, France
Institut Pauli CNRS, Vienna University, Oskar Morgenstern Platz 1, 1090 Wien, Austria

Editors: Gautam Kamath and Po-Ling Loh

Abstract
We study adversarial online nonparametric regression with general convex losses and propose a
parameter-free learning algorithm that achieves minimax optimal rates. Our approach leverages
chaining trees to compete against Hölder functions and establishes optimal regret bounds. While
competing with nonparametric function classes can be challenging, they often exhibit local patterns -
such as local Hölder continuity - that online algorithms can exploit. Without prior knowledge, our
method dynamically tracks and adapts to different Hölder profiles by pruning a core chaining tree
structure, aligning itself with local smoothness variations. This leads to the first computationally
efficient algorithm with locally adaptive optimal rates for online regression in an adversarial setting.
Finally, we discuss how these notions could be extended to a boosting framework, offering promising
directions for future research.
Keywords: Online Learning, Local Adaptivity, Nonparametric Regression

1. Introduction

Observing a stream of data x1, x2, . . ., an online regression algorithm sequentially predicts a function
f̂t ∈ RX at each time step t ⩾ 1 based on the current input xt ∈ X ⊂ Rd, where d ⩾ 1. The accuracy
of these predictions is measured using a sequence of convex loss functions (ℓt)t⩾1. Examples include
the absolute loss ℓt(ŷ) = |ŷ − yt| and the squared loss (ŷ − yt)2, for some observation yt ∈ R. The
performance of an online regression algorithm is evaluated through its regret relative to a competitive
class of functions F ⊂ RX , defined over a time horizon T ⩾ 1 as

RegT (f) :=

T∑
t=1

ℓt(f̂t(xt))−
T∑
t=1

ℓt(f(xt)) , ∀f ∈ F . (1)

The function class F is typically chosen to capture smooth or structured relationships in the data,
such as Lipschitz functions, which are commonly used to model nonparametric regression problems.
Unlike traditional batch regression methods, which train models on the full dataset {(xs, ℓs)}Ts=1,
online regression algorithms - see Cesa-Bianchi and Lugosi (2006) for a reference textbook - make
predictions sequentially, updating f̂t at each step using only past observations {(xs, ℓs)}t−1

s=1. This
sequential and adaptive learning paradigm allows algorithms to capture complex and evolving
patterns in the data without requiring strong assumptions, such as i.i.d. observations.
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A fundamental goal in online regression is to design algorithms that are minimax-optimal in an
adversarial setting, meaning they achieve the best possible regret guarantees over the worst-case data
sequence - see Rakhlin and Sridharan (2014, 2015). Existing methods, such as those of Gaillard and
Gerchinovitz (2015); Cesa-Bianchi et al. (2017), can attain minimax rates when the regularity of
the functions in the competitive class is known beforehand, but they do not extend to cases where
the function’s smoothness varies across the domain, requiring a more flexible and adaptive strategy.
Later, Kuzborskij and Cesa-Bianchi (2020) developed a locally adaptive algorithm, but it achieves a
suboptimal regret rate. Thus, designing algorithms that adapt locally to unknown regularities and
variations while maintaining optimal regret guarantees remains a key open challenge.
In this work, we propose a computationally efficient online learning algorithm that achieves locally
adaptive minimax regret without requiring prior knowledge of the competitor’s regularity. Our
method builds on chaining trees and leverages an adaptive pruning mechanism that dynamically
adjusts to local smoothness variations in the competitor function. Inspired by prior work on tree-
based online learning (Kuzborskij and Cesa-Bianchi, 2020), we introduce a core tree structure that
selects prunings in an optimal way, ensuring adaptivity to different Hölder profiles. This leads to
the first online regression algorithm that is both minimax-optimal and locally adaptive, bridging
the gap between computational efficiency, minimax rates, and local adaptivity. Additionally, our
algorithm is general and applies to both convex and exp-concave loss functions, achieving optimal
regret guarantees under mild assumptions. Finally, we validate our theoretical results with numerical
experiments1 demonstrating the practical benefits of our approach.
As a conclusion and perspective, we highlight how our approach shares similarities with boosting’s
iterative refinement process and discuss how this connection could inspire future work in online
regression.

1.1. Related work

1.1.1. ONLINE NONPARAMETRIC REGRESSION

Vovk (2006) introduced online nonparametric regression with general function classes. Cesa-Bianchi
and Lugosi (2006) developed an algorithm that exploits loss functions with good curvature properties,
such as exp-concavity, to achieve fast regret rates in adversarial settings. Rakhlin and Sridharan
(2014) further advanced the minimax theory, providing a non-polynomial algorithm that is optimal
for regret in cumulative squared errors of prediction. This theory was later extended to general convex
losses in Rakhlin and Sridharan (2015). A significant step toward computational efficiency was
made by Gaillard and Gerchinovitz (2015); Cesa-Bianchi et al. (2017) designed a polynomial-time
chaining algorithm that achieves minimax regret when the regularity of the competitor is known.
They also observed that the same algorithm, with a different tuning, remains minimax-optimal for
general convex losses.
In the batch statistical setting with i.i.d. data, the convergence rates of tree-based aggregation methods
have been primarily studied in the context of random forests; see Biau and Scornet (2016) for a
survey. Avoiding early stopping and overfitting, the purely random forests of Arlot and Genuer
(2014) achieve minimax rates for i.i.d. nonparametric regression. Closer to our setting, Mourtada
et al. (2017) studied the aggregation of Mondrian trees trained sequentially but in a batch (i.i.d.)
statistical framework. While their method adapts to the regularity of the unknown regression function
in well-specified settings, it does not extend to adversarial environments.

1. The code to reproduce all numerical experiments can be found here.
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References Assumptions Upper bound

This paper
(ℓt) exp-concave, L > 0 unknown min

{√
LT ,L

2
3T

1
3

}
(ℓt) convex, L > 0 unknown

√
LT

KCB20 (ℓt) square loss, L > 0 unknown
√
LT

HM07
(ℓt) absolute loss, L > 0 known L

1
3T

2
3

(ℓt) square loss, L > 0 known
√
LT

GG15 (ℓt) square loss, L = 1 known T
1
3

CB3G17 (ℓt) convex, L = 1 known
√
T

Table 1: Comparison of regret guarantees for recent algorithms in online nonparametric regression
with dimension d = 1 and smoothness rate α = 1.

1.1.2. REGRET AGAINST α-HÖLDER COMPETITORS AND LOCAL ADAPTIVITY

Considering F as the set of Lipschitz functions (α = 1 in Equation (5)) for any constant L > 0,
Hazan and Megiddo (2007) introduced the corresponding minimax regret. They proved that for
d = 1, the minimax rate is O(

√
LT ) for any convex loss, motivating the design of an algorithm that

localizes at an optimal rate depending on L. The knowledge of L is crucial for their procedures to
prevent regret from growing linearly with L. Going one step further, Kuzborskij and Cesa-Bianchi
(2020) demonstrated the adaptability of tree-based online algorithms by introducing an oracle pruning
procedure in the regret analysis, given a core tree. Tracking the best pruning goes back to Helmbold
and Schapire (1995) and Margineantu and Dietterich (1997). Kpotufe and Orabona (2013) also
designed adaptive pruning algorithms based on trees to partition the instance space X optimally
and sequentially. Competing with an oracle pruning in nonparametric regression enables adaptation
to the local regularities (L,α) of α-Hölder continuous functions - see (5). Indeed, the implicit
multi-resolution nature of pruning allows the depth of the leaves to align with local Hölder constants:
the larger the constant, the deeper the pruning, as finer partitions are needed to capture variations in
the function.
However, existing methods either require prior knowledge of local Hölder constants in and the
exponent rate α, or they fail to attain minimax regret rates in polynomial time. The problem of
designing a computationally efficient, minimax-optimal algorithm that adapts to local regularities
remained open. One solution to this problem relies on an adaptive pruning approach on chaining trees,
dynamically tracking and aligning with different Hölder profiles to adjust the depth of partitioning in
an online manner. We propose an algorithm that efficiently adapts to local smoothness variations
(both in L and α) without requiring prior knowledge of the underlying function regularities. Table 1
presents an overview of our main result alongside previous advancements in the field of online (and
local) nonparametric regression.

1.2. Contributions and outline of the paper

We first present, in Section 2, a parameter-free online learning method that leverages a chaining tree
structure and achieves minimax regret over α-Hölder continuous functions with global exponent
rate α ⩽ 1. Next, in Section 3, we introduce a core tree adaptive algorithm that dynamically tracks
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and adjusts to local smoothness variations through an adaptive pruning mechanism, enabling it to
efficiently compete against functions with different local regularities. We prove that our approach
achieves an optimal locally adaptive regret bound in an adversarial setting. In particular, we show
that our algorithm adapts to the curvature of the loss functions and remains optimal for both general
convex and exp-concave losses.
Finally, we include numerical experiments in the supplementary materials (Appendix F) to illustrate
our results on a synthetic dataset. As interesting perspectives, we also draw connections between
our approach and boosting techniques, suggesting a potential foundation for a boosting theory in
adversarial online regression.

2. Minimax regret with chaining trees: a parameter-free online approach

Setting and notations. We consider that data x1, x2, · · · ∈ X arrive in a stream. At each time step
t ⩾ 1, the algorithm updates f̂t, receives xt ∈ X and predicts f̂t(xt) ∈ R. Then, a loss function
ℓt : R → R is disclosed. The learner incurs loss ℓt(f̂t(xt)) and considers gradients to update
strategies for time t + 1. We assume that (ℓt) are convex, G-Lipschitz and attain one minimum
within [−B,B], for some B > 0. The input space X is a bounded subspace of Rd, d ⩾ 1. We write
|X ′| = supx,x′∈X ′ ∥x− x′∥∞ <∞ for any X ′ ⊂ X and [N ] = {1, . . . , N} for N ⩾ 1.
In this section, we present our first contribution: an online learning algorithm (Algorithm 1) that
leverages a specialized decision tree structure, referred to as chaining trees, which we introduce in the
next section. Specifically, we establish in Theorem 1 that our procedure achieves minimax-optimal
regret in nonparametric regression over the class of Hölder-continuous functions.

2.1. Chaining tree

Tree-based methods are conceptually simple yet powerful - see Breiman et al. (2017). They consist
in partitioning the feature space into small regions and then fitting a simple model in each one.
Given X ⊂ Rd, a regular decision tree (T , X̄ , W̄) is composed of the following components:

θ1

θ4

θ5

θ2
θ3

θ6 θ7

X
x

pathT (x) = {1, 2, 5}
f̂(x) = θ1 + θ2 + θ5

Figure 1: Example of a CT
over X ⊂ R.

