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Welcome to the documentation for GMMVI - a framework for optimizing Gaussian mixture models for variational
inference.

If you don’t quite know how you ended up here, check out the About page, for more details on the problem setting and
the underlying algorithms.

Just wanna know how do install and use the framework? Ger Started!

For a look under the hood, you can check the API Reference or directly dig into the source.

CONTENTS 1
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CHAPTER
ONE

ABOUT

GMMVI (Gaussian Mixture Model Variational Inference) is a framework for optimizing a Gaussian mixture model
¢(x) with Gaussian components ¢(x|o) and weights ¢(0),

q(x) =Y _ q(0)q(xlo),

o

with respect to the optimization problem,

rﬁ?s( Eq(x) [T(X)] + H(‘](X)),

where H(g(x)) denotes the mixture’s entropy and 7(x) assigns a reward to the sample x. If (x) corresponds to the
energy of a Gibbs-Boltzmann distribution p(x) x exp(r(x)), the learned GMM will approximate the target distribution
p(x) by minimizing the reverse Kullback-Leibler divergence KL (g(x)|[p(x)).

The optimization is performed with respect to the weights, means and covariance matrices, and if desired the number
of components. The framework is build on Tensorflow 2, however, the reward function can also be implemented using
different libraries, such as PyTorch.

1.1 Method

The optimization is performed iteratively, where at every iteration an independent natural gradient descent step is
performed to the categorical distribution over weights, g(0), and to each individual component ¢(x|o0). This procedure
was concurrently proposed by Arenz ef al. [AZN18] and Lin er al. [LKS19a]. However, both approaches differ
quite significantly in several design choices (e.g. how the natural gradients are estimated) and derived the procedure
from different perspectives with different theoretical guarantees, and therefore the equivalence of both approaches was
initially not understand. This framework is published along with the article that first established the close connection
between both approaches, and was used to systematically evaluate the effects of the different design choices.

1.2 Design Choices

We distinguish design choices for seven different modules corresponding to the abstract classes, where for each design
choice, there are two to three option implemented as concrete classes.

1. NgEstimator
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MoreNgEstimator

NgEstimator

SteinNgEstimator

2. ComponentAdaptation

FixedComponentAdaptation

ComponentAdaptation

VipsComponentAdaptation

3. SampleSelector

LinSampleSelector

SampleSelector

VipsSampleSelector

4. NgBasedComponentUpdater

‘ DirectNgBasedComponentUpdater l

=

NgBasedComponentUpdater }——{ KLConstrainedNgBasedComponentUpdater l

\

‘ NgBasedComponentUpdaterlblr l

5. ComponentStepsizeAdaptation

4 Chapter 1. About



gmmvi Documentation, Release 0.0.0

’ DecayingComponentStepsizeAdaptation ‘

=

ComponentStepsizeAdaptation }—ﬁ FixedComponentStepsizeAdaptation ‘

\

’ ImprovementBasedComponentStepsizeAdaptation ‘

6. WeightUpdater

DirectWeightUpdater

/—P

WeightUpdater

TrustRegionBasedWeightUpdater

7. WeightStepsizeAdaptation

’ DecayingWeightStepsizeAdaptation ‘

I

WeightStepsizeAdaptation }—% FixedWeightStepsizeAdaptation ‘

\

’ ImprovementBasedWeightStepsizeAdaptation ‘

1.3 Naming Convention

Depending on which option is used for each design choice, there are currently 432 different instantiation supported by
GMMVI. When referring to a specific instantiation, we use 7-letter codewords, where the presence of a letter implies,
that the corresponding option was chosen. The mapping from letter to option is given in the following table:

1.3. Naming Convention
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Module Options

NgEstimator MORE (Z) | Stein (S)

ComponentAdaptation Fixed (E) VIPS (A)

SampleSelector Lin (P) VIPS (M)
NgBasedComponentUpdater Direct (I) iBLR (Y) Trust-Region (T)
ComponentStepsizeAdaptation | Fixed (F) Decaying (D) Adaptive (R)
WeightUpdater Direct (U) | Trust-Region (O)
WeightStepsizeAdaptation Fixed (X) | Decaying (G) Adaptive (N)

Using this naming convention, ZAMTRUX refers to VIPS [AZN20], and SEPIFUX refers to the method by Lin et al.
[LKS19a]. The recommended setting, however, is SAMTRON.

6 Chapter 1. About



CHAPTER
TWO

GET STARTED

2.1 Installation

To install GMMVI (optionally) create a virtual environment and run

(.venv) $ pip install .

2.2 Usage

For performing the optimization, you can directly instantiate a GMMVI and run GMMVI. train_iter() in a loop, or, for
adding basic logging capability and easier integration, for example with WandB, you can instantiate a GmmviRunner
and run GmmviRunner.iterate_and_log(n) in a loop.

2.2.1 Directly Using GMMVI

Before instantiating the GMMVI, we need to create several other objects, namely:

1. A wrapped model which stores the parameters of the GMM, as well as component-specific meta-information
(reward histories, learning-rates, etc.)

2. A SampleDB for storing samples.
3. One object for each of the seven Design Choices.

Fortunately, each of these classes and also GMMVI itself, have a static method called build_from_config(), which allows
to create the object from a common config dictionary (which can be created from a YAML file). Using a common
dictionary is recommended, to ensure that the parameters passed to the different constructors are consistent (e.g. the
sample dimensions needs to be the same).

It is easiest to directly use GMMVI.build_from_config, which will automatically construct most of the required
objects. However, you still need to pass

1. the dictionary containing the hyperparameters,
2. the target distribution,
3. and the initial model.

The following example script directly uses GMMVI using the hyperparameters from the following YAML file: exam-
ples/example_config.yml.



https://github.com/\T1\textless {}anonymized\T1\textgreater {}/gmmvi_test/tree//examples/example_config.yml
https://github.com/\T1\textless {}anonymized\T1\textgreater {}/gmmvi_test/tree//examples/example_config.yml
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import os

import logging

# Tensorflow may give warnings when the Cholesky decomposition fails.

# However, these warning can usually be ignored because the NgBasedOptimizer

# will handle them by rejecting the update and decreasing the stepsize for

# the failing component. To keep the console uncluttered, we suppress warnings.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # ERROR
logging.getLogger('tensorflow').setLevel (logging.ERROR)

import tensorflow as tf

from gmmvi.optimization.gmmvi import GMMVI

from gmmvi.configs import load_yaml

from gmmvi.experiments.target_distributions.logistic_regression import make_breast_cancer
from gmmvi.models.full_cov_gmm import FullCovGMM

from gmmvi.models.gmm_wrapper import GmmWrapper

from gmmvi.experiments.setup_experiment import construct_initial_mixture

#For creating a GMMVI object using GMMVI.build_from_config, we need:
# 1. A dictionary containing the hyperparameters

my_path = os.path.dirname(os.path.realpath(__file__))

config = load_yaml (os.path.join(my_path, "example_config.yml"))

# 2. A target distribution
target_distribution = make_breast_cancer()

# 3. An (wrapped) initial model

dims = target_distribution.get_num_dimensions()

initial_weights = tf.ones(l, tf.float32)

initial_means = tf.zeros((l, dims), tf.float32)

initial_covs = tf.reshape(100 * tf.eye(dims), [1, dims, dims])

model = FullCovGMM(initial weights, initial_means, initial_covs)

# Above config contains a section model_initialization, and, therefore,

# we could also create the initial model using:

# model = construct_initial_mixture(dims, **config["model_initialization"])
wrapped_model = GmmWrapper.build_from_config(model=model, config=config)

# Now we can create the GMMVI object and start optimizing
gmnmvi = GMMVI.build_from_config(config=config,
target_distribution=target_distribution,
model=wrapped_model)
max_iter = 1001
for n in range(max_iter):
gmmvi.train_iter()

if n % 100 ==
samples = gmmvi.model.sample(1000)[0]
elbo = tf.reduce_mean(target_distribution.log_density(samples)
- model.log_density(samples))
print(f"{n}/{max_iterj}: "
£"The model now has {gmmvi.model.num_components} components
f"and an elbo of {elbo}.")

8 Chapter 2. Get Started
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The script can be found under examples/1_directly_using_gmmvi.py.

2.2.2 Using the GmmviRunner

The GmmviRunner wraps around GMMVI to add logging capabilities. Furthermore, the GmmviRunner takes care of
initializing the model and the target distribution (when using one of the provided target distributions). Hence, we only
need to provide the config to create it, as shown by the following script:

import os
from gmmvi.gmmvi_runner import GmmviRunner
from gmmvi.configs import load_yaml

my_path = os.path.dirname(os.path.realpath(__file ))
config = load_yaml (os.path.join(my_path, "example_config.yml"))
gnmvi_runner = GmmviRunner.build_from_config(config)

for n in range(10001):
gmmvi_runner.iterate_and_log(n)

The script can be found under examples/2_using_the_gmmvi_runner.py.