• a finite rooted ordered regular tree T of degree deg(T ), with
nodes N (T ) and leaves or terminal nodes L(T ) ⊂ N (T ).
The root and depth of T are respectively denoted by root(T )
and d(T ). Each interior node n ∈ N (T )\L(T ) has deg(T )
children. The parent of a node n is referred to as p(n) and its
depth as d(n);

• a family of sub-regions X̄ = {Xn, n ∈ N (T )} consisting of
subsets of X such that for any interior node n, {Xm : p(m) =
n} forms a partition of Xn;

• a family of prediction functions W̄ = {hn : X → R, n ∈
N (T )} associated to each node such that hn(x) = 0 for all
x /∈ Xn.

The standard method of Breiman et al. (2017) for predicting with a decision tree is to use the partition
induced by the leaves

∑
n∈L(T ) hn(x), x ∈ X . On the contrary, the chaining tree that we define

below, preforms multi-scale predictions by combining the predictions from all nodes.
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Definition 1 (Chaining-Tree) A Chaining-Tree (CT) prediction function f̂ is defined as

f̂(x) =
∑

n∈N (T )

hn(x) , x ∈ X ⊂ Rd ,

where the regular prediction tree (T , X̄ , W̄) satisfies:
• the prediction functions hn are constant hn(x) = θn1x∈Xn , θn ∈ R. We denote them by θn by

abuse of notation;
• the degree deg(T ) = 2d and for any interior node n, {Xm : p(m) = n} forms a regular

partition of Xn in infinite norm. In particular, this implies |Xm| = |Xp(m)|/2.

We provide a schematic illustration in Figure 1. Chaining trees are closely related to the chaining
technique introduced by Dudley (1967), which is at the core of algorithms addressing function
approximation tasks. This method involves a sequential refinement process, that is - roughly speaking
- growing a sequence of refining approximations over a function space. It was first introduced to
design concrete online learning algorithm with optimal rates by Gaillard and Gerchinovitz (2015).

2.2. First algorithm: the online training of a chaining-tree

We introduce in this section an explicit Algorithm 1 to sequentially train our CT T over time.

Algorithm 1: Training CT T at time t ⩾ 1

Input :(θn,t)n∈N (T ) (node predictors of T ), (gn,t)n∈N (T ) (gradients - later specified).
for n ∈ N (T ) do

Predict f̂t(xt) =
∑

n∈N (T ) θn,t1xt∈Xn ;
Find θn,t+1 ∈ R to approximately minimize

θn 7→ ℓt(f̂−n,t(xt) + θn1xt∈Xn) with f̂−n,t(xt) = f̂t(xt)− θn,t1xt∈Xn (2)

using gradient gn,t =
[
∂ℓt
(
f̂−n,t(xt)+θn1xt∈Xn

)
∂θn

]
θn=θn,t

.

end
Output :(θn,t+1)n∈N (T )

To keep things concise, the gradient minimization step in (2) is expressed as:

θn,t+1 ← grad-step(θn,t, gn,t) . (3)

where the function grad-step(θ, g) stands for any rule that updates θ ∈ R from time t to t+ 1
using some gradient g ∈ R.

Computation of the gradients. At each time t ⩾ 1 and for each node n ∈ N (T ), the subgradient
gn,t of the last loss ℓt(f̂t(xt)) with respect to θn,t can be computed explicitly using the chain rule:

gn,t =

[
∂ℓt(f̂−n,t(xt) + θ1xt∈Xn)

∂θ

]
θ=θn,t

= ℓ′t
(
f̂t(xt)

)
1xt∈Xn , n ∈ N (T ) , (4)

which simplifies the computation of subgradients, as the dependence on n only involves the indicator
function. More precisely, the subroutine grad-step, detailed below, does not perform any update
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(i.e., θn,t+1 = θn,t) when the gradient is zero (i.e., xt /∈ Xn). All nonzero updates use the same
subgradient gt = ℓ′t

(
f̂t(xt)

)
, which is based on the derivative of the loss of the strong learner’s

prediction.

Online gradient optimization subroutine. We now detail the subroutine grad-step, which, in
our analysis, can be any online optimization algorithm satisfying the following regret upper-bound.

Assumption 1 Let gn,1, . . . , gn,T ∈ [−G,G] for T ⩾ 1, G > 0, and n ∈ N (T ). We assume that
the parameters θn,t starting at θn,1 ∈ R and following the update (3) satisfy the linear regret bound:

T∑
t=1

gn,t(θn,t − θn) ⩽ |θn − θn,1|
(
C1

√∑T
t=1 |gn,t|2 + C2G

)
,

for some C1, C2 > 0 and every θn ∈ R.

Such an assumption is satisfied by so-called parameter-free online convex optimization algorithms,
such as those described in Cutkosky and Orabona (2018); Mhammedi and Koolen (2020); Orabona
and Pál (2016). Specifically, by considering only the time steps where the gradients are nonzero,
Tn = {1 ⩽ t ⩽ T : gn,t ̸= 0}, their procedure entails O(G|θn|

√
|Tn|). Note that the constants

C1, C2 often hide logarithmic factors in T,G or |θn|. These algorithms require no parameter tuning
(though some need prior knowledge of G) and provide a regret upper bound that automatically scales
with the parameter norm |θn|. This property is crucial in analyzing our CT, where each node is
tasked with correcting the errors of its ancestors in a more refined subregion of the input space.
This multi-resolution aspect of the predictions leads us to consider θn that approach zero as d(n)
increases.

First result. In the theorem below, we show that when resorting to such a subroutine into Algo-
rithm 1, our results are minimax-optimal with respect to C α(X , L) the class of α-Hölder continuous
functions over X defined with L > 0 and α ∈ (0, 1] by

C α(L,X ) :=
{
f : X → R : |f(x)−f(x′)| ⩽ L∥x−x′∥α∞ , x, x′ ∈ X and supx∈X |f(x)| ⩽ B

}
,

(5)
with B > 0 such that ℓt has minimum lying in [−B,B]. We will refer to L as the Hölder constant
and α to as the smoothness rate or exponent.

Theorem 1 Let T ⩾ 1, (T , X̄ , W̄1) be a CT with Xroot(T ) = X , θn,1 = 0 for all n ∈ N (T ) and
d(T ) = 1

d log2 T . Then, Algorithm 1 applied with a grad-step procedure satisfying Assumption 1
achieves the regret upper bound

sup
f∈Cα(X ,L)

RegT (f) ⩽ GB(C1

√
T+C2)+GL|X |α


(
Φ(d2 − α)C1 + 4C2 + 1

)√
T if d < 2α ,(

C1
d log2 T + 4C2 + 1

)√
T if d = 2α ,(

Φ(d2 − α)C1 + 4C2 + 1
)
T 1−α

d if d > 2α ,

for any L > 0 and α ∈ (0, 1], where Φ(u) = |2u − 1|−1.

The proof of Theorem 1 is postponed to Appendix A.
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Minimax optimality and adaptivity to L and α. Note that the above rates are minimax optimal
for online nonparametric regression with convex losses over C α(X , L), as shown by Rakhlin and
Sridharan (2015) that provides a non-constructive minimax analysis for this problem (see also
Rakhlin and Sridharan (2014)). For the case of low-dimensional settings, where d ⩽ 2α, our bound
is in O((B + L)

√
T ). However, it has been demonstrated in Rakhlin and Sridharan (2015) that

faster rates O(T
1
3 ) can be attained when dealing with exp-concave losses. In the next section, we

will address this by making our algorithm adaptive to the curvature of the loss functions. A similar
chaining technique was applied by Gaillard and Gerchinovitz (2015) to design an algorithm with
minimax rates for the square loss or Cesa-Bianchi et al. (2017) in the partial information setting.
However, unlike these works, our Algorithm 1 does not require prior knowledge of neither L nor α
and automatically adapts to them. This is achieved through the use of parameter-free subroutines
that satisfy Assumption 1 and automatically adapt to the norm of θn.

Comparison to standard adaptive OCO methods in R|N (T )|. A key point of Algorithm 1 is its
node-specific descent, which differs from standard adaptive OCO optimizing a global parameter. For
each node n ∈ N (T ) we obtain a regret upper-bound of O(|θn|

√∑
t |gn,t|2) yielding an overall

regret in O(
∑

n |θn|
√∑

t |gn,t|2), with gn,t defined as in (4). Notably, thanks to the structure of the
chaining-tree, gn,t = 0 when the data xt does not fall in the corresponding sub-region of node n and
this leads to an overall regret scaling as O(G

∑
n |θn|

√
|Tn|) where Tn is the set of time steps for

which gn,t ̸= 0.
One may wonder whether Algorithm 1 could be reduced to an adaptive Online Mirror Descent
(OMD) on a global parameter θ = (θn)n∈N (T ) ∈ R|N (T )|. This would result in an estimation regret
bound, for any p, q ⩾ 1 such that 1

p + 1
q = 1,

O
(
∥θ∥p

√∑T
t=1 ∥gt∥2q

)
where gt = ∇θℓt

(∑
n∈N (T ) θn,t1xt∈Xn

)
= (gn,t)n∈N (T ) ,

with gn,t as in (4). Moreover, we have for q ⩾ 2

∑
n |θn|

√∑
t |gn,t|2 ⩽ ∥θ∥p

(∑
n

(∑
t |gn,t|2

) q
2

) 1
q ← by Hölder’s inequality

⩽ ∥θ∥p
(∑

t

(∑
n |gn,t|q

) 2
q

) 1
2 ← by Minkowski’s inequality with

q

2
⩾ 1

= ∥θ∥p
√∑

t ∥gt∥2q . (6)

Remarkably, (6) shows that our Algorithm 1 consistently achieves a lower regret compared to any
global adaptive OMD subroutine for q ⩾ 2 - including adaptive version of OGD (p = q = 2) and of
EG (p = 1, q =∞).
Finally, in our analysis in Appendix A, Proof of Theorem 1, such an adaptive OCO method would
result in an overall estimation regret of O(

√
T
∑

n |θn|). By grouping by the level of the CT T (see
Equation (21)), with |θn| ∝ 2−αm,m ∈ [d(T )], we get a regret of O(2−αm|{n : d(n) = m}|

√
T )

for each level instead of O(2−αm
√
|{n : d(n) = m}|T ), which is insufficient to recover the same

minimax rates.