2.2.3 Using the GmmviRunner with Default Configs

We can also directly create a default config based on the 7-letter Codeword to specify the design choices, thereby, not
requiring an external YAML file:

from gmmvi.gmmvi_runner import GmmviRunner
import gmmvi.configs

# In this example, we will create the config for a GmmviRunner using default configs
# for a given Codename (we weill use SAMYROX) and an and an environment name

# (we will use GMM20).

# Let's first get the default config for SAMYROX

algorithm_config = gmmvi.configs.get_default_algorithm_config("SAMYROX")

Internally, this loaded the yaml files in gmmvi/configs/module_configs corresponding
to the chosen design choices and stored them in a single dict "algorithm_config".
Note that these default values were chosen independently for every design choice,
and, thus, may not always be sensible. For example, the initial_stepsize defined in
gmmvi/configs/module_configs/component_stepsize_adaptation/improvement_based.yml
(Codeletter "R") is suitable if the stepsize is treated as a trust-region
(Codeletter "T"), but not if it directly corresponds to the stepsize

(Codeletter "I" or "Y")! Hence, we will overwrite the stepsize to something more
suitable for SAMYROX:

better_stepsize_config = {

'initial_stepsize': 0.0001,

'min_stepsize': 0.0001,

'max_stepsize': 0.001

HFHOoFH R R R W W W R

}
algorithm_config = gmmvi.configs.update_config(algorithm_config, better_stepsize_config)

(continues on next page)

2.2. Usage 9
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(continued from previous page)

# We will use a target distribution that was shipped with the framework, namely "gmm20":
environment_config = gmmvi.configs.get_default_experiment_config("'gmm20")

# The last call searched configs/experiment_configs for a corresponding yml-file and.
— found

# gmm20.yml and stored the config in the dictionary "environment_config". We now just.
—need

# to merge both config files:

config = gmmvi.configs.update_config(algorithm_config, environment_config)

# Create the GmmviRunner and start optimizing.
gnmvi_runner = GmmviRunner.build_from_config(config=config)
for n in range(1500):

gmmvi_runner.iterate_and_log(n)

The script can be found under examples/3_gmmvi_runner_with_default_configs.py

2.2.4 Using the GmmviRunner with Custom Environments

We can still use the GmmviRunner with custom environments, but we need to store the target distribution
object in the config:

from gmmvi.gmmvi_runner import GmmviRunner

from gmmvi.configs import get_default_algorithm_config, update_config
import tensorflow as tf

import numpy as np

import matplotlib

matplotlib.use("tkAgg")

import matplotlib.pyplot as plt

# For creating a custom environment, we need to extend
# gmmvi.experiments.target_distributions.lnpdf.LNPDF:
from gmmvi.experiments.target_distributions.lnpdf import LNPDF
class Rosenbrock(LNPDF):
""" e treat the negative Rosenbrock function as unnormalized target distribution.
We implement it in numpy and do not allow GMMVI to backpropagate through log_
—density().
As we want to use Stein's Lemma for estimating the natural gradient (Codeletter "S"),
we need to implement the gradient ourselves, and, therefore, we set
use_log_density_and_grad=True and implement the corresponding method.
def __init__(self):
super (Rosenbrock, self).__init__(use_log_density_and_grad=True,
safe_for_tf_graph-False)

1
100

self.a
self.b

def get_num_dimensions(self) -> int:
return 2

def log_density(self, samples: tf.Tensor) -> tf.Tensor:

(continues on next page)
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(continued from previous page)

X samples[:, 0].numpy().astype(np.float32)
y = samples[:, 1].numpy().astype(np.float32)
my_log_density = -((self.a - x)**2 + self.b * (y - x**2)**2)
return tf.convert_to_tensor(my_log_density, dtype=tf.float32)

def log_density_and_grad(self, samples: tf.Tensor) -> tf.Tensor:
x = samples[:, O0].numpy().astype(np.float32)
y = samples[:, 1].numpy().astype(np.float32)
my_log_density = -((self.a - x)**2 + self.b * (y - x*%2)%**2)
my_grad_x = -(-2 * (self.a - x) - 4 * self.b * (y - x**2) * x)
my_grad_y = -(2 * self.b * (y - x**2))
my_grad = np.vstack((my_grad_x, my_grad_y)).T
return [tf.convert_to_tensor(my_log_density, dtype=tf.float32),
tf.convert_to_tensor(my_grad, dtype=tf.float32)]

# We can also use the GmmviRunner, when using custom environments, but we have
# to put the LNPDF object into the dict. Furthermore, we need to define the other
# environment-specific settings that would otherwise be defined in
# the corresponding config in gmmvi/config/experiment_configs:
environment_config = {
"target_fn": Rosenbrock(),
"start_seed": O,
"environment_name": "Rosenbrock",
"model_initialization": {
"use_diagonal_covs": False,
"num_initial_components": 1,
"prior_mean": 0.,
"prior_scale": 1.,
"initial_cov": 1.,
1
"gmmvi_runner_config": {
"log_metrics_interval”: 100
1
"use_sample_database": True,
"max_database_size": int(le6),
"temperature": 1.

¥

# We will again use the automatically generated config for the algorithm,

# but this time, we will use "SAMTRUX". The default settings are reasonable for
# SAMTRUX, so we do not make any modifications to the hyperparameters.
algorithm_config = get_default_algorithm_config("SAMTRUX")

# Now we just need to merge the configs and use GmmviRunner as before:
merged_config = update_config(algorithm_config, environment_config)
gmmvi_runner = GmmviRunner.build_from_config(merged_config)

for n in range(500):
gmmvi_runner.iterate_and_log(n)

# Plot samples from our "Rosenbrock-distribution"
test_samples = gmmvi_runner.gmmvi.model.sample(10000) [0]

(continues on next page)

2.2. Usage 11
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(continued from previous page)

plt.plot(test_samples[:, 0], test_samples[:, 1], 'x")
plt.show()
plt.pause(0.1)

The script can be found under examples/4_gmmvi_runner_with_custom_environments.py.

12
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CHAPTER
THREE

API REFERENCE

3.1 Models

GmmWrapper
DiagonalGMM
oM
 FuliCovamMm

class gmmvi.models.gmm.GMM(log_weights: Variable, means: Variable, chol_covs: Variable)
An abstract class for Gaussian mixture models (GMMs).
This class stores the parameters of a GMM (weights, means and Cholesky matrices) and provides functionality
that is common for different types of GMMs (e.g., GMMs with full covariance matrices, and those with diagonal

covariance matrices). For example, this class provides methods for sampling the GMM, evaluating its probability
density function, and entropy, while relying on the subclass for sampling the components, etc.

Parameters

* log_weights — tf.Variable(float) A tensorflow Variable for storing the log-probabilities of
the component weights.

* means — tf.Variable(float) A tensorflow Variable for storing the component means (number
of components X number of dimensions)

* chol_covar - tf.Variable(float) A tensorflow Variable for storing the Cholesky matrix of the
component’s covariance matrix. The first dimension specifies the index of the components.
The rank may vary depending on the subclass. For example, when storing the Cholesky
matrix for a diagonal covariance matrix, it is possible to use a rank-2 Tensor (number of
components X number of dimensions) for better memory efficiency.
add_component (initial_weight: Tensor, initial_mean: Tensor, initial_cov: Tensor)

Add a component to the mixture model. The weights will be automatically normalized.
Parameters

e initial_weight — tf.Tensor The weight of the new component (before re-normalization)

13
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» initial_mean — tf. Tensor The mean of the new component
e initial_cov - tf.Tensor The covariance matrix of the new component
component_entropies() — Tensor
Computes the entropy of each component.

Returns
a one-dimensional tensor of shape num_components containing the component entropies.

Return type
tf. Tensor

component_log_densities(samples: Tensor) — Tensor

Evaluate the log densities for each mixture component on the given samples.

Parameters
samples - tf.Tensor A two-dimensional tensor of shape number_of samples x

num_dimensions, which we want to evaluate.

Returns
a two-dimensional tensor of size number_of_components x number_of_samples, containing
the log-densities for each component.

Return type
tf. Tensor

component_log_density (index: int, samples: Tensor) — Tensor
Use the specified component to evaluate the Gaussian log-density at the given samples.
Parameters
¢ index - int The index of the component of which we want to compute the log densities.

e samples - tf.Tensor A two-dimensional tensor of shape number_of_samples x
num_dimensions, which we want to evaluate.

Returns
a one-dimensional tensor of size number_of_samples, containing the log-densities.

Return type
tf. Tensor

component_log_density_and_grad(index: int, samples: Tensor) — [<class
‘tensorflow.python.framework.ops.Tensor'>, <class
‘tensorflow.python.framework.ops.Tensor'>]

Evaluates for the given component the log-density and its gradient.
Parameters

e samples — tf.Tensor A two-dimensional tensor of shape number_of samples x
num_dimensions, which we want to evaluate.

* Returns - component_log_densities - a one-dimensional tf.Tensor of shape
num_samples containing the log-densities of the given component.

component_log_density_grads - a two-dimensional tf.Tensor of shape num_samples x
num_dimensions containing the gradients of the component’s log-densities.

component_marginal_log_densities(samples: Tensor, dimension: int) — Tensor
Evaluate the marginal log densities for each mixture component along the given dimension for each sample.

Parameters

14 Chapter 3. API Reference
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e samples - tf.Tensor A two-dimensional tensor of shape number_of_samples x
num_dimensions, which we want to evaluate. Note that for providing an easier interface,
each sample has the number of dimensions compatible with this GMM, although only a
single entry is actually used for evaluating the marginal density.

¢ dimension - int The dimension of interest.

Returns
a two-dimensional tensor of size number_of_components x number_of_samples, containing
the marginal log-densities for each component.

Return type
tf. Tensor
property covs: Tensor
Returns: tf.Tensor: the covariance matrices as a 3-dimensional tensor of shape num_components x
num_dimensions X num_dimensions
density (samples: Tensor) — Tensor
Evaluates the given samples on this GMM.
Parameters

samples - tf.Tensor A two-dimensional tensor of shape number_of samples x
num_dimensions, which we want to evaluate

Returns
a one-dimensional tensor of shape num_samples containing the model densities.

Return type
tf. Tensor
gaussian_entropy (chol: Tensor) — Tensor
Computes the entropy of Gaussian distribution with the given Cholesky matrix.
Parameters

chol - tf.Tensor A two-dimensional tensor of shape number_of_dimensions x num-
ber_of dimensions specifying the Cholesky matrix

Returns
The entropy

Return type
tf.float32
get_average_entropy() — tf.float32
Averages the entropies of the individual components based on their respective weights.

Returns
the average component entropy

Return type
tf.float32

log_densities_also_individual (samples: Tensor) — [<class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>]

Evaluates the given samples on this GMM, but also returns individual log-densities for each Gaussian
component.

3.1.

Models 15
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Parameters
samples - tf.Tensor A two-dimensional tensor of shape number_of samples x
num_dimensions, which we want to evaluate

Returns

model_log_densities - a one-dimensional tnsor of shape num_samples containing the model
log-densities.

component_log_densities - a two-dimensional tensor of shape num_components x
num_samples containing the component log-densities

Return type
tuple(tf.Tensor, tf. Tensor)
log_density (samples: Tensor) — Tensor
Evaluates the given samples on this GMM.
Parameters

samples - tf.Tensor A two-dimensional tensor of shape number_of samples x
num_dimensions, which we want to evaluate.

Returns
a one-dimensional tensor of shape num_samples containing the model log-densities.

Return type
tf. Tensor

log_density_and_grad(samples: Tensor) — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
‘tensorflow.python.framework.ops.Tensor'>, <class
‘tensorflow.python.framework.ops.Tensor'>]

Evaluates the given samples on this GMM, returns the log-densities of the whole model, their gradients,
and also the individual log-densities for each Gaussian component.

Parameters
samples - tf.Tensor A two-dimensional tensor of shape number_of samples x
num_dimensions, which we want to evaluate.

Returns

model_log_densities - a one-dimensional tensor of shape num_samples containing the model
log-densities.

model_log_density_grads - a two-dimensional tf.Tensor of shape num_samples x
num_dimensions containing the gradients of the model log-densities.

component_log_densities - a two-dimensional tf.Tensor of shape num_components x
num_samples containing the component log-densities.

Return type
tuple(tf.Tensor, tf. Tensor)

marginal_log_density(samples: Tensor, dimension: int) — Tensor

Evaluates this GMM on the given samples with respect to the marginal log-density along the given dimen-
sions

Parameters

e samples — tf.Tensor A two-dimensional tensor of shape number_of samples x
num_dimensions, which we want to evaluate

¢ dimension — int The dimension of interest

16 Chapter 3. API Reference
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Returns
a one-dimensional tensor of shape num_samples containing the marginal log-densities

Return type
tf. Tensor
property num_components: int

Returns: int: the number of components of this GMM

remove_component (idx: int)

Removes the specified component, and renormalizes the weights afterwards.

Parameters
idx — int The idx of the component to be removed.
replace_components (new_means: Tensor, new_chols: Tensor)
Updates the means and covariances matrices (Cholesky) of the GMM. The weights and, therefore, the
number of components can not be changed with this method.
Parameters

* new_means - tfTensor a  two-dimensional tensor of shape cur-
rent_number_of_components x dimensions, specifying the updated means.

e new_chols - tfTensor a three-dimensional tensor of shape cur-
rent_number_of _components X dimensions x dimensions, specifying the updated
Cholesky matrix.
replace_weights (new_log_weights: Tensor)
Overwrites the component log(weights). This method will take care of normalization.
Parameters

new_log_weights — tf.Tensor a one-dimensional tensor of size num_components, contain-
ing the new log(weights)

sample (num_samples: int) — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
‘tensorflow.python.framework.ops.Tensor'>]

Draw samples from this GMM, also returns for every sample, the index of the component that was used for
sampling it.

Parameters
num_samples — int The number of samples to be drawn

Returns

drawn_samples - a two-dimensional tensor of shape num_samples x num_dimensions, con-
taining the drawn samples.

component_indices - a one-dimensional tensor of int, containing the component indices.

Return type
tuple(tf.Tensor, tf.Tensor)

sample_categorical (num_samples: int) — Tensor

Sample components according to the weights

Parameters
num_samples — int The number of components to be drawn

Returns
a one-dimensional tensor of int, containing the component indices.

3.1.

Models 17


https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

gmmvi Documentation, Release 0.0.0

Return type
tf. Tensor

sample_from_component (index: int, num_samples: int) — Tensor
draw samples from the specified components
Parameters
¢ index - int The index of the component from which we want to sample.
* num_samples — int The number of samples to be drawn.

Returns
The drawn samples, tensor of size num_samples x dimensions.

Return type
tf. Tensor
sample_from_components (samples_per_component: Tensor) — Tensor
Draws from each component the corresponding number of samples (provided as a one-dimensional tensor).
Parameters

samples_per_component - tfTensor a one-dimensional tensor of size num-
ber_of_component, containint for each component the number of samples to be drawn.

Returns
a tensor of shape sum(samples_per_component) x num_dimensions containing the samples
(shuffled).

Return type
tf. Tensor

sample_from_components_no_shuffle(samples_per_component: Tensor) — [<class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>]

Draws from each component the corresponding number of samples (provided as a one-dimensional tensor).
Similar to sample_from_components, but the returned samples are not shuffied.

Parameters
samples_per_component - tf.Tensor a one-dimensional tensor of size num-
ber_of_component, containint for each component the number of samples to be drawn.

Returns
a tensor of shape sum(samples_per_component) x num_dimensions containing the samples
(not shuffled).

Return type
tf. Tensor

property weights: Tensor

Returns: tf. Tensor: a one-dimensional tensor of size num_components, containing the component weights.

class gmmvi.models.full_cov_gmm.FullCovGMM(weights: Tensor, means: Tensor, covs: Tensor)
A Gaussian mixture model with full covariance matrices.

Parameters
» weights — tf.Tensor a one-dimensional tensor containing the initial weights of the GMM.
* means — tf.Tensor a two-dimensional tensor containing the component means.

* covs — tf. Tensor a three-dimensional tensor containing the component covariance matrices.
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add_component (initial_weight: Tensor, initial_mean: Tensor, initial_cov: Tensor)
Add a component to the mixture model. The weights will be automatically normalized.
Parameters
e initial_weight — tf.Tensor The weight of the new component (before re-normalization)
e initial_mean — tf. Tensor The mean of the new component
e initial_cov - tf.Tensor The covariance matrix of the new component
component_log_densities(samples: Tensor) — Tensor
Evaluate the log densities for each mixture component on the given samples.

Parameters
samples — tf.Tensor A two-dimensional tensor of shape number_of samples x
num_dimensions, which we want to evaluate.

Returns
a two-dimensional tensor of size number_of_components x number_of_samples, containing
the log-densities for each component.

Return type
tf. Tensor

component_log_density (index: int, samples: Tensor) — Tensor

Use the specified component to evaluate the Gaussian log-density at the given samples.
Parameters
¢ index - int The index of the component of which we want to compute the log densities.

e samples — tf.Tensor A two-dimensional tensor of shape number_of samples x
num_dimensions, which we want to evaluate.

Returns
a one-dimensional tensor of size number_of_samples, containing the log-densities.

Return type
tf. Tensor
component_marginal_log_densities(samples: Tensor, dim: int) — Tensor

Evaluate the marginal log densities for each mixture component along the given dimension for each sample.
Parameters

e samples - tf.Tensor A two-dimensional tensor of shape number_of_samples x
num_dimensions, which we want to evaluate. Note that for providing an easier interface,
each sample has the number of dimensions compatible with this GMM, although only a
single entry is actually used for evaluating the marginal density.

¢ dimension — int The dimension of interest.

Returns
a two-dimensional tensor of size number_of_components x number_of_samples, containing
the marginal log-densities for each component.

Return type
tf. Tensor
property covs: Tensor

Returns: tf.Tensor: the covariance matrices as a 3-dimensional tensor of shape num_components x
num_dimensions x num_dimensions
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gaussian_entropy (chol: Tensor) — Tensor

Computes the entropy of Gaussian distribution with the given Cholesky matrix.

Parameters
chol - tf.Tensor A two-dimensional tensor of shape number_of_dimensions x num-
ber_of_dimensions specifying the Cholesky matrix

Returns
The entropy

Return type
tf.float32

sample_from_component (index: int, num_samples: int) — Tensor

draw samples from the specified components
Parameters
 index - int The index of the component from which we want to sample.
¢ num_samples — int The number of samples to be drawn.

Returns
The drawn samples, tensor of size num_samples x dimensions.

Return type
tf. Tensor

class gmmvi.models.diagonal_gmm.DiagonalGMM(weights: Tensor, means: Tensor, covs: Tensor)

A Gaussian mixture model with diagonal covariance matrices.
Parameters
» weights — tf.Tensor a one-dimensional tensor containing the initial weights of the GMM.
* means — tf.Tensor a two-dimensional tensor containing the component means.

* covs — tf.Tensor a two-dimensional tensor containing the diagonal entries of the component
covariances.

add_component (initial_weight: Tensor, initial_mean: Tensor, initial_cov: Tensor)
Add a component to the mixture model. The weights will be automatically normalized.
Parameters
e initial_weight — tf.Tensor The weight of the new component (before re-normalization)
e initial_mean - tf. Tensor The mean of the new component
e initial_cov - tf.Tensor The covariance matrix of the new component

component_log_densities(samples: Tensor) — Tensor

Evaluate the log densities for each mixture component on the given samples.

Parameters

samples - tf.Tensor A two-dimensional tensor of shape number_of_samples x
num_dimensions, which we want to evaluate.

Returns
a two-dimensional tensor of size number_of_components x number_of_samples, containing
the log-densities for each component.