Complexity. Although the formal definition of our algorithm requires constructing a decision tree
with |N (T )| = 2d(T )d = T nodes, it remains tractable, similar to the approach in Gaillard and
Gerchinovitz (2015). At each round, the input xt falls into one node per level of the tree constituting
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pathT (xt) = {n ∈ N (T ) : xt ∈ Xn}, since {Xn,d(n) = m} forms a partition of X for any depth
1 ⩽ m ⩽ d(T ) - see Figure 1 for schematic comprehension. Consequently, most subgradients in (4)
are zero, and grad-step only needs to be called d(T ) = 1

d log2 T times per round, each using the
same gradient gt. Thus, the loop in Algorithm 1 can be rewritten to explore only the nodes along
pathT (xt), significantly reducing computational complexity. The overall space complexity is at
most O(|N (T )|) = O(T ). It can be improved noticing that nodes in the tree do not need to be
created until at least one input falls into that node.

Unknown input space. In practice our procedure can be easily extended to the case where X
is unknown beforehand and is sequentially revealed through new inputs xt ∈ Rd (similarly to
Kuzborskij and Cesa-Bianchi (2020)). This can be done either through a doubling trick (starting with
X = [−1, 1]d and restarting the algorithm with an increased diameter by at least a factor of 2 each
time an input falls outside of the current tree) or by creating a new CT around xt that runs in parallel,
whenever a new point xt falls outside the existing trees.

3. Optimal and locally adaptive regret in online nonparametric regression

In the previous section, we demonstrated that our Algorithm 1 achieves minimax regretO(LT (d−α)/d)
compared to Hölder functions C α(X , L). This bound scales linearly with the constant L and raises
the question of whether our approximation method could be adapted to fit subregions with lower
variation. Our second contribution is an algorithm that adapts on the local Hölder profile of the
competitor. For any f ∈ C α(X , L), α ∈ (0, 1], L > 0, and some subset Xn ⊂ X , the local Hölder
constant Ln(f) satisfies

Ln(f) ⩽ L and |f(x)− f(x′)| ⩽ Ln(f)∥x− x′∥α∞ , (7)

for every x, x′ ∈ Xn. Recall that we assume that for any f ∈ C α(X , L), supx∈X |f(x)| ⩽ B. We
define [·]B := min(B,max(−B, ·)) the clipping operator in [−B,B] and a uniform discretization
grid Γ with precision ε = T− 1

2 as the set of K = ⌈2B/ε⌉ constants

Γ := {γk = −B + (k − 1)ε , k = 1, . . . ,K} ⊂ [−B,B].

Locally adaptive algorithm. We base our predictions on a combination of several regular decision
tree predictions (see Section 2.1). The latter are sitting in nodes of a core tree (T0, X̄ , W̄), with
W̄ = {(f̂n,k)Kk=1, n ∈ N (T0)}. In our main Algorithm 2, referred to as Locally Adaptive Online
Regression, the core tree T0 provides an average prediction at each time step t ⩾ 1 as follows:

f̂t(xt) =
∑

n∈N (T0)
∑K

k=1wn,k,tf̂n,k,t(xt) ,

where, for each pair (n, k) ∈ N (T0)× [K]
• f̂n,k,· is a clipped predictor associated with a CT Tn,k (see Definition 1), rooted at Xroot(Tn,k) =

Xn ∈ X̄ and starting at θroot(Tn,k),1 = γk ∈ Γ, θn′,1 = 0 for n′ ∈ N (Tn,k) \ {root(Tn,k)};
• the weight wn,k,t adjust the contribution of the predictor f̂n,k,t such that the sum of all weights

over the tree satisfies
∑

n∈N (T0)
∑

k∈[K]wn,k,t = 1 at any time t ⩾ 1.
First, Algorithm 2 sequentially trains the weights (wn,k)(n,k)∈N (T0)×[K] using two key subroutines:
weight and sleeping, both inspired by classical expert aggregation methods. Specifically, the
weight(w̃, g̃) subroutine refers to any general algorithm updating weights w̃ with a given gradient
g̃ and satisfies the following Assumption 2.
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Assumption 2 Let g̃1, . . . , g̃T ∈ [−G,G]K×|N (T0)|, for T ⩾ 1 and G > 0. We assume that the
weight vectors w̃t, initialized with a uniform distribution w̃1 and updated via weight in Algorithm
2, satisfy the following linear regret bound:

∑T
t=1 g̃

⊤
t w̃t − g̃n,k,t ⩽ C3

√
log(K|N (T0)|)

∑T
t=1

(
g̃⊤
t w̃t − g̃n,k,t

)2
+ C4G,

for some constants C3, C4 > 0 and for every n ∈ N (T0), k ∈ [K].

Well-established aggregation algorithms, such as those from Gaillard et al. (2014), Koolen and
Van Erven (2015), and Wintenberger (2017), exhibit such second-order linear regret bounds.

Algorithm 2: Locally Adaptive Online Regression
Input :A core regular tree (T0, X̄ , W̄) with root X , bounds G,B > 0.
Initial prediction functions f̂n,k,1 = f̃n,k,1 = θroot(Tn,k),11x∈Xn associated to CT
Tn,k, k ∈ [K], n ∈ N (T0).
Initial uniform weights w̃1 = (w̃n,k,1)n∈N (T0),k∈[K].
for t = 1 to T do

Receive xt;
Nt ← pathT0(xt);
wt ← sleeping(w̃t,Nt) ;
Predict f̂t(xt) =

∑
n∈Nt

∑K
k=1wn,k,tf̂n,k,t(xt) ;

# Update weights of T0

Reveal gradient g̃t = ∇w̃tℓt(
∑

n∈Nt

∑K
k=1 w̃n,k,tf̂n,k,t(xt) +

∑
n/∈Nt

∑K
k=1 w̃n,k,tf̂t(xt)) ;

Udpate w̃t+1 ← weight(w̃t, g̃t) ;
for n ∈ Nt, k ∈ [K] do

# Update CT Tn,k

Reveal gradient gn,k,t = ℓ′t(f̃n,k,t(xt)) ;
Update f̃n,k,t associated to CT Tn,k using Algorithm 1 with gn,k,t ;
Clip local predictor as f̂n,k,t+1 =

[
f̃n,k,t+1

]
B

;
end

end
Output : f̂T+1 =

∑
n,k wn,k,T+1f̂n,k,T+1

Since T0 partitions the input space X , only a subset Nt of the nodes in N (T0) contributes to
predictions at each round t ⩾ 1. The set of active nodes is determined by Nt ← pathT0(xt),
which maps the data point xt to the active nodes {n ∈ N (T0) : xt ∈ Xn}. This structure mirrors
the sleeping experts framework introduced by Freund et al. (1997); Gaillard et al. (2014), and we
incorporate it as a sleeping subroutine in Algorithm 2. The weights wt are computed using the
sleeping(w̃t,Nt) subroutine, defined as follows for all k ∈ [K] and n ∈ N (T0):

wn,k,t = 0 if n /∈ Nt , wn,k,t =
w̃n,k,t∑

n′∈Nt

∑K
k′=1 w̃n′,k′,t

otherwise. (8)

This ensures that only the active nodes are contributing to the average prediction.
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Second, our Algorithm 2 also employs Algorithm 1 to independently train the CTs

{Tn,k , (n, k) ∈ N (T0)× [K]}

that reside within T0. For each (n, k) ∈ N (T0)× [K], Tn,k is initialized with θroot(Tn,k),1 = γk and
θn′,1 = 0 for all n′ ∈ N (Tn,k) \ {root(Tn,k)}, and is then updated at each time t ⩾ 1 via Algorithm
1 with a given gradient gn,k,t. Then, the local predictors associated to (Tn,k) are clipped in [−B,B].

Pruning as local adaptivity. Pruning techniques are frequently employed in traditional statistical
learning involving subtrees to reduce overfitting or simplify models. In this context, each pruned tree
represents a localized profile corresponding to a partition of X . Our Algorithm 2 strives to learn the
oracle pruning strategy to compete effectively against any α-Hölder continuous function.

Definition 2 (Pruning) Let (T0, X̄ , W̄) be some regular tree with W̄ = {(f̂n,k)k∈[K], n ∈ N (T0)}.
A pruning or pruned regular decision tree (T , X̃ , W̃) consists in a subtree, i.e. N (T ) ⊂ N (T0), with
root Xroot(T ) = Xroot(T0) and prediction functions W̃ = {f̂n,kn , n ∈ N (T ), kn ∈ [K]} ⊂ W̄ . It
predicts, at each time t ⩾ 1,

f̂T ,t(x) =
∑

n∈L(T ) f̂n,kn,t(x), x ∈ X .

We denote P(T0) the set of all prunings of T0.

Note that a pruning is a decision tree whose predictions are induced by its leaves, contrary to the
core tree T0. In particular, a prediction made by a leaf of a pruning is inherited from the associated
node in T0 before pruning. We provide some illustration in Figure 2.

{f̂1,k}Kk=1

{f̂2,k}Kk=1

{f̂4,k}Kk=1 {f̂5,k}Kk=1

{f̂3,k}Kk=1

{f̂6,k}Kk=1 {f̂7,k}Kk=1

(a) Core tree T0

·

f̂2,k2

✗ ✗

f̂3,k3

✗ ✗

f1

X

(b) T1 ∈ P(T0), f1 ∈ C α(X , L)

·

f̂2,k2

✗ ✗

·

f̂6,k6
f̂7,k7

f2

X

(c) T2 ∈ P(T0), f2 ∈ C α(X , L)

Figure 2: Example of a core tree T0 with depth d(T0) = 3, d = 1, in Fig. 2(a). We give 2 pruned
tree instances T1 for a given Lipschitz function f1 in Fig. 2(b) and T2 for a second profile
f2 in Fig. 2(c). In Fig. 2(a) all nodes N (T0) are awaken and predictive while T1 in Fig.
2(b) (resp. T2 in Fig. 2(c)) predicts with f̂2,k2 , f̂3,k3 sitting in its leaves L(T1) (resp. with
f̂2,k2 , f̂6,k6 , f̂7,k7 sitting in its leaves L(T2)). ✗ represents a pruned node.

Complexity. Similar to before, even though our core tree T0 involves at most O(|N (T0)|) =

O(
√
T2d(T0)d) = O(T

3
2 ) predictors after T iterations, our algorithm remains computationally

feasible, since at a time t, only a subset of d(T0) nodes are active and updated with the weight
subroutine. The resulting overall complexity is of order 1

d2

√
T log2(T )

2 per step.
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Second result. In our main result (Theorem 2), we prove that Algorithm 2 achieves a locally
adaptive regret with respect to any α-Hölder function. Indeed, we show an upper-bound regret that
scales with the local regularities of the competitor. Meanwhile, we show that Algorithm 2 also adapts
to the curvature of the losses: its regret performances improve when facing exp-concave losses
(i.e., when y 7→ e−ηℓt(y) are concave for some η > 0), as shown in the second part of Theorem 2.
Exp-concave losses include the squared, logistic or logarithmic losses. Note that for Assumption 2 to
hold, the gradients g̃t must be bounded by G in the sup-norm. The Hölder assumption on f and the
boundedness condition on X alone are not sufficient. It is also essential that all predictions f̂n,k,t(xt)
are bounded, which is achieved through clipping in Algorithm 2 - see e.g., Gaillard and Gerchinovitz
(2015); Cutkosky and Orabona (2018). To simplify the presentation, we state the theorem here only
for the case d = 1 and α > 1/2.

Theorem 2 Let α ∈ (12 , 1], d = 1, T ⩾ 1 and (T0, X̄ , W̄) be a core regular tree with Xroot(T0) = X
and CT {Tn,k : (n, k) ∈ N (T0)× [K]} satisfying the same assumptions as in Theorem 1 and whose
nodes root are initialized as θroot(Tn,k),1 = γk ∈ Γ, for all (n, k) ∈ N (T0)× [K]. Then, Algorithm 2
with a weight subroutine as in Assumption 2, achieves the regret upper-bound with respect to any
f ∈ C α(X , L), L > 0,

RegT (f) ≲ infT ∈P(T0)

{√
|L(T )|T + |L(T )|+ |X |α

∑
n∈L(T ) Ln(f)2

−α(d(n)−1)
√
|Tn|

}
,

where ≲ is a rough inequality depending on Ci, i = 1, . . . , 4, G and Ln(f) ⩽ L, n ∈ L(T ), are the
local Hölder constants (7) of f , and Tn = {1 ⩽ t ⩽ T : xt ∈ Xn}.
Moreover, if ℓ1, . . . , ℓT are exp-concave, one has:

RegT (f) ≲ infT ∈P(T0)

{
|L(T )|+ |X |α

∑
n∈L(T ) Ln(f)2

−α(d(n)−1)
√
|Tn|

}
where ≲ also depends on the exp-concavity constant.

We state and prove a complete version of Theorem 2 in Appendix B, for all α ∈ (0, 1], d ⩾ 1. As a
remark, Algorithm 2 is not only adaptive to the local Hölderness of f (via Ln(f)), but also to the
smoothness rate α ∈ (0, 1]. One could extend the previous results in Theorem 2 with some local
smoothness (αn) associated to the regularity of the function over the pruned leaves at the price of the
interpretability of the bound in specific situations as below.

Minimax optimality and adaptivity to the loss curvature. Moreover, Theorem 2 yields the
following corollary, which demonstrates that our algorithm simultaneously achieves optimal rates
for generic convex losses (i.e., similar rates to Theorem 1) and for exp-concave losses, while also
adapting locally to the Hölder profile of the competitor - i.e. exhibiting dependencies to constants
Ln(f) of the target function f . Importantly, our algorithm does not require prior knowledge of the
curvature of the losses.

Corollary 1 Let d = 1 and α ∈ (12 , 1]. Under assumptions of Theorem 2, Algorithm 2 achieves a
regret with respect to any f ∈ C α(X , L), L > 0, and any pruning T ∈ P(T0),

RegT (f) ≲ infT ∈P(T0)

{∑
n∈L(T )

(
Ln(f)|Xn|α

) 1
2α
√
|Tn|

}
.

Moreover, if ℓ1, . . . , ℓT are exp-concave, one has:

RegT (f) ≲ infT ∈P(T0)

{∑
n∈L(T )

(
Ln(f)|Xn|α

) 2
2α+1 |Tn|

1
2α+1

}
.
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The proof of Corollary 1 is postponed to Appendix C. In particular, upper-bounding the infimum
over all prunings by the root, our regret becomes O(L2/(2α+1)T 1/(2α+1)) and O(L1/(2α)

√
T ) for

the exp-concave and general case respectively. This achieves the same optimal regret to that obtained
in Gaillard and Gerchinovitz (2015), for any sequence of exp-concave losses, without the prior-
knowledge of the scale-parameter γ that they require, and adapting to any regularity while they
consider L,α = 1. Our algorithm is also nearly minimax in term of the constants (L,α) as shown
by Tsybakov (2008), Hazan and Megiddo (2007) or Bach (2024). We provide some experimental
illustrations of the results from Corollary 1 in Appendix F.
We note that the fast rate in T obtained under exp-concavity is not optimal in L. Thus a compromise
is made by our algorithm which competes with more complex oracle trees when L is large to improve
and obtain the rate

√
L by decreasing the rate in T . Such trade-off is classical in parametric online

learning as bearing resemblances with the comparison between first and second order algorithms, the
first ones being optimal in the dimension, the second ones in T . Remarkably, our unique algorithm
achieves both regret bounds which opens the door to a minimax theory on rates in L and T and not
solely on fast rates in T .

Adaptivity to local regularities. Theorem 2 improves the optimal regret bound established in
Theorem 1 by making it adaptive to the local regularities of the Hölder function f . To illustrate this
better, applying Hölder’s inequality entails (see Appendix D for details): for any pruning T

RegT (f) ≲

{
(|X |αL̄(f))

2
2α+1T

1
2α+1 if ℓt are exp-concave ,

(|X |αL̄(f))
1
2α

√
T ,

(9)

where L̄(f) =
(

1
|X |
∑

n∈L(T ) |Xn|Ln(f)
1/α
)α is an average of the local Hölder constants Ln(f)

weighted by the size of the sets Xn over T . This result is in the same spirit as that of Kuzborskij and
Cesa-Bianchi (2020), that focus on adapting to tree-based local Lipschitz profiles. However, contrary
to us, they need to assume the prior knowledge of bounds (M (k))1⩽k⩽d(T0) such that M (k) ⩾ Ln(f)
for any n ∈ N (T0),d(n) = k. Doing so, for any pruning T , when α = 1 and ignoring the
dependence on X , for the squared loss (which is exp-concave), they prove a bound of order

O
(
(M̄(f)T )

1
2 +

∑
k(M

(k)|T (k)|)1/2
)

where M̄(f) =
∑d(T )

k=1 w
(k)M (k) ,

with w(k) the proportion of leaves at depth k in the pruning; and T (k) the set of rounds in which xt
belongs to a leaf at level k. By grouping our leaves n by their respective depths and applying Hölder’s
inequality, our results recover theirs with two key improvements (see Appendix E for details): (1)
the prior-knowledge of the M (k) is not required in our case and they are replaced with the true local
Hölder constants Ln(f) that are smaller; (2) the rate in T is improved from

√
T to T 1/3. Note that,

similarly to us, the results of Kuzborskij and Cesa-Bianchi (2020) hold for general dimensions and
convex losses as well.

4. Conclusion and perspectives

In this paper we introduced an online learning approach based on chaining trees and proved that
this method achieves minimax regret for the α-Hölder nonparametric regression problem, α ∈ (0, 1].
We designed a general and computationally tractable algorithm that leverages a core structure based
on chaining-trees to perform an optimal local approximation of α-Hölder functions, where α ⩽ 1.

12
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In addition, we showed that our algorithm adapts to the curvature of the loss functions revealed
by the environment, while remaining optimal in a minimax sense. A limitation of our approach is
that chaining trees are minimax-competitive only against α-Hölder continuous functions when the
smoothness parameter α ∈ (0, 1]. However, combinations of trees, such as the forests studied in
Arlot and Genuer (2014) and Mourtada et al. (2020), achieve minimax rates for α ∈ (1, 2]. Since
their framework is based on batch i.i.d. data, an open question remains as to whether combinations
of chaining trees can also be minimax-optimal in an adversarial setting against functions with higher
regularity.
As future work, our approach could be extended to incorporate alternative structures beyond chaining
trees, such as kernels or shallow networks. In particular, employing other function approximation
methods could address a nonparametric regression problem with respect to richer classes of functions.

Link with boosting in adversarial online regression. Boosting is a well-established strategy in
statistical learning (Friedman, 2001; Zhang and Yu, 2005), where a set of weak learners is iteratively
combined to construct a strong predictor with improved accuracy. Conceptually, this process refines
predictions at each step by correcting errors from previous iterations. Our approach shares similarities
with boosting-based methods in that it iteratively and adaptively refines function approximations
over time. For instance, the structure of chaining trees that we studied can be seen as an implicit
hierarchical refinement process, akin to boosting’s combination of weak learners. While boosting
has been extensively studied in batch settings, recent research (Beygelzimer et al., 2015; Hazan
and Singh, 2021) has encouraged the adaptation and study of boosting procedures in the context of
adversarial nonparametric regression.

β1,th1,t

βn−1,thn−1,t

...

βn,thn,t

...

βn+1,thn+1,t

βN,thN,t

βn,t+1hn,t+1

. .
.

. . .

gn,t

Figure 3: Boosting at time t.

A natural question is whether exposing our algorithms at a meta-
state could provide a foundation for analyzing more general
weak learners in the context of adversarial online regression.
Specifically, instead of relying on a pre-defined hierarchical
structure such as chaining trees, one could explore dynamically
learning general weak function approximators (e.g., shallow
trees, shallow networks) and adaptively aggregating them over
time. This perspective is motivated by a more general form of
our Algorithm 1, which we expose here.
LetW be a set of real-valued functions X → R, and for some
N ⩾ 1, define the function space:

spanN (W) =
{∑N

n=1 βnhn, hn ∈ W, βn ∈ R
}
, (10)

which forms a linear space of functions based on N elements fromW . The goal is to find a sequence
of functions f̂t ∈ spanN (W), for t ⩾ 1, such that it minimizes the regret RegT (F) as defined in (1),
with F = spanN (W).
To illustrate this general perspective, one could present our Algorithm 1 as an abstract formulation
of a boosting-like procedure for function approximation based on a gradient update. A schematic
diagram is provided in Figure 3. Specifically, at each step t ⩾ 1, a meta-version of Algorithm 1
would perform Equation (3) to find a pair (βn,t+1, hn,t+1) ∈ R×W approximating a minimum of
the following objective function

(βn, hn) 7→ ℓt(f̂−n,t(xt) + βnhn(xt)) where f̂−n,t(xt) = f̂t(xt)− βn,thn,t(xt) (11)

13



LIAUTAUD GAILLARD WINTENBERGER

using the gradient
[
∇(βn,hn)ℓt

(
f̂−n,t(xt) + βnhn(xt)

)]
(βn,hn)=(βn,t,hn,t)

.