Return type
tf. Tensor
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property covs: Tensor
Returns: tf.Tensor: the covariance matrices as a 3-dimensional tensor of shape num_components x
num_dimensions x num_dimensions

static diagonal_gaussian_log_pdf (dim: int, mean: Tensor, chol: Tensor, x: Tensor) — Tensor

gaussian_entropy (chol: Tensor) — Tensor
Computes the entropy of Gaussian distribution with the given Cholesky matrix.
Parameters

chol - tf.Tensor A two-dimensional tensor of shape number_of_dimensions x num-
ber_of_dimensions specifying the Cholesky matrix

Returns
The entropy

Return type
tf.float32
sample_from_component (index: int, num_samples: int) — Tensor

draw samples from the specified components
Parameters
* index - int The index of the component from which we want to sample.
e num_samples — int The number of samples to be drawn.

Returns
The drawn samples, tensor of size num_samples x dimensions.

Return type
tf. Tensor

class gmmvi.models.gmm_wrapper .GmmWrapper (model: GMM, initial_stepsize: float, initial_regularizer:
Sfloat, max_reward_history_length: int)

This method wraps around the model to keep track of component-specific meta-information used by the learner
(e.g. component-specific stepsizes). This class can be used just like a model, because any methods not im-
plemented within the GmmWrapper are forwarded to the encapuslated model. However, some functions have
slightly different behavior, for example, when removing a component, not only the component in the encapuslated
model will be removed, but also the meta-information, stored in this GmmWrapper. Hence, the model should
always be accessed through the GmmWrapper.

Whenever adding a new component (via py:meth:gmmvi.models.gmm.GmmWrapper.add_component), the
GmmWrapper will initialize the meta-information (stepsize and 12-regularizer) with the provided initial_values.

Parameters
* model — gmmvi.models.gmm.GHMM The model to be encapuslated.
e initial_stepsize - float The stepsize, that is assigned to a newly added component

e initial_regularizer — float The 12 regularizer, that is as-
signed to a newly added component (only wused when using a
py:class:MoreNgEstimator<gmmvi.optimization.gmmvi_modules.ng_estimator.MoreNgEstimator>
for estimating the natural gradients).

» max_reward_history_length —int The GmmWrapper also keeps track how much reward
each component obtained at the previous iterations. This parameter controls after how many
iterations the component rewards are forgotten (to save memory).
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add_component (initial_weight: tf.float32, initial_mean: Tensor, initial_cov: Tensor, adding_threshold:
Tensor, initial_entropy: Tensor)

Adds a new component to the encapuslated model (see GMM, but also stores / intializes meta-information.
Parameters
e initial_weight — tf.Tensor The weight of the new component (before re-normalization)
e initial_mean — tf. Tensor The mean of the new component
e initial_cov - tf.Tensor The covariance matrix of the new component

¢ adding_threshold - tf.Tensor The threshold used by VipsComponentAdaptation,
stored for debugging.

e initial_entropy - tf.Tensor The initial entropy of the new component (can be computed
from initial_cov).

static build_from_config(model: GMM, config: dict)

Create a Gmmiirapper instance from a configuration dictionary.

This static method provides a convenient way to create a Gmmliirapper instance, based on an initial GMH,
and a dictionary containing the parameters.

Parameters

e config — dict The dictionary is typically read from YAML a file, and holds all
hyperparameters. The max_reward_history_length, which is needed for instantiating
the Gmmlirapper is typically not provided directly, but chosen depending on whether
VipsComponentAdaptation is used or not.

e model — GMM The model that we want to encapsulate.

remove_component (idx: int)

Deletes the given component in the encapuslated model (see GMI), but also deletes the corresponding meta-
information.

Parameters
idx — int The idx of the component to be removed.

replace_weights(new_log_weights: Tensor)

Overwrites the weights of the encapuslated model, see (see GMM), but also keeps track of each component’s
weight from previous iterations.

Parameters
new_log_weights — tf.Tensor A one dimensional tensor of size number_of_components,
containing the log of the new weight for each component.

store_rewards (rewards: Tensor)

Store the provided reward of each component.
Parameters
e rewards — tf.Tensor
¢ number_of_components (A one dimensional tensor of size)-—
e component (containing the reward for each)-—

update_stepsizes (new_stepsizes: Tensor)
This method updates the stepsize for each component.

Parameters
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e new_stepsizes — tf. Tensor
¢ number_of_components (A one dimensional tensor of size)-—

e component (containing the new stepsize for each)-—

3.2 Experiments

3.2.1 Target Distributions

BNN_LNPDF

GMM_LNPDF

LNPDF LogisticRegression LogisticRegression_minibatch

PlanarRobot

StudentTMixture_LNPDF

class gmmvi.experiments.target_distributions.lnpdf.LNPDF (use_log_density_and_grad: bool = False,
safe_for_tf_graph: bool = True)
This class defines the interface for target distributions. Every target distribution needs to implement the method
log_density(x) for computing the unnormalized log-density of the target distribution.

This function can be also used to wrap target distributions that are not implemented in Tensorflow, by setting
use_log_density_and_grad to True and safe_for_tf_graph to False.

Parameters

* use_log_density_and_grad - bool if False, user is allowed to backprob through
self.log_density(), otherwise the method log_density_and_grad should be used (and
needs to be implemented when using first-order estimates of the NG).

e safe_for_tf_graph - bool if True, we <can call log_density and
log_density_and_grad within a tf.function().

can_sample() — bool

If the target distribution can be sampled, and the respective method you can overwrite this method to return
True.

Returns
is it is safe to call sample?
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Return type
bool

expensive_metrics(model: GmmWrapper, samples: Tensor) — dict

(May not be implemented) This method can be used for computing environment-specific metrics or plots
that we want to log. It is called by the GmmviRunner.

Parameters

* model — Gmmlirapper The learned model that we want to evaluate for this target distribu-
tion.

¢ samples — tf. Tensor Samples that have been drawn from the model, which can be used for
evaluations.

Returns
a dictionary containing the name and value for each item we wish to log.

Return type
dict
get_num_dimensions() — int

Returns
the number of dimensions

Return type
int
log_density(x: Tensor) — Tensor
Returns the unnormalized log-density for each sample in x, log p(x).

Parameters

x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.

Returns

A one-dimensional tensor of shape number_of_samples containing the unnormalized log-
densities.

Return type
tf. Tensor

log_density_and_grad(x: Tensor) — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
‘tensorflow.python.framework.ops.Tensor'>]
(May not be implemented) Returns the unnormalized log-density and its gradient for each sample in x.

Parameters

x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.

Returns

target_log_densities - a one-dimensional tensor of shape number_of_samples containing the
unnormalized log-densities.

log_density_grads - a two-dimensional tensor of shape number_of_samples x dimensions
containing the gradients of the log-densities with respect to the respective sample.

Return type
tuple(tf. Tensor, tf. Tensor)
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property safe_for_tf graph: bool
if True, we can call 1og_density and log_density_and_grad within a tf.function().
sample(n: inr) — Tensor

(May not be implemented) If we can sample from the target distribution, this functionality can be imple-
mented here. However, it is not used by the learning algorithm.

Parameters
n — int The number of samples we want to draw

Returns
the sample, a Tensor of shape n x dimensions

Return type
tf. Tensor
property use_log_density_and_grad: bool

if False, wuser is allowed to backprob through self.log_density(), otherwise the method
log_density_and_grad should be used (and needs to be implemented when using first-order es-
timates of the NG).

class gmmvi.experiments.target_distributions.gmm.GMM_LNPDF (target_weights: Tensor, target_means:
Tensor, target_covs: Tensor)

Implements a target distribution that is given by a Gaussian mixture model.
Parameters

e target_weights (tf.Tensor of tf.float32)- aone-dimensional vector of size num-
ber_of_components containing the mixture weights.

e target_means (tf.Tensor of tf.float32) — a two-dimensional vector of size num-
ber_of_components x dimensions containing the mixture means.

* target_covs (tf.Tensor of tf.float32) — a three-dimensional vector of size num-
ber_of_components x dimensions x dimensions containing the covariance matrices.

can_sample()

Returns
We can sample from a GMM, so this method will return True.

Return type
bool

expensive_metrics(model: GmmWrapper, samples: Tensor) — dict

This method computed the number of detected modes (by testing how many modes of this target distribution
are close to a component in the learned model) and a figure that shows plots comparing the marginal
distributions of the model with the true marginals of this target distribution.

Parameters

e model — Gmmiirapper The learned model that we want to evaluate for this target distribu-
tion.

» samples — tf. Tensor Samples that have been drawn from the model, which can be used for
evaluations.

Returns
a dictionary containing two items (the number of detected modes, and a figure showing the
plots of marginals.
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Return type
dict

get_num_dimensions()

Returns
the number of dimensions

Return type
int
log_density(x)
Returns the unnormalized log-density for each sample in x, log p(x).

Parameters
x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.

Returns
A one-dimensional tensor of shape number_of_samples containing the unnormalized log-
densities.

Return type
tf. Tensor

marginal_log_density(x, dim)

Computes the marginal distribution along the given dimensions.
Parameters

* x(tf.Tensor of tf.float32)- aone-dimensional vector of size number_of_samples
containing the samples we want to evaluate

e dim (an int) — Specifies the dimension used for constructing the marginal GMM.

* Returns — tf.Tensor - a one-dimensional Tensor of shape number_of_samples containing
the marginal log densities.

sample(n)
Draws n samples from this GMM.

Parameters
n — int The number of samples we want to draw.

Returns
The sample, a tensor of size n x dimensions.