In Section 2, we analyzed the special case where W is specified as {hn : x 7→ θn1x∈Xn , θn ∈
R, n ∈ N (T )}, with fixed βn = 1 and N = |N (T )|, using a parameter-free gradient minimization
step. A compelling direction for future research is to analyze whether the meta-algorithm defined by
Equation (11) can achieve minimax rates under assumptions on weak learners belonging to a general
W . By framing the problem in this way, we believe that it could be analyzed more broadly within an
online and adversarial boosting framework - see, for instance, Beygelzimer et al. (2015).
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APPENDIX

Appendix A. Proof of Theorem 1

Let f∗ ∈ argminf∈Cα(X ,L)

∑T
t=1 ℓt(f(xt)). We define the function

f̂∗ =
∑

n∈L(T )

f∗(xn)1Xn , (12)

where Tn = {1 ⩽ t ⩽ T : xt ∈ Xn}, xn the center of hyper region Xn (i.e. for any x ∈
Xn, ∥x− xn∥ ⩽ 2−1|Xn|). The proof starts with the following regret decomposition

RegT (C
α(X , L)) =

T∑
t=1

ℓt(f̂t(xt))− ℓt(f̂∗(xt))︸ ︷︷ ︸
R1

+
T∑
t=1

ℓt(f̂
∗(xt))− ℓt(f∗(xt))︸ ︷︷ ︸

R2

. (13)

We will refer to R1 as the estimation error, which consists of the error incurred by sequentially
learning the best Chaining-Tree f̂∗. R2 will refer to the approximation error, which involves
approximating Hölder functions in C α(X , L) by piecewise-constant functions with |L(T )| pieces.

Step 1: Upper-bounding the approximation error R2. Note that by definition of the Chaining-
Tree T (see Definition 1), {Xn, n ∈ L(T )} forms a partition of X = Xroot(T ) and for any leaf
n ∈ L(T )

|Xn| =
|Xroot(T )|
2d(n)−1

=
|X |

2d(T )−1
. (14)

Then,

R2 =

T∑
t=1

ℓt(f̂
∗(xt))− ℓt(f∗(xt))

⩽
T∑
t=1

G|f̂∗(xt)− f∗(xt)| ← ℓt is G-Lipschitz

= G
T∑
t=1

∣∣∣ ∑
n∈L(T )

f∗(xn)1xt∈Xn − f∗(xt)
∣∣∣ ← by (12)

= G
∑

n∈L(T )

∑
t∈Tn

|f∗(xn)− f∗(xt)| ← {Xn, n ∈ L(T )} partitions X

⩽ G
∑

n∈L(T )

∑
t∈Tn

L∥xn − xt∥α∞ ← f∗ ∈ C α(X , L)

⩽ G
∑

n∈L(T )

L2−α|Xn|α|Tn| ← xn center of Xn

⩽ GL2−αd(T )|X |αT , (15)

where the last inequality is by (14) and because the leaves form a partition of X , which implies∑
n∈L(T ) |Tn| = T .
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Step 2: Upper-bounding the estimation error R1. We now turn to the bound of the estimation
error, that is the regret with respect to best Chaining-Tree f̂∗.
Step 2.1: Parametrization of f̂∗ in terms of θn. Note that the parametrization of f̂∗ in terms of θn is
non-unique. We design below a parametrization such that for any x ∈ X

f̂∗(x) =
∑

n∈N (T )

θn1x∈Xn , (16)

and which will allow us to leverage the chaining structure of our Chaining-Tree. We define,

θroot(T ) = f∗(xroot(T )) and θn = f∗(xn)− f∗(xp(n)), for n ̸= root(T ) , (17)

where Tn = {1 ⩽ t ⩽ T : xt ∈ Xn} and xn stands for the center of subregion Xn for any
n ∈ N (T ).
Let us show that the above construction (17) indeed satisfies (16). To do so, we fix x ∈ X and
proceed by induction on m = 1, . . . ,d(T ), by proving that∑

n∈N (T )

θn1x∈Xn1d(n)⩽m =
∑

n∈N (T )

f∗(xn)1x∈Xn1d(n)=m . (Hm)

First, note that (H1) is true by definition of θroot(T ). Then, let m ⩾ 1, and assume that (Hm) is
satisfied, we have∑

n∈N (T )

θn1x∈Xn1d(n)⩽m+1

=
∑

n∈N (T )

θn1x∈Xn1d(n)⩽m +
∑

n∈N (T )

θn1x∈Xn1d(n)=m+1

=
∑

n∈N (T )

f∗(xn)1x∈Xn1d(n)=m +
∑

n∈N (T )

θn1x∈Xn1d(n)=m+1 ← by (Hm)

=
∑

n∈N (T )

f∗(xn)1x∈Xn1d(n)=m

+
∑

n∈N (T )

(f∗(xn)− f∗(xp(n)))1x∈Xn1d(n)=m+1 ← by (17)

=
∑

n∈N (T )

f∗(xn)1x∈Xn1d(n)=m+1 ,

which concludes the induction. In particular, for m = d(T ), (Hm) yields∑
n∈N (T )

θn1x∈Xn =
∑

n∈L(T )

f∗(xn)1x∈Xn = f̂∗(x) ,

where the last equality is by definition of f̂∗ in (12).
Step 2.2: Upper-bounding |θn|. The key advantage of the parametrization θn in (17) is that it
leverages the chaining structure of our tree. Each node aims to correct the error made by its parent,
and as we show below, this error decreases significantly with the depth d(n) of the node n. Let
n ∈ N (T ) \ {root(T )},

|θn| = |f∗(xn)− f∗(xp(n))| ⩽ L∥xn − xp(n)∥α∞ = L2−α|Xn|α = L|X |α2−αd(n) (18)
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where the last equalities are because Xn ⊂ Xp(n) and |Xn| = |X |2−(d(n)−1), from Definition 1.
Furthermore, by definition of C α(X , L), |f∗(x)| ⩽ B for any x ∈ X , hence

|θroot(T )| = |f∗(xroot(T ))| ⩽ B .

Step 2.3: Proof of the regret upper bound. We are now ready to upper bound the estimation error
in (13). We have

R1 =
T∑
t=1

ℓt(f̂t(xt))− ℓt(f̂∗(xt))

=
T∑
t=1

ℓt
(∑

n∈N (T ) θn,t1xt∈Xn

)
− ℓt

(∑
n∈N (T ) θn1xt∈Xn

)
⩽

T∑
t=1

∑
n∈N (T )

gn,t(θn,t − θn) (19)

by convexity of ℓt, where gn,t is the partial subgradient in θn,t as defined in Equation (4). Now, from
Assumption 1 on the grad-step procedure to optimize θn,t and with θn,1 = 0, gn,t ⩽ G1xt∈Xn ,
we further have, with Tn = {1 ⩽ t ⩽ T : gn,t ̸= 0},

R1 ⩽ G
∑

n∈N (T )

|θn|(C1

√
|Tn|+ C2)

= G

d(T )∑
m=1

∑
n:d(n)=m

|θn|(C1

√
|Tn|+ C2)

⩽ BG(C1

√
T + C2) + LG|X |α

d(T )∑
m=2

∑
n:d(n)=m

(C1

√
|Tn|+ C2)2

−αm ← by (18)

(20)

Now, because in a d-regular decision tree, the number of nodes with depth m equals |{n : d(n) =
m}| = 2d(m−1) (recall that the depth of the root is 1), and because {Xn : d(n) = m} forms a
partition of X , we have

∑
n:d(n)=m Tn = T and by Cauchy-Schwarz inequality

∑
n:d(n)=m

√
Tn ⩽

√
2d(m−1)

∑
n:d(n)=mTn =

√
2d(m−1)T ,

which substituted into the previous upper bound entails

R1 ⩽ BG(C1

√
T + C2) + LG|X |α

d(T )∑
m=2

(
C12

d(m−1)
2

−αm
√
T + C22

d(m−1)−αm
)

= BG(C1

√
T + C2) + LG|X |α

(
2−

d
2C1

√
T

d(T )∑
m=2

2m( d
2
−α) + 2−dC2

d(T )∑
m=2

2m(d−α)

)
. (21)
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Step 3: Conclusion and optimization of d(T ). To conclude the proof, we consider three cases
according to the sign of d− 2α:
• Case 1: if d < 2α. Then

2−
d
2

d(T )∑
m=2

2m( d
2
−α) ⩽

1

1− 2
d
2
−α

and 2−d

d(T )∑
m=2

2m(d−α) ⩽ 2−d

d(T )∑
m=0

2mα ⩽ 2−d 2
α(d(T )+1)

2α − 1

(2α⩾1)

⩽ 2αd(T )+2 ,

and (21) yields

R1 ⩽ BG(C1

√
T + C2) + LG|X |α

(
C1

√
T

1− 2
d
2
−α

+ C22
αd(T )+2

)
;

Therefore, combining with (13) and (15), the regret is upper-bounded as

RegT (C
α(X , L)) ⩽ BG(C1

√
T + C2) + LG|X |α

( C1

√
T

1− 2
d
2
−α

+ C22
αd(T )+2 + T2−αd(T )

)
.

The choice d(T ) = 1
d log2 T entails

RegT (C
α(X , L)) ⩽ BG(C1

√
T + C2) + LG|X |α

( C1

1− 2
d
2
−α

+ 4C2 + 1
)√

T . (22)

• Case 2: if d = 2α. Then

2−
d
2

d(T )∑
m=2

2m( d
2
−α) ⩽ d(T ) and 2−d

d(T )∑
m=2

2m(d−α) = 2−d

d(T )∑
m=2

2mα ⩽ 2αd(T )+2 ,

and (21) yields

R1 ⩽ BG(C1

√
T + C2) + LG|X |α

(
C1

√
Td(T ) + C22

αd(T )+2
)
;

Therefore, combining with (13) and (15), the regret is upper-bounded as

RegT (C
α(X , L)) ⩽ BG(C1

√
T + C2) + 2αLG|X |α

(
C1

√
Td(T ) + C22

αd(T )+2 + T2−αd(T )
)
.

The choice d(T ) = 1
d log2 T entails

RegT (C
α(X , L)) ⩽ BG(C1

√
T + C2) + 2αLG|X |α

(C1

d
log2 T + 4C2 + 1

)√
T . (23)

• Case 3: if d > 2α. Then

2−
d
2

d(T )∑
m=2

2m( d
2
−α) ⩽

2(
d
2
−α)d(T )

2
d
2
−α − 1

and 2−d

d(T )∑
m=2

2m(d−α) ⩽
2(d−α)d(T )

2d−α − 1
⩽ 2(d−α)d(T )+2 ,

where the last inequality is because (2d−α − 1)−1 ⩽ (2d/2 − 1)−1 ⩽ (
√
2 − 1)−1 ⩽ 4. And (21)

yields

R1 ⩽ BG(C1

√
T + C2) + LG|X |α

(
C1

√
T
2(

d
2
−α)d(T )

2
d
2
−α − 1

+ C22
(d−α)d(T )+2

)
.
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Therefore, combining with (13) and (15), the regret is upper-bounded as

RegT (C
α(X , L)) ⩽ BG(C1

√
T+C2)+LG|X |α

(
C1

√
T
2(

d
2
−α)d(T )

2
d
2
−α − 1

+C22
(d−α)d(T )+2+T2−αd(T )

)
.

The choice d(T ) = 1
d log2 T entails

RegT (C
α(X , L)) ⩽ BG(C1

√
T + C2) + LG|X |α

(
C1

2
d
2
−α − 1

+ 4C2 + 1

)
T 1−α

d . (24)

Conclusion. Combining the three cases (22), (23), and (24) concludes the proof of the regret bound,
which we summarize below

RegT (C
α(X , L)) ⩽ BG(C1

√
T+C2)+GL|X |α


(
Φ(d2 − α)C1 + 4C2 + 1

)√
T if d < 2α(

C1
d log2 T + 4C2 + 1

)√
T if d = 2α(

Φ(d2 − α)C1 + 4C2 + 1
)
T 1−α

d if d > 2α ,

where Φ(u) = |2u − 1|−1.
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Appendix B. Proof of Theorem 2

We state here the full version of Theorem 2 that we prove right after.

Theorem 3 Let T, d ⩾ 1 and (T0, X̄ , W̄) be a core regular tree with CT {Tn,k, (n, k) ∈ N (T0)×
[K]} satisfying the same assumptions as in Theorem 1 and root nodes initialized as θroot(Tn,k),1 =
γk ∈ Γ, for all (n, k) ∈ N (T0) × [K]. Then, Algorithm 2 with a weight subroutine as in
Assumption 2, achieves the regret upper-bound with respect to any f ∈ C α(X , L), L > 0,

RegT (f) ⩽ inf
T ∈P(T0)

{
β1
√
T |L(T )|+ β2|L(T )|

+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)


ψ1

√
|Tn| if d < 2α

ψ2 log2 |Tn|
√
|Tn| if d = 2α

ψ1|Tn|1−
α
d if d > 2α,

}
,

with β1 = 2C3G
√
log
(
2BT |N (T0)|) and β2 = G(2−1C1 + C22

−1T− 1
2 + C4), local Lipschitz

constants Ln(f) ⩽ L as in (7), ψ1 = Φ(d/2 − α)C1 + 4C2 + 1, ψ2 = C1/d + 4C2 + 1, and
Φ, C1, C2 as in Theorem 1.
Moreover, if ℓ1, . . . , ℓT are η-exp-concave with some η > 0, one has:

RegT (f) ⩽ inf
T ∈P(T0)

{
β3|L(T )|+G|X |α

∑
n∈L(T )

Ln(f)2
−α(d(n)−1)


ψ1

√
|Tn| if d < 2α

ψ2 log2 |Tn|
√
|Tn| if d = 2α

ψ1|Tn|1−
α
d if d > 2α,

}

with β3 =
C2

3 log
(
2BT |N (T0)|

)
2µ + C4G+ 2−1G(C1 + C2T

− 1
2 ) and 0 < µ ⩽ min{1/G, η}.

Proof [of Theorem 3] Let L > 0, α ∈ (0, 1], f∗ ∈ C α(X , L) and ε > 0 be the precision of the
grid Γ, K = ⌊2B/ε⌋ the number of experts in each node in N (T0). Let T ∈ P(T0) be some
pruned tree from (T0, X̄ , W̄) with prediction functions W̄ = {(f̂n,k)k∈[K], n ∈ N (T0)} on subsets
X̄ = {Xn, n ∈ N (T0)}. We call f̂T the associated prediction function of pruning T (see Definition
2) such that at any time t ⩾ 1,

f̂T ,t(x) =
∑

n∈L(T )

f̂n,kn,t(x) , x ∈ X ,

with kn = argmink∈[K] |(−B + (k − 1)ε) − f∗(xn)| the best approximating constant of f∗(xn)
where xn ∈ Xn is the center of the sub-region Xn, i.e. for any x ∈ Xn, ∥x− xn∥∞ ⩽ 2−1|Xn|. We
have a decomposition of regret as:

RegT (f) =

T∑
t=1

ℓt(f̂t(xt))− ℓt(f̂T ,t(xt))︸ ︷︷ ︸
=:R1

+
T∑
t=1

ℓt(f̂T ,t(xt))− ℓt(f∗(xt))︸ ︷︷ ︸
=:R2

, (25)

R1 is the regret related to the estimation error of the core expert tree T0 compared to some pruning T
from it. On the other hand, R2 is related to the error of the pruning tree T against some function f∗.
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Step 1: Upper-bounding R2 as local chaining tree regrets. Recall that according to Definition
2, pruning subsets {Xn, n ∈ L(T )} form a partition of X = Xroot(T0). Hence, for any xt ∈ X ,
prediction from pruning T at time t is f̂T ,t(xt) = f̂n,kn,t(xt) with n ∈ L(T ) the unique leaf such
that xt ∈ Xn at time t. Then, R2 can be written as follows:

R2 =
T∑
t=1

∑
n∈L(T )

(ℓt(f̂T ,t(xt))− ℓt(f∗(xt)))1xt∈Xn

=
∑

n∈L(T )

∑
t∈Tn

ℓt(f̂n,kn,t(xt))− ℓt(f∗(xt))

⩽
∑

n∈L(T )

∑
t∈Tn

ℓt(f̃n,kn,t(xt))− ℓt(f∗(xt)), (26)

where we set Tn = {1 ⩽ t ⩽ T : xt ∈ Xn}, n ∈ L(T ) and (26) is because f̂n,kn,t = [f̃n,kn,t]B ⩽
f̃n,kn,t and ℓt is convex and has minimum in [−B,B].
The decomposition in (26) represents a sum of local error approximations of the function f∗ over the
partition {Xn, n ∈ L(T )}, using predictors f̃n,kn located at the leaves of the pruned tree T . Recall
that for every n ∈ N (T0), f̃n,kn is a prediction function associated with a CT Tn,kn , where the root
node starts from θroot(Tn,kn ),1

= −B + (kn − 1)ε ∈ Γ on Xn. In proof of Theorem 1 (Appendix
A) we study a regret bound (13) decomposed into two terms: estimation and approximation. In
particular, we showed that any CT adapts to any regularity (L,α) ∈ R+ × (0, 1] of f∗. Thus, the
approximation error of CT f̃n,kn with respect to f∗ remains similar to that in (15), but now with
regard to an Hölder function with a constant Ln(f

∗) ⩾ 0 over Xn. Specifically, from (26), we get:

R2 ⩽
∑

n∈L(T )

G
d(Tn,kn )∑
m=1

∑
n′:d(n′)=m

|θn′ − θn′,1|(C1

√
|Tn′ |+ C2)︸ ︷︷ ︸

estimation error as in (20)

+GLn(f
∗)|Xn|α|Tn|2−α(d(Tn,kn ))︸ ︷︷ ︸

approximation error (15) over Xn

 , (27)

with C1, C2 as in Assumption 1 and where we set in (17),

θroot(Tn,kn )
= f∗(xroot(Tn,kn )

) and θn′ = f∗(xn′)−f∗(xp(n′)), n′ ∈ N (Tn,kn)\{root(Tn,kn)}.

In particular, we have for n′ = root(Tn,kn),

|θn′ − θn′,1| =
∣∣∣f∗(xroot(Tn,kn )

)− (−B + (kn − 1))ε
∣∣∣ ⩽ ε

2
, (28)

by definition of kn and since Γ = {−B + (k − 1)ε}k∈[K] is an ε-discretization of the y-axis.
Moreover, if n′ ∈ N (Tn,kn), d(n′) ⩾ 2, one has θn′,1 = 0 and

|θn′ − θn′,1| = |θn′ | ⩽ Ln(f
∗)|Xn|α2−αd(n′), (29)
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according to (18) with f∗ ∈ C α(Xn, Ln).
Then, following the same optimization steps as for Theorem 1, in each d(Tn,kn), n ∈ L(T ) of (27),
we get:

R2 ⩽ G
∑

n∈L(T )

ε

2
(C1

√
|Tn|+ C2)

+G|X |α
∑

n∈L(T )

Ln(f
∗)2−α(d(n)−1)


ψ1

√
|Tn| if d < 2α

ψ2 log2 |Tn|
√
|Tn| if d = 2α

ψ1|Tn|1−
α
d if d > 2α

with ψ1 = Φ(d/2− α)C1 + 4C2 + 1, ψ2 = C1/d+ 4C2 + 1, and Φ defined in Theorem 1.
Cauchy-Schwarz inequality gives∑

n∈L(T )

(C1

√
|Tn|+ C2) ⩽ C1

√
|L(T )|T + C2|L(T )|

Finally,

R2 ⩽
ε

2
G
(
C1

√
|L(T )|T + C2|L(T )|

)
+G|X |α

∑
n∈L(T )

Ln(f
∗)2−α(d(n)−1)


ψ1

√
|Tn| if d < 2α

ψ2 log2 |Tn|
√
|Tn| if d = 2α

ψ1|Tn|1−
α
d if d > 2α

(30)

Step 2: Upper-bounding the pruning estimation error R1. We aim at bounding the estimation
error R1 due to the error incurred by sequentially learning the best pruned tree prediction and the
best root node in Γ inside each pruned leaves. Note that at each time t, only a subset of nodes of T0
are active and output predictions: for any time t ⩾ 1, let us denote Nt ⊂ N (T0) the set of active
nodes (i.e. making a prediction) at time t. Remark that

f̂t(xt) =
∑

n∈N (T0)

K∑
k=1

wn,k,tf̂n,k,t(xt) (31)

=
∑
n∈Nt

K∑
k=1

w̃n,k,tf̂n′,k′,t(xt) +
∑
n̸∈Nt

K∑
k=1

w̃n,k,tf̂t(xt), (32)

by definition of f̂t and the so called trick of prediction with sleeping experts, e.g. in Gaillard et al.
(2014). Recall that g̃t = ∇w̃tℓt

(∑
n∈Nt

∑K
k=1 w̃n,k,tf̂n,k,t(xt) +

∑
n̸∈Nt

∑K
k=1 w̃n,k,tf̂t(xt)