Return type
tf. Tensor
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class gmmvi.experiments.target_distributions.student_t_mixture.StudentTMixture_LNPDF (target_weights:
Ten-
sor,
tar-
get_means:
Ten-
sor,
tar-
get_covs:
Ten-
sor,
al-
pha=2)

Implements a target distribution that is given by a mixture of Student-T distributions.
Parameters

e target_weights (tf.Tensor of tf.float32)- aone-dimensional vector of size num-
ber_of_components containing the mixture weights.

e target_means (tf.Tensor of tf.float32) — a two-dimensional vector of size num-
ber_of_components x dimensions containing the mixture means.

* target_covs (tf.Tensor of tf.float32) — a three-dimensional vector of size num-
ber_of_components x dimensions x dimensions containing the covariance matrices.

* alpha (int) — The number of degrees of freedom.
can_sample()

Returns
We can sample from a mixture of Student-T, so this method will return True.

Return type
bool
expensive_metrics(model: GmmWrapper, samples: Tensor) — dict

This method computed the number of detected modes (by testing how many modes of this mixture of
Student-T are close to a component in the learned model) and a figure that shows plots comparing the
marginal distributions of the model with the true marginals of this mixture of Student-T.

Parameters

e model — Gmmiirapper The learned model that we want to evaluate for this target distribu-
tion.

» samples — tf.Tensor Samples that have been drawn from the model, which can be used for
evaluations.

Returns
a dictionary containing two items (the number of detected modes, and a figure showing the

plots of marginals.

Return type
dict

get_num_dimensions()

Returns
the number of dimensions
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Return type
int
log_density(x)
Returns the unnormalized log-density for each sample in x, log p(x).
Parameters

x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.

Returns
A one-dimensional tensor of shape number_of_samples containing the unnormalized log-
densities.

Return type
tf. Tensor

marginal_log_density(x, dim)

Computes the marginal distribution along the given dimensions.
Parameters

» x — tf.Tensor of tf.float32 a one-dimensional vector of size number_of_samples containing
the samples we want to evaluate

¢ dim - an int Specifies the dimension used for constructing the marginal mixture of Student-
Ts.

Returns
a one-dimensional tensor of shape number_of_samples containing the marginal log densities.

Return type
tf. Tensor

sample(n)
Draws n samples from this mixture of Student-T.

Parameters
n — int The number of samples we want to draw.

Returns
The sample, a tensor of size n x dimensions.

Return type
tf. Tensor

class gmmvi.experiments.target_distributions.logistic_regression.LogisticRegression(dataset_id)

This class is used for implementing the logistic regression experiments based on the BreastCancer and German-
Credit dataset [Lic13], reimplementing the experiments used by Arenz et al. [AZN20].

Parameters
dataset_id - a string Should be either “breast_cancer” or “german_credit”

get_num_dimensions()

Returns
the number of dimensions

Return type
int
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log_density(x)

Returns the unnormalized log-density for each sample in x, log p(x).

Parameters
x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.

Returns

A one-dimensional tensor of shape number_of_samples containing the unnormalized log-
densities.

Return type
tf. Tensor

log_likelihood(x)
property prior_std

class gmmvi.experiments.target_distributions.logistic_regression.LogisticRegression_minibatch(dataser id,
batch-
size,
size_test_sei
use_own_ba

This class is used for implementing minibatch-variants of the GermanCredit and BreastCancer experiments
Parameters
» dataset_id - str Should be either “breast_cancer” or “german_credit”
* batchsize — int batchsize for evaluating the likelihood.
* size_test_set — int number of training data that should be held out.

* use_own_batch_per_samples — bool if True, a different minibatch is used for every sam-
ple for which we want to evaluate the target log-density, which reduces the variance (local
reparameterization).

expensive_metrics(model: GmmWrapper, samples: Tensor) — dict
As target-distribution specific metric, we estimate the full-batch ELBO.

Parameters

¢ model — Gmmiirapper The learned model that we want to evaluate for this target distribu-
tion.

» samples — tf.Tensor Samples that have been drawn from the model and that are used for
estimating the full-batch ELBO.

Returns
a dictionary with a single item containing the full-batch elbo.

Return type
dict
likelihood_batch(x, data, labels)

log_density(x)
Returns the unnormalized log-density for each sample in x, log p(x).
Parameters

x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.
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Returns

A one-dimensional tensor of shape number_of_samples containing the unnormalized log-
densities.

Return type
tf. Tensor

log_density_£fb(x)

Evaluate the log-density on the full data set (used for evaluation). If size test_set=0, this

function is equivalent to gmmvi.experiments.target_distributions.logistic_regression.
LogisticRegression.log_density().

shuffle_data()
class gmmvi.experiments.target_distributions.planar_robot.PlanarRobot (num_links, num_goals,
prior_std=0.2,
likelihood_std=0.01)
This class reimplements the “PlanarRobot” experiments used by Arenz et al. [AZN20].

Parameters
e num_links — int The number of links of the robot
e num_goals — int The number of goal positions, must be either 1 or 4

» prior_std - float The standard deviation of the (zero-mean) prior on the joint angles. The
first value is ignored, as the first link always has a standard deviation of 1.

» likelihood_std — float The std-deviation used for penalizing the distance in X-Y between
the robot endeffective and the goal position.

expensive_metrics(model: GmmWrapper, samples: Tensor) — dict
This method computes two task-specific metrics:

1. The number of detected modes: This is course heuristic to count the different configurations used for
reaching each of the goal positions (potentially misleading!)

2. Plots of the mean configurations of the learned model

Parameters

e model — Gmmiirapper The learned model that we want to evaluate for this target distribu-
tion.

» samples — tf.Tensor Samples that have been drawn from the model, which can be used for
evaluations.

Returns

a dictionary containing two items (the number of detected modes, and a figure showing the
mean configurations).

Return type
dict

forward_kinematics (theta)

get_num_dimensions()

Returns
the number of dimensions
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Return type
int

likelihood(pos: Tensor) — Tensor
log_density (theta)
Returns the unnormalized log-density for each sample in x, log p(x).

Parameters
x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.

Returns
A one-dimensional tensor of shape number_of_samples containing the unnormalized log-
densities.

Return type
tf. Tensor

class gmmvi.experiments.target_distributions.bnn.BNN_LNPDF (likelihood_scaling, dataset_seed,
prior_std, batch_size, hidden_units,
loss, activations)

This class is used for implementing the target distribution given by the posterior for a Bayesian Neural Network.

Parameters

e likelihood_scaling - float a coeflicient that can be used to scale the effect of the likeli-
hood

» dataset_seed - int The dataset_seed is used for reproducible train/test-splits
» prior_std - float The standard deviation of the (zero-mean) prior over the network weights
» batch_size - int size of the minibatches

* hidden_units - list[int] The length of the list defines the number of hidden layers, the
entries define their width

* loss - a tf.Keras.losses The loss function used for computing the log-likelihood

* activations — a list of Tensorflow activation functions activations for each hidden layer
and the output layer

average_loss(x, dataset)
avg_bayesian_inference_loss(x, dataset)
avg_bayesian_inference_test_loss(x, num_baiches)
bayesian_inference_test_loss(x)

create_model ()

forward_from_weight_vector (input, x)
get_num_dimensions ()

Returns
the number of dimensions

Return type
int
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log_density(x)

Returns the unnormalized log-density for each sample in x, log p(x).

Parameters
x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.

Returns
A one-dimensional tensor of shape number_of_samples containing the unnormalized log-
densities.

Return type
tf. Tensor

log_density_and_grad(x: Tensor) — [<class 'tensorflow.python.framework.ops.Tensor'>, <class

‘tensorflow.python.framework.ops.Tensor'>]

(May not be implemented) Returns the unnormalized log-density and its gradient for each sample in x.

Parameters
x — tf. Tensor The samples that we want to evaluate, a tf. Tensor of shape number_of_samples
x dimensions.

Returns

target_log_densities - a one-dimensional tensor of shape number_of_samples containing the
unnormalized log-densities.

log_density_grads - a two-dimensional tensor of shape number_of_samples x dimensions
containing the gradients of the log-densities with respect to the respective sample.

Return type
tuple(tf.Tensor, tf. Tensor)

log_likelihood(x)
log_likelihood_and_grad(x)
log_likelihood_old(x)

log_prior(x, ignore_constant=False)
log_prior_and_grad(x, ignore_constant=False)
prepare_data()

property prior_std

3.2.2 Evaluation

class gmmvi.experiments.evaluation.mmd.MMD (groundtruth, alpha)

This class can be used for computing the Maximum Mean Discrepancy [GBR+12]. The MMD can be used to
compute the discrepancy between a model sample and a groundtruth sample.

Note that instantiating this object can be quite slow, but computing the MMD using compute_MMD should be
fast.

Parameters

e groundtruth — tf. Tensor The groundtruth sample of shape number_of_samples x dimen-
sion
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* alpha - tf.float32 A factor for scaling the diagonal bandwidth matrix (which is automatically
chosen based on the groundtruth sample using the Median trick [GBR+12]).

compute_MMD (imnodel_sample)

Compute the MMD between the model_sample and the groundtruth data that was provided when instanti-
ating this object.

Parameters
model_sample - tf.Tensor The sample from the model of shape number_of_samples x di-
mension

Returns
The MMD between model sample and groundtruth sample

Return type
float

3.3 Optimization

3.3.1 GMMVI Modules

SampleSelector

LinSampleSelector

SampleSelector

VipsSampleSelector

class gmmvi.optimization.gmmvi_modules.sample_selector.SampleSelector (target_distribution:
LNPDF, model:
GmmWrapper,
sample_db: SampleDB)

Provides the interface for selecting samples for performing the updates at the beginning of every iteration.