)
∈

R|N (T0)|×K , for all t ⩾ 1. Then, for all n ∈ N (T0), k ∈ [K],

g̃n,k,t =

{
ℓ′t(f̂t(xt))f̂n,k,t(xt) if n ∈ Nt,

ℓ′t(f̂t(xt))f̂t(xt) if n ̸∈ Nt.
(33)
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For any t ⩾ 1, n ∈ L(T ) and k ∈ [K], one has:

g̃⊤
t wt − g̃n,k,t =

∑
n′∈N (T0)

K∑
k′=1

wn′,k′,tg̃n′,k′,t − g̃n,k,t

= ℓ′t(f̂t(xt))
∑

n′∈Nt

K∑
k′=1

wn′,k′,tf̂n′,k′,t(xt)︸ ︷︷ ︸
=f̂t(xt)

−g̃n,k,t

= ℓ′t(f̂t(xt))
( ∑

n′∈Nt

K∑
k′=1

w̃n′,k′,tf̂n′,k′,t(xt) +
∑

n′ ̸∈Nt

K∑
k′=1

w̃n′,k′,tf̂t(xt)
)
− g̃n,k,t

= ℓ′t(f̂t(xt))

×

{
(f̂t(xt)− f̂t(xt)) if n ̸∈ Nt ,(∑

n′∈Nt

∑K
k′=1 w̃n′,k′,tf̂n′,k′,t(xt) +

∑
n′ ̸∈Nt

∑K
k′=1 w̃n′,k′,tf̂t(xt)− f̂n,k,t(xt)

)
else ,

=

{
0 if n ̸∈ Nt ,

g̃⊤
t w̃t − g̃n,k,t else ,

= (g̃⊤
t w̃t − g̃n,k,t)1xt∈Xn , (34)

where the second equality follows from (31), the third from (32), and the fourth from (33). Finally,
we obtain

(ℓt(f̂t(xt))− ℓt(f̂n,k,t(xt)))1xt∈Xn ⩽ ℓ′t(f̂t(xt))(f̂t(xt)− f̂n,k,t(xt))1xt∈Xn ← by convexity of ℓt

= (g̃⊤
t w̃t − g̃n,k,t)1xt∈Xn

= g̃⊤
t wt − g̃n,k,t ← by (34),

(35)

and setting Tn = {1 ⩽ t ⩽ T : xt ∈ Xn}, n ∈ L(T ):

R1 =
T∑
t=1

∑
n∈L(T )

(ℓt(f̂t(xt))− ℓt(f̂n,kn,t(xt))1xt∈Xn ← {Xn, n ∈ L(T )} partition of X

⩽
∑

n∈L(T )

T∑
t=1

(g̃⊤
t wt − g̃n,kn,t) ← by (35)

⩽
∑

n∈L(T )

(
C3

√
log
(
K|N (T0)|

)√√√√ T∑
t=1

(
g̃⊤
t wt − g̃n,kn,t)2 + C4G

)
← by Assumption 2

= C4G|L(T )|+ C3

√
log
(
K|N (T0)|

) ∑
n∈L(T )

√∑
t∈Tn

(
g̃⊤
t wt − g̃n,kn,t)2, (36)

where last equality holds because for any n ∈ L(T ), g̃⊤
t wt − g̃n,kn,t = 0 if xt ̸∈ Xn.
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• Case 1: (ℓt)1⩽t⩽T convex.
Since ∥g̃t∥∞ ⩽ G, ∥wt∥∞ ⩽ 1, t ∈ [T ] by Assumption 2 and using Cauchy-Schwartz inequality we
get from Equation (36):

R1 ⩽ C4G|L(T )|+ 2C3

√
log
(
K|N (T0)|

)
G

∑
n∈L(T )

√
|Tn|

⩽ C4G|L(T )|+ 2C3G

√
log
(
K|N (T0)|

)
|L(T )|

∑
n∈L(T )

|Tn|

= C4G|L(T )|+ 2C3G
√
log
(
K|N (T0)|

)
|L(T )|T . (37)

In case of convex losses, we finally have by (25), (30) and (37) :

RegT (f) ⩽ 2C3G
√
log
(
K|N (T0)|

)
|L(T )|T +

(
C2
ε

2
+ C4

)
G|L(T )|+ ε

2
GC1

√
|L(T )|T

+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)


ψ1

√
|Tn| if d < 2α ,

ψ2 log2 |Tn|
√
|Tn| if d = 2α ,

ψ1|Tn|1−
α
d if d > 2α ,

with ψ1, ψ2 defined in (30). Taking ε = T− 1
2 ,K = ⌊2BT

1
2 ⌋ ⩽ 2BT , we get:

RegT (f) ⩽ 2C3G
√
log
(
2BT |N (T0)|)

√
L(T )|T + (2−1C1 + C22

−1T− 1
2 + C4)G|L(T )|

+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)


ψ1

√
|Tn| if d < 2α ,

ψ2 log2 |Tn|
√
|Tn| if d = 2α ,

ψ1|Tn|1−
α
d if d > 2α ,

Since this inequality holds for all pruning T ∈ P(T0), one can take the infimum over all pruning in
P(T0) to get the desired upper-bound:

RegT (f) ⩽ inf
T ∈P(T0)

{
β1
√
L(T )|T + β2|L(T )|

+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)


ψ1

√
|Tn| if d < 2α ,

ψ2 log2 |Tn|
√
|Tn| if d = 2α ,

ψ1|Tn|1−
α
d if d > 2α ,

}
,

with β1 = 2C3G
√

log
(
2BT |N (T0)|) and β2 = G(2−1C1 + C22

−1T− 1
2 + C4).
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• Case 2: (ℓt)1⩽t⩽T η-exp-concave.
If the sequence of loss functions (ℓt) is η-exp-concave for some η > 0, then thanks to a Lemma in
Hazan et al. (2016) we have for any 0 < µ ⩽ 1

2 min{ 1
G , η} and all t ⩾ 1, n ∈ L(T ), k ∈ [K]:

(ℓt(f̂t(xt))− ℓt(f̂n,k,t(xt)))1xt∈Xn ⩽
(
g̃⊤
t w̃t − g̃n,k,t −

µ

2

(
g̃⊤
t w̃t − g̃n,k,t

)2)
1xt∈Xn

= g̃⊤
t wt − g̃n,k,t −

µ

2

(
g̃⊤
t wt − g̃n,k,t

)2 ← by (34) .

(38)

Summing (38) over t ∈ [T ] and n ∈ L(T ), we get:

R1 ⩽
∑

n∈L(T )

∑
t∈Tn

g̃⊤
t w̃t − g̃n,k,t −

µ

2

∑
n∈N (P)

∑
t∈Tn

(
g̃⊤
t wt − g̃n,k,t

)2
⩽ C4G|L(T )|+ C̃3

∑
n∈L(T )

√∑
t∈Tn

(
g̃⊤
t wt − g̃n,k,t)2 −

µ

2

∑
n∈L(T )

∑
t∈Tn

(
g̃⊤
t wt − g̃n,k,t

)2 ← by (36) ,

(39)

where we set C̃3 = C3

√
log
(
K|N (T0)|

)
. Young’s inequality gives, for any ν > 0, the following

upper-bound: √∑
t∈Tn

(
g̃⊤
t wt − g̃n,k,t)2 ⩽

1

2ν
+
ν

2

∑
t∈Tn

(
g̃⊤
t wt − g̃n,k,t)2 . (40)

Finally, plugging (40) with ν = µ/C̃3 > 0 in (39), we get

R1 ⩽ C4G|L(T )|+ C̃3

∑
n∈L(T )

(
C̃3

2µ
+

µ

2C̃3

∑
t∈Tn

(
g̃⊤
t wt − g̃n,k,t)2

)
− µ

2

∑
n∈L(T )

∑
t∈Tn

(
g̃⊤
t wt − g̃n,k,t

)2
=

(
C2
3 log

(
K|N (T0)|

)
2µ

+ C4G

)
|L(T )|. (41)

To conclude, if (ℓt) are η-exp-concave, one has via (25), (30) and (41)

RegT (f) ⩽ β3|L(T )|+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)


ψ1

√
|Tn| if d < 2α ,

ψ2 log2 |Tn|
√
|Tn| if d = 2α ,

ψ1|Tn|1−
α
d if d > 2α ,

with β3 =
C2

3 log
(
2BT |N (T0)|

)
2µ + C4G + 2−1G(C1 + C2T

− 1
2 ), 0 < µ < 1

2 min{ 1
G , η} and ψ1, ψ2

defined in (30). Again, taking infimum over T ∈ P(T0) gives the result.

Worst case regret bound Note that since we assume that ∥f∥∞ ⩽ B, and that all local predictors
f̂n,k, n ∈ N (T0), k ∈ [K] in Algorithm 2 are clipped in [−B,B], we first have for any x ∈ X ,

|f̂t(x)| =
∑

n∈N (T0)

K∑
k=1

wn,k,t|f̂n,k,t(x)| ⩽ B
∑

n∈N (T0)

K∑
k=1

wn,k,t = B.
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Thus,

RegT (f) =

T∑
t=1

ℓt(f̂t(xt))− ℓt(f∗(xt))

⩽
T∑
t=1

G|f̂t(xt)− f∗(xt)| ← ℓt is G-Lipschitz

⩽ G

T∑
t=1

(|f̂t(xt)|+ |f∗(xt)|)

= 2BGT (42)
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Appendix C. Proof of Corollary 1

We state here a complete version of Corollary 1.

Corollary 2 Let α ∈ (0, 1], 1 ⩽ d ⩽ 2α. Under the same assumptions as in Theorem 2, Algorithm 2
achieves a regret with respect to any f ∈ C α(X , L), L > 0:

RegT (f) ≲ inf
T ∈P(T0)

 ∑
n∈L(T )

min

(
1 + Ln(f)|Xn|α,

(
Ln(f)|Xn|α

) 1
2α

)√
Tn

 ,

where ≲ is a rough inequality that depends on Ci, i = 1, . . . , 4 but is independent of L,X, T .
Moreover, if (ℓt) are exp-concave:

RegT (f) ≲ inf
T ∈P(T0)

 ∑
n∈L(T )

min
(
Ln(f)|Xn|α

√
|Tn|,

(
Ln(f)|Xn|α

) 2
2α+1 |Tn|

1
2α+1

) ,

where ≲ also depends on the exp-concavity constant.

Proof [of Corollary 2]
We consider 2 cases:

1. Case d < 2α (i.e. d = 1, α ∈ (12 , 1]).

Let f ∈ C α(X , L) and L > 0 and fix any pruning T ∈ P(T0). We will apply Theorem 2 to
an extended pruning T ′, in which we extend each leaf n ∈ L(T ) by a regular tree of depth
hn ∈ N to be optimized later in the proof. In particular, for each leaf n in the original pruning
T , T ′ has 2hn leaves m at depth d(m) = d(n) + hn ⩾ d(n) with Lm(f) ⩽ Ln(f). In
particular, when hn = 0, the original pruning T is recovered.

(a) Case (ℓt) convex:
Thanks to Theorem 2 (without applying Inequality (37) in the term depending on C3),
one has for d = 1 < 2α:

RegT (f) ⩽ 2C3

√
log
(
K|N (T0)|

) ∑
m∈L(T ′)

√
|Tm|+ C4G|L(T1)|

+Gψ1

∑
m∈L(T ′)

Lm(f)|Xm|α
√
|Tm|,

⩽ min
hn∈N

C ∑
n∈L(T )

(√
2hn |Tn|+ 2hn + Ln(f)|Xn|α2−αhn

√
2hn |Tn|

)
(43)

where C > 0 is some constant that depends on C3, C4, G,X, log(T ), B and ψ1 (defined
in Theorem 2) but independent of other quantities Ln(f), T, Tn, that is used to simplify
the presentation and may change from a display to another along the proof. Then,
optimizing over hn so that√

2hn |Tn| = Ln(f)|Xn|α2−αhn

√
2hn |Tn| ,
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we set

hn = max

{
0,

1

α
log2 (Ln(f)|Xn|α)

}
⩾ 0

which yields

RegT (f) ⩽ C
∑

n∈L(T )

min

{
1 + Ln(f)|Xn|α,

(
Ln(f)|Xn|α

) 1
2α

}√
|Tn| .

(b) Case (ℓt) exp-concave:
Since (ℓt) are exp-concave, Theorem 2 (with Inequality (41)) gives, for d < 2α, for any
extension T1 of pruning T ∈ P(T0):

RegT (f) ⩽ C

|L(T1)|+ ∑
m∈L(T1)

Lm(f)|Xm|α
√
|Tm|

 , (44)

⩽ C
∑

n∈L(T )

(
2hn + Ln(f)|Xn|α2−αhn

√
2hn |Tn|

)
, (45)

where again C > 0 is a constant independent of L, Ln(f), |Tn| and hn that may change
from a display to another. Optimizing over hn by equalizing the terms:

2hn = Ln(f)|Xn|α2−αhn

√
2hn |Tn|

leads to

hn = max

{
0,

2

2α+ 1
log2

(
Ln(f)|Xn|α|Tn|

1
2
)}

,

which yields and concludes the proof:

RegT (f) ⩽ C
∑

n∈L(T )

min
{
Ln(f)|Xn|α

√
|Tn|,

(
Ln(f)|Xn|α

) 2
2α+1 |Tn|

1
2α+1

}
2. Case d = 2α.

The proof is the same as for the case d < 2α but with C now depending on ψ2 (also defined in
Theorem 1) rather than ψ1. We get the same result.
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Appendix D. Proof of Equation (9)

One has, for any pruning T ∈ P(T0) and some f ∈ C α(X , L):

RegT (f) ≲
∑

n∈L(T )

(
Ln(f)|Xn|α

) 2
2α+1 |Tn|

1
2α+1 =

∑
n∈L(T )

(
Ln(f)

1
α |Xn|

) 2α
2α+1 |Tn|

1
2α+1

⩽
( ∑

n∈L(T )

Ln(f)
1
α |Xn|

) 2α
2α+1

∣∣∣ ∑
n∈L(T )

Tn

∣∣∣ 1
2α+1

=
( ∑

n∈L(T )

Ln(f)
1
α |Xn|

) 2α
2α+1 |T |

1
2α+1

where inequality is obtained with Hölder’s inequality with p = (2α+ 1)/2α and q = 2α+ 1.
One could also write:

( ∑
n∈L(T )

Ln(f)
1
α |Xn|

) 2α
2α+1

=

|X | ∑
n∈L(T )

Ln(f)
1
α
|Xn|
|X |

 2α
2α+1

:=
(
|X |α∥f∥L(T ), 1

α

) 2
2α+1

,

where f 7→ ∥f∥L(T ), 1
α

is some 1
α -norm (or expectation) of f over leaves n ∈ L(T ) with probability

|Xn|/|X | = 2−d(n), n ∈ L(T ).
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Appendix E. Comparison with Kuzborskij and Cesa-Bianchi (2020)

Let f ∈ C α(X , L), (M (k))1⩽k⩽d(T0) such that M (k) ⩾ Ln(f) for any n ∈ N (T0),d(n) = k and
T (k) = {1 ⩽ t ⩽ T : xt ∈ Xn,d(n) = k}. Let T be any pruning and let α = 1, d = 1. We have for
the squared (exp-concave) loss, according to Corollary 1:

RegT (f) ≲
∑

n∈L(T )

min

{(
Ln(f)

|Xn|
|X |

) 2
3

|Tn|
1
3 ,

(
Ln(f)

|Xn|
|X |

) 1
2

|Tn|
1
2

}

=

d(T )∑
k=1

∑
n∈L(T ):d(n)=k

min

{(
Ln(f)

|Xn|
|X |

) 2
3

|Tn|
1
3 ,

(
Ln(f)

|Xn|
|X |

) 1
2

|Tn|
1
2

}

⩽
d(T )∑
k=1

min


 ∑

n∈L(T ):d(n)=k

Ln(f)2
−k

 2
3

|T (k)|
1
3 ,

 ∑
n∈L(T ):d(n)=k

Ln(f)2
−k

 1
2

|T (k)|
1
2


(46)

⩽
d(T )∑
k=1

min

{(
M (k)w(k)

) 2
3 |T (k)|

1
3 ,
(
M (k)w(k)

) 1
2 |T (k)|

1
2

}
⩽ min

{(
M̄(f)

) 2
3 T

1
3 ,
(
M̄(f)T

) 1
2

}
(47)

where M̄(f) =
∑d(T )

k=1 w
(k)M (k) with w(k) =

∑
n∈L(T ):d(n)=k

|Xn|
|X | = 2−k|{n ∈ L(T ) : d(n) =

k}| the proportion of leaves in L(T ) at level k in N (T0) and where we applied Hölder’s inequality
to get (46) and (47). The last upper-bound recovers and improves the one of Kuzborskij and Cesa-
Bianchi (2020) for dimension d = 1, as described in the main part of the paper. For higher dimension
d ⩾ 2, both for exp-concave and convex losses, Theorem 2 gives for any pruning T and any function
f ∈ C 1(X , L) (ignoring the dependence on X ):

RegT (f) ≲
∑

n∈L(T )

Ln(f)|Tn|1−
1
d =

d(T )∑
k=1

∑
n∈L(T ):d(n)=k

Ln(f)|Tn|
d−1
d

⩽
d(T )∑
k=1

M (k)|{n : d(n) = k}|
1
d |T (k)|

d−1
d ,

which grows as O
(∑

kM
(k)|T (k)|

d−1
d

)
compared to O

(∑
k(M

(k)|T (k)|)
d

d+1
)

in Kuzborskij and

Cesa-Bianchi (2020). As a consequence, if for every level k = 1, . . . ,d(T ), M (k)|T (k)|
d−1
d ⩾

(M (k)|T (k)|)
d

d+1 it turns out thatM (k) ⩾ |T (k)|
1
d which leads to an equivalent boundO(

∑
k |T (k)|) =

O(T ) which corresponds to the worst case regret bound (42). As a conclusion, our bound recovers
and improves their results in particular with a dependence to lower constants Ln(f) and lower time
rate |Tn|1−

1
d .
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Appendix F. Experiments

The following presents experimental results in a synthetic regression setting for both the Chaining
Tree method (Algorithm 1) and the Locally Adaptive Online Regression (Algorithm 2. We consider
the model yt = f(xt) + εt, where εt ∼ N (0, σ2) with σ = 0.5, f(x) = sin(10x) + cos(5x) + 5,
for x ∈ X = [0, 1] and supx |f ′(x)| ⩽ 15 =: L. Furthermore, we assume that xt is independently
drawn from the uniform distribution U(X ).
Refer to Theorem 1, Theorem 2 and Corollary 1 in the paper to compare experimental results to
theoretical guarantees. Figures can be reproduced using the code available on GitHub.
Key observations:

• For the squared loss, ℓt(ŷ) = (ŷ − yt)2, Algorithm 2 achieves a time rate of O(T
1
3 ) compared

toO(
√
T ) for Algorithm 1 - see Figure 4(a). However, the trade-off is an increased dependence

on the smoothness L, shifting from O(L
1
2 ) to O(L

2
3 );

• We observe in Figure 5 that Algorithm 2 reduces regret with respect to L: it achieves O(
√
L)

for absolute loss in Fig. 5(b) and O(L
2
3 ) for square loss in Fig. 5(a);

• In Figure 5(a) and Figure 5(b), we observe that both the experimental and theoretical curves
level off once L increases beyond a certain threshold L0 ≳ BT . Indeed, we demonstrated that
for any f ∈ C α(X , L),

RegT (f) ≲ min

{
BT,

∑
n

Ln(f)|Tn|1−
1
d

}
.

See Appendix B and Equation (42) for more details.
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(a) Regret with ℓt(ŷ) = (ŷ − yt)2
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(b) Regret with ℓt(ŷ) = |ŷ − yt|

Figure 4: Comparison of regret as a function of T for square and absolute loss functions. The dotted
lines represent the theoretical results (where O hides terms in log T ), while the solid lines
show the actual performance of our algorithms (mean ± std over 5 runs).
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Figure 5: Regret (mean ± std over 5 runs) as a function of L for square and absolute loss functions,
with a fixed horizon of T = 2000. The analysis uses 20 equally spaced constants l ∈
[2−6, 25], which define the different Lipschitz functions where we apply our algorithms,
given by fl(x) = f(lx) such that supx∈X |f ′l (x)| ⩽ 15l =: L.
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Figure 6: Predictions for Chaining Tree (Alg. 1) and Locally Adaptive Online Regression (Alg. 2)
after T = 1000 data. For illustration purposes, we set the depth of the Chaining Trees to 5
and that of the Core Tree to 3.

Note: A minor adjustment has been made to the implementation of the Locally Adaptive Online
Regression algorithm (Alg. 2). Rather than performing a grid search to determine the root nodes
of the CT in Core Tree T0, we employ a Follow the Leader (or best expert) strategy. For squared
losses, this method offers a similar benefit, that is reducing the regret for learning the root nodes
from O(B

√
T ) to O(B log(T )) - see Cesa-Bianchi and Lugosi (2006, Chap 3.2). Consequently,

the overall performance bound is improved, especially in low-dimensional cases (see Corollary 1,
exp-concave case).
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