The samples are evaluated on the target distribution and used for updating the weights, means and covariance of
the GMM.

There are currently two options for estimating the natural gradient:

1. The VipsSampleSelector use the procedure described by Arenz et al. [AZN18], Arenz et al. [AZN20]
to ensure that we have samples in the vicinity of every component, enabling us to perform a stable update
on every component.

2. The LinSampleSelector uses the procedure described by Lin ez al. [LKS19a] which draws samples
according to the weights of the current mixture model, aiming for better sample efficiency.

Parameters
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» target_distribution — LNPDF The target distribution is used for evaluating the newly
drawn samples.

» model — Gmmiirapper The wrapped model is used for drawing the samples.

» sample_db — SampleDB The new samples and their target_densities (and gradients) are
stored in the sample database.

static build_from_config(config, gmm_wrapper, sample_db, target_distribution)

This static method provides a convenient way to create a VipsSampleSelector,or LinSampleSelector
depending on the provided config.

Parameters

» config - dict The dictionary is typically read from YAML a file, and holds all hyperpa-
rameters.

e gmm_wrapper — Gmmiirapper The wrapped model is used for drawing the samples.

e sample_db — SampleDB The new samples and their target_densities (and gradients) are
stored in the sample database.

* target_distribution — LNPDF The target distribution is used for evaluating the newly
drawn samples.

select_samples() — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>]

Select the samples for current learning iteration and stores the data in the sample database.
Returns
samples - a tensor of shape number_of_selected_samples x number_of_dimensions

old_samples_pdf - a tensor of shape number_of_selected_samples, containing the log-
densities of the distribution that was effectively used to obtain the selected samples. Needed
for importance weighting.

target_Inpdfs - a tensor of shape number_of_selected_samples, containing the log-densities
of the target distrbution for each selected sample, log p(x).

target_grads - a tensor of shape number_of_selected_samples x num_dimensions, con-
taining the gradients of the log-densities of the target distrbution for each selected sample,

Vx log p(x).

Return type
tuple(tf. Tensor, tf. Tensor, tf.Tensor, tf.Tensor)

LinSampleSelector

class gmmvi.optimization.gmmvi_modules.sample_selector.LinSampleSelector (target_distribution:
LNPDF, model:
GmmWrapper,
sample_db:
SampleDB, de-
sired_samples_per_component:
int, ra-
tio_reused_samples_to_desired:

float)
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Selects the samples according to the procedure described by Lin ef al. [LKS19a].

This class uses the procedure described by Lin et al. [LKS19a] by drawing new samples for the current mix-
ture model. We also implemented the two-phase procedure of the VipsSampleSelector to reuse samples
from the database and redraw samples based on a desired number of samples. However, in contrast to the
VipsSampleSelector, we compute the effective sample size not per component, but for the whole mixture,
and redraw samples n_eff - desired_samples_per_component new samples from the mixture model. The exact
procedure of Lin et al. [LKS19a] can be reproduced, when choosing ratio_reused_samples_to_desired = 0,
where always a fixed number of new samples is drawn from the mixture model.

Parameters

» target_distribution — LNPDF The target distribution is used for evaluating the newly
drawn samples.

* model — Gmmlirapper The wrapped model is used for drawing the samples.

» sample_db — SampleDB The database is used for reusing samples from previous iterations
and for storing the new samples and their target_densities (and gradients).

* desired_samples_per_component — int The desired number for the mixture update.

» ratio_reused_samples_to_desired - float In the first pass, we reuse the ra-
tio_reused_samples_to_desired * desired_samples_per_component freshest samples from
the database.

get_effective_samples (model_densities: Tensor, oldsamples_pdf: Tensor) — Tensor

Computes the effective sample size of the mixture model based on the log-densities of the target distribution
and the log-densities of the background distribution.

Parameters
» model_densities - tf.Tensor The log-densities of the mixture model, log ¢(x).

* oldsamples_pdf —tf. Tensor The log-densities of the distribution that was effectively used
for obtaining the selected samples

Returns
the effective number of samples

Return type
float

sample_where_needed() — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class 'int'>]

Computes the mixture model’s effective sample size for the given set of samples and draws nges — N NEW
samples from the mixture model.

Parameters
» samples - tf. Tensor the samples that were chosen during the first pass

¢ oldsamples_pdf —tf. Tensor The log-densities of the distribution that was effectively used
for obtaining the selected samples

e num_desired_samples — int The number of desired samples per component
Returns
new_samples - a tensor containing the newly drawn samples

new_target_Inpdfs - a tensor containing the log-densities of the target distribution on the
newly drawn samples, log p(x).
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new_target_grads - a tensor containing the gradients of the log-densities for the newly drawn
samples.

mapping - a tensor containing for every sample the one-dimensional tensor contains the index
of the component that was used for drawing that sample.

Return type
tuple(tf. Tensor, tf. Tensor, tf.Tensor, tf.Tensor)

select_samples() — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>]

Select the samples for current learning iteration and stores the data in the sample database.
Returns
samples - a tensor of shape number_of_selected_samples x number_of_dimensions

old_samples_pdf - a tensor of shape number_of_selected_samples, containing the log-
densities of the distribution that was effectively used to obtain the selected samples. Needed
for importance weighting.

target_Inpdfs - a tensor of shape number_of_selected_samples, containing the log-densities
of the target distrbution for each selected sample, log p(x).

target_grads - a tensor of shape number_of selected_samples x num_dimensions, con-
taining the gradients of the log-densities of the target distrbution for each selected sample,

Vx log p(x).

Return type
tuple(tf. Tensor, tf. Tensor, tf.Tensor, tf.Tensor)

VipsSampleSelector

class gmmvi.optimization.gmmvi_modules.sample_selector.VipsSampleSelector (target_distribution:
LNPDF, model:
GmmWrapper,
sample_db:
SampleDB, de-
sired_samples_per_component:
int, ra-
tio_reused_samples_to_desired:

float)
Selects the samples according to the procedure described by Arenz et al. [AZN18], Arenz et al. [AZN20].
This class uses the procedure described by Arenz et al. [AZN18], Arenz et al. [AZN20] to ensure that we have
samples in the vicinity of every component. It uses two passes. In the first pass, it selects a given number of
samples from the sample database. In the second pass, it computes the effective sample size for every compo-
nent (based on the importance weights) and compares the effective sample size with a given desired number of
samples. It then draws from every component the respective missing number of samples.

Parameters

» target_distribution — LNPDF The target distribution is used for evaluating the newly
drawn samples.

» model — Gmmiirapper The wrapped model is used for drawing the samples.
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» sample_db — SampleDB The database is used for reusing samples from previous iterations
and for storing the new samples and their target_densities (and gradients).

* desired_samples_per_component — int The desired number of samples for every com-
ponent.

» ratio_reused_samples_to_desired - float In the first pass, we reuse the num-
ber_of_components * ratio_reused_samples_to_desired * desired_samples_per_component
freshest samples from the database.

get_effective_samples (model_densities: Tensor, oldsamples_pdf: Tensor) — Tensor

Computes the effective sample size based on the log-densities of the target distribution and the log-densities
of the background distribution.

Parameters
» model_densities — tf.Tensor The log-densities of the individual components, log g(x|o)

¢ oldsamples_pdf —tf. Tensor The log-densities of the distribution that was effectively used
for obtaining the selected samples

Returns
the effective number of samples

Return type
float

sample_where_needed (samples: Tensor, oldsamples_pdf: Tensor, num_desired_samples: Optional[int] =
None) — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>]

Computes the components’ effective sample sizes for the given set of samples and draws, for every compo-
nent i, nges — Mefri NEW samples.

Parameters
» samples — tf.Tensor the samples that were chosen during the first pass

¢ oldsamples_pdf —tf. Tensor The log-densities of the distribution that was effectively used
for obtaining the selected samples

e num_desired_samples — int The number of desired samples per component
Returns
new_samples - a tf. Tensor, the newly drawn samples

new_target_Inpdfs - a tf.Tensor, the log-densities of the target distribution on the newly
drawn samples, log p(x).

new_target_grads - a tf.Tensor, the gradients of the log-densities for the newly drawn sam-
ples, Vx log p(x).

mapping - a tf. Tensor, for every sample the one-dimensional tensor contains the index of the
component that was used for drawing that sample.

Return type
tuple(tf.Tensor, tf. Tensor, tf.Tensor, tf. Tensor)

select_samples() — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>]
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Select the samples for current learning iteration and stores the data in the sample database.
Returns
samples - a tensor of shape number_of_selected_samples x number_of_dimensions

old_samples_pdf - a tensor of shape number_of_selected_samples, containing the log-
densities of the distribution that was effectively used to obtain the selected samples. Needed
for importance weighting.

target_Inpdfs - a tensor of shape number_of_selected_samples, containing the log-densities
of the target distrbution for each selected sample, log p(x).

target_grads - a tensor of shape number_of_selected_samples x num_dimensions, con-
taining the gradients of the log-densities of the target distrbution for each selected sample,

Vi log p(x).

Return type
tuple(tf. Tensor, tf. Tensor, tf.Tensor, tf.Tensor)

ComponentAdaptation

FixedComponentAdaptation

ComponentAdaptation

VipsComponentAdaptation

class gmmvi.optimization.gmmvi_modules.component_adaptation.ComponentAdaptation

This class provides a common interface for adapting the number of components.

There are currently only two options:

1. The FixedComponentAdaptation a dummy-class, that does not do anything.

2. The VipsComponentAdaptation uses the procedure of VIPS [AZN20] to add and delete components.
Parameters

e gmm_wrapper — Gmmiirapper The wrapped model where we want to adapt the number of
components.

» sample_db — SampIleDB The sample database can be used to select candidate locations for
adding a new component, without having to perform additional queries to the target distri-
bution.

* target_distribution — LNPDF The target distribution can be used to evaluate candidate
locations for adding a new component.

* prior_mean — tf.Tensor A one dimensional tensor of size num_dimensions, specifying the
mean of the Gaussian that we can use to sample candidate locations for adding a new com-
ponent.
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e initial_cov - tf.Tensor A two-dimensional tensor of size num_dimensions x
num_dimensions, specifying the covariance of the Gaussian that we can use to sample can-
didate locations for adding a new component.

static build_from_config(config, gmm_wrapper, sample_db, target_distribution, prior_mean,

initial_cov)

This static method provides a convenient way to create a FixedComponentAdaptation or
VipsComponentAdaptation depending on the provided config.

Parameters

config — dict The dictionary is typically read from YAML a file, and holds all hyperpa-
rameters.

gmm_wrapper — Gmmiirapper The wrapped model where we want to adapt the number of
components.

sample_db — SampleDB The sample database can be used to select candidate locations
for adding a new component, without having to perform additional queries to the target
distribution.

target_distribution — LNPDF The target distribution can be used to evaluate candidate
locations for adding a new component.

prior_mean — tf.Tensor A one dimensional tensor of size num_dimensions, specifying
the mean of the Gaussian that we can use to sample candidate locations for adding a new
component.

initial_cov — tf.Tensor A two-dimensional tensor of size num_dimensions x
num_dimensions, specifying the covariance of the Gaussian that we can use to sample
candidate locations for adding a new component.

FixedComponentAdaptation

class gmmvi.optimization.gmmvi_modules.component_adaptation.FixedComponentAdaptation

This is a dummy class, used when we do not want to adapt the number of components during learning.

adapt_number_of_components (iteration)

As we do not want to change the number of components, this method does not do anything.

Parameters
iteration - int The current iteration (ignored).

VipsComponentAdaptation

3.3. Optimization
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class gmmvi.optimization.gmmvi_modules.component_adaptation.VipsComponentAdaptation(model:
GmmWrap-
per,
sam-
ple_db:
Sam-
pleDB,
tar-
get_Inpdf:
LNPDF,
prior_mean:
Union{float,
Ten-
sor],
ini-
tial_cov:
Union{float,
Ten-
sor],
del_iters:
nt,
add_iters:
int,
max_components:
int,
thresh-
olds_for_add_heuristic:
float,
min_weight_for_del_heu
float,
num_database_samples:
nt,
num_prior_samples:
int)

This class implements the component adaptation procedure used by VIPS.
See [AZN20].
Parameters

e gmm_wrapper — Gmmiirapper The wrapped model where we want to adapt the number of
components.

» sample_db — SampIleDB The sample database can be used to select candidate locations for
adding a new component, without having to perform additional queries to the target distri-
bution.

* target_distribution — LNPDF The target distribution can be used to evaluate candidate
locations for adding a new component.

* prior_mean — tf.Tensor A one dimensional tensor of size num_dimensions, specifying the
mean of the Gaussian that we can use to sample candidate locations for adding a new com-
ponent.

e initial_cov - tf.Tensor A two-dimensional tensor of size num_dimensions x
num_dimensions, specifying the covariance of the Gaussian that we can use to sample can-
didate locations for adding a new component.
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» del_iters — int minimum number of updates a component needs to have received, before
it is considered as candidate for deletion.

* add_iters - int a new component will be added every add_iters iterations

* max_components — int do not add components, if the model has at least max_components
components

* num_database_samples — int number of samples from the SampleDB that are used for
selecting a good initial mean when adding a new component.

e num_prior_samples — int number of samples from the prior distribution that are used for
selecting a good initial mean when adding a new component.

adapt_number_of_components (iteration: int)

This method may change the number of components, either by deleting bad components that have low
weights, or by adding new components.

Parameters
iteration - int The current iteration, used to decide whether a new component should be
added.

add_at_best_location(samples, target_Inpdfs)

Find the most promising [AZN20] location among the provided samples for adding a new component, that
is, a new component will be added with mean given by one of the provided samples.

Parameters
e samples — tf.Tensor candidate locations for initializing the mean of the new component

» target_lnpdfs — tf.Tensor for each candidate location, this tensor contains the log-
density under the (unnormalized) target distribution.

add_new_component ()

This method adds a new component by first selecting a set of candidate locations and the choosing the most
promising one using the procedure of VIPS [AZN20].

delete_bad_components ()
Components are deleted, if all the following criteria are met received:

1. It must have received at least del_iters updates

2. It must not have improved significantly during the last iterations. In contrast to VIPS, we use a Gaus-
sian filter to smooth the rewards of the component, to be more robust with respect to noisy target
distributions.

3. It must have very low weight, such that the effects on the model are negligible.

select_samples_for_adding_heuristic()
Select a set of samples used as candidates for initializing the mean of the new component.

Returns
samples - the selected candidate locations
target_Inpdfs - log-densities of the samples under the unnormalized target distribution

prior_samples - additional samples drawn from a prior, which have not yet been evaluated
on the target distribution.

Return type
tuple(tf. Tensor, tf. Tensor, tf. Tensor)
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ComponentStepsize Adaptation

’ DecayingComponentStepsizeAdaptation ‘

==

ComponentStepsizeAdaptation }—ﬁ FixedComponentStepsizeAdaptation ‘

\

’ ImprovementBasedComponentStepsizeAdaptation ‘

class gmmvi.optimization.gmmvi_modules.component_stepsize_adaptation.ComponentStepsizeAdaptation(gmm_w:

This class provides a common interface for adapting the individual stepsizes for the component updates.
There are currently three options for component stepsize adpatation:
1. The FixedComponentStepsizeAdaptation is a dummy-class, that does not do anything.
2. The DecayingComponentStepsizeAdaptation uses exponential decay.
3. The ImprovementBasedComponentStepsizeAdaptation uses the procedure of VIPS [AZN20] to in-
crease the stepsize if a component improved during the last updates, and to decrease it otherwise.
Parameters

* gmm_wrapper — Gmmiirapper The wrapped model where we want to adapt the number of
components.

e initial_stepsize - float The stepsize used when the component receives its first update

static build_from_config(config, gmm_wrapper)

This static method provides a convenient way to create a FixedComponentStepsizeAdaptation,
DecayingComponentStepsizeAdaptation or ImprovementBasedComponentStepsizeAdaptation
depending on the provided config.

Parameters

» config — dict The dictionary is typically read from YAML a file, and holds all hyperpa-
rameters.

e gmm_wrapper — Gmmiirapper The wrapped model.

update_stepsize (current_stepsizes: Tensor) — Tensor

Update the stepsizes, according to the chosen procedure.

Parameters
current_stepsizes — tf. Tensor A tensor that contains the stepsize of each component
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Returns
a tensor of same size as current_stepsizes that contains the updates stepsizes.

Return type
tf. Tensor

DecayingComponentStepsizeAdaptation

class gmmvi.optimization.gmmvi_modules.component_stepsize_adaptation.DecayingComponentStepsizeAdaptatio:

This class implements an exponentially decaying stepsize schedule. See [KNT+18].
Parameters
* gmm_wrapper — Gmmiirapper The wrapped model.
* annealing_exponent — float controls how fast the stepsize decays
» initial_stepsize — float The stepsize used for all component updates

update_stepsize(current_stepsizes: Tensor) — Tensor

Updates the stepsize using exponential decay. =~ More specifially, the new stepsize is given by
initial_stepsize
1-+num_received_updatesnealing exponent *

Parameters
current_stepsizes — tf. Tensor A tensor that contains the stepsize of each component

Returns
a tensor of same size as current_stepsizes that contains the updates stepsizes.

Return type
tf. Tensor

FixedComponentStepsizeAdaptation

class gmmvi.optimization.gmmvi_modules.component_stepsize_adaptation.FixedComponentStepsizeAdaptation(g:
G

P
in
ti
Ji
This class is a dummy class, that can be used when we want to keep the stepsizes constant.
Parameters

e gmm_wrapper — Gmmiirapper The wrapped model where we want to adapt the number of
components.

e initial_stepsize — float The stepsize used for all component updates
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update_stepsize(current_stepsizes: Tensor) — Tensor

This dummy function does nothing.

Parameters

current_stepsizes — tf.Tensor A tensor that contains the stepsize of each component

Returns

the same current_stepsizes tensor, that it was called with.

Return type

tf. Tensor

ImprovementBasedComponentStepsizeAdaptation

class gmmvi.optimization.gmmvi_modules.component_stepsize_adaptation.ImprovementBasedComponentStepsizeA

Increases the stepsize if the last component update increased its reward, decreases it otherwise. See [AZN20].

Parameters

gmm_wrapper — Gmulirapper The wrapped model where we want to adapt the number of
components.

initial_stepsize - float The stepsize used for all component updates
min_stepsize - float Do not not decrease the stepsize below this point
max_stepsize — float Do not increase the stepsize above this point
stepsize_inc_factor - float Factor (>1) for increasing the stepsize

stepsize_dec_factor — float Factor in the range [0, 1] for decreasing the stepsize

update_stepsize (current_stepsizes: Tensor) — Tensor

Updates the stepsize of each component based on previous reward improvements [AZN20].

Parameters

current_stepsizes — tf.Tensor A tensor that contains the stepsize of each component

Returns

a tensor of same size as current_stepsizes that contains the updates stepsizes.

Return type

tf. Tensor
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NgBasedComponentUpdater

DirectNgBasedComponentUpdater

==

NgBasedComponentUpdater KLConstrainedNgBasedComponentUpdater

\

NgBasedComponentUpdaterlblr

class gmmvi.optimization.gmmvi_modules.ng_based_component_updater.NgBasedComponentUpdater (mmodel:
GmmWrap-
per,
tem-
per-
a-
ture:

float)

This class provides a common interface for updating the Gaussian components along the natural gradient.

The Gaussian components of the mixture model, are updated by updating their parameters (their mean and
covariance) based on previously computed estimates of the natural gradient (see NgEstimator) and stepsizes
(see ComponentStepsizeAdaptation).

There are currently three options for updating the components:

1. The DirectNgBasedComponentUpdater straightforwardly performs the natural gradient with the given
stepsize.

2. The NgBasedComponentUpdaterIblr usestheimproved Bayesian learning rate to ensure positive definite
covariance matrices.

3. The KLConstrainedNgBasedComponentUpdater treats the stepsize as a trust-region constraint.

Parameters
* gmm_wrapper — Gmmlirapper The wrapped model where we want to update the components.
* temperature — float Usually temperature=1., can be used to scale the importance of maxi-

mizing the model entropy.

apply_NG_update (expected_hessians_neg: Tensor, expected_gradients_neg: Tensor, stepsizes: Tensor)

Update the components based on the estimates of the natural gradients (provided in terms of the negated
expected Hessian and expected gradients) and the given component-specific stepsizes.

Parameters
* expected_hessians_neg - tf.Tensor A three-dimensional tensor of shape
num_components x num_dimensions x num_dimensions, containing an estimate of
—Eq(xl0) [Vxx log %] for each component.
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* expected_gradients_neg - tfTensor A two-dimensional tensor of shape
num_components X num_dimensions x num_dimensions, containing an estimate of

—Eq(x0) [Vx log %} for each component.
* stepsizes — tf.Tensor A one-dimensional tensor of shape num_components, containing
the stepsize for each component.

static build_from_config(config, gmm_wrapper)

This static method provides a convenient way to create a DirectNgBasedComponentUpdater,
NgBasedComponentUpdaterIblr or KLConstrainedNgBasedComponentUpdater depending on the
provided config.

Parameters

» config — dict The dictionary is typically read from YAML a file, and holds all hyperpa-
rameters.

e gmm_wrapper — Gmmiirapper The wrapped model for which we want to update the com-
ponents

DirectNgBasedComponentUpdater

class gmmvi.optimization.gmmvi_modules.ng_based_component_updater.DirectNgBasedComponentUpdater (model:
GmmWrs:
per,
tem-
per-
a-
ture:

float)
This class straightforwardly performs the natural gradient update with the given stepsize.
Parameters
* gmm_wrapper — Gmmlirapper The wrapped model where we want to update the components.

* temperature - float Usually temperature=1., can be used to scale the importance of maxi-
mizing the model entropy.
apply_NG_update (expected_hessians_neg: Tensor, expected_gradients_neg: Tensor, stepsizes: Tensor)
Update the components based on the estimates of the natural gradients (provided in terms of the negated
expected Hessian and expected gradients) and the given component-specific stepsizes.
Parameters
e expected_hessians_neg - tfTensor A three-dimensional tensor of shape
num_components x num_dimensions x num_dimensions, containing an estimate of
—Eq(x0) [Vxx log %] for each component.
* expected_gradients_neg - tf.Tensor A two-dimensional tensor of shape
num_components x num_dimensions x num_dimensions, containing an estimate of

—Eq(x|0) {Vx log %} for each component.

» stepsizes — tf.Tensor A one-dimensional tensor of shape num_components, containing
the stepsize for each component.

46 Chapter 3. API Reference


https://docs.python.org/3/library/functions.html#float

gmmvi Documentation, Release 0.0.0

KLConstrainedNgBasedComponentUpdater

class gmmvi.optimization.gmmvi_modules.ng_based_component_updater.KLConstrainedNgBasedComponentUpdater (

Updates the component by treating the stepsize as a constraint on the KL-divergence to the current component.

This class updates the component by performing the largest update along the natural gradient direction, that
confines with a trust-region constraint on the Kullback-Leibler divergence with respect to the current component
[AZN20].

Parameters
* gmm_wrapper — Gmmiirapper The wrapped model where we want to update the components.

* temperature — float Usually temperature=1., can be used to scale the importance of maxi-
mizing the model entropy.

apply_NG_update (expected_hessians_neg: Tensor, expected_gradients_neg: Tensor, stepsizes: Tensor)

Update the components based on the estimates of the natural gradients (provided in terms of the negated
expected Hessian and expected gradients) and the given component-specific stepsizes.

Parameters

¢ expected_hessians_neg - tfTensor A three-dimensional tensor of shape
num_components X num_dimensions x num_dimensions, containing an estimate of

—Eqxjo) |:vxx log %] for each component.

e expected_gradients_neg - tf.Tensor A two-dimensional tensor of shape
num_components x num_dimensions x num_dimensions, containing an estimate of
—Eq(x0) [Vx log %} for each component.

* stepsizes — tf.Tensor A one-dimensional tensor of shape num_components, containing
the stepsize for each component.

bracketing_search (ki_bound: tf.float32, lower_bound: tf.float32, upper_bound: tf.float32, old_lin_term:
Tensor, old_precision: Tensor, old_inv_chol: Tensor, reward_lin_term: Tensor,
reward_quad_term: Tensor, kl_const_part: tf.float32, old_mean: Tensor,
eta_in_logspace: tf.float32) — [tf.float32, tf.float32]

This method finds the largest stepsize eta, such that the updated component stays within a KL-constrained
trust-region around the current component. Whereas, [AZN20] used L-BFGS-B to solve this convex opti-
mization problem, here we use a simple bracketing search, which seems to be more robust (by not relying
on gradients, and can be efficiently performed within a Tensorflow graph. The procedure simple keeps track
of a lower bound and an upper bound on the optimal stepsize and recursively evaluates the arithmetic mean
of both bounds. If this mean-stepsize results in a two large KL divergence, or in a non-positive-definite
covariance matrix, it becomes the new lower bound; otherwise the new upper bound.

Parameters
e k1_bound - tf.float32 The trust region constraint
* lower_bound - tf.float32 The initial lower bound on the stepsize

¢ upper_bound - The initial upper bound on the stepsize
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e 0ld_lin_term — tf. Tensor The linear term of the canonical Gaussian form of the current
component. A one-dimensional tensor of shape num_dimensions.

* 0ld_precision — The precision matrix of the current component. A two-dimensional
tensor of shape num_dimensions x num_dimensions.

¢ 0ld_inv_chol — The inverse of the Cholesky matrix of the current component. A two-
dimensional tensor of shape num_dimensions x num_dimensions.

e reward_lin — When using MORE to estimate the natural gradient, this tensor correspond
to the linear coefficient of the quadratic reward model. When using Stein’s Lemma, this
term can be computed from the expected gradient and expected Hessian.

» reward_quad — When using MORE to estimate the natural gradient, this tensor correspond
to the quadratic coefficient of the quadratic reward model. When using Stein’s Lemma, this
term can be computed from the expected Hessian.

e kl1_const_part — A term of the KL divergence that can be precomputed as it does not
depend on the parameters of the updated component.

¢ 0ld_mean — The mean of the current component.

* eta_in_logspace — if true, the bracketing search should be performed in log-space (re-
quires fewer iterations)

Returns
new_lower_bound - The lower bound after a stopping criterion was reached.
new_upper_bound - The upper bound after a stopping criterion was reached.

Return type
tuple(tf.float32, tf.float32)

k1 (eta: tf.float32, old_lin_term: Tensor, old_precision: Tensor, old_inv_chol: Tensor, reward_lin: Tensor,
reward_quad: Tensor, kl_const_part: tf.float32, old_mean: Tensor, eta_in_logspace: bool) — [tf.float32,
<class 'tensorflow.python.framework.ops.Tensor'>, <class 'tensorflow.python.framework.ops.Tensor'>,
<class 'tensorflow.python.framework.ops.Tensor'>]

Computes the Kullback-Leibler divergence between the updated component and current component, when
updating with stepsize eta along the natural gradient.
Parameters

» eta — tf.float32 The stepsize for which the KL divergence should be computed.

¢ 0ld_lin_term — tf. Tensor The linear term of the canonical Gaussian form of the current
component. A one-dimensional tensor of shape num_dimensions.

* old_precision — tf.Tensor The precision matrix of the current component. A two-
dimensional tensor of shape num_dimensions x num_dimensions.

¢ 0ld_inv_chol - tf. Tensor The inverse of the Cholesky matrix of the current component.
A two-dimensional tensor of shape num_dimensions x num_dimensions.

e reward_lin — tf. Tensor When using MORE to estimate the natural gradient, this tensor
correspond to the linear coefficient of the quadratic reward model. When using Stein’s
Lemma, this term can be computed from the expected gradient and expected Hessian.

e reward_quad - tf.Tensor When using MORE to estimate the natural gradient, this tensor
correspond to the quadratic coefficient of the quadratic reward model. When using Stein’s
Lemma, this term can be computed from the expected Hessian.

¢ kl1_const_part - tf.float32 A term of the KL divergence that can be precomputed as it
does not depend on the parameters of the updated component.
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* old_mean — tf. Tensor The mean of the current component.
¢ eta_in_logspace — bool if true, the provided eta is given in log-space.
Returns
Kkl - a float corresponding to the KL between the updated component and the old component.
new_mean - a tensor specifying the mean of the updated component.
new_precision - a tensor specifying the precision of the updated component.

inv_chol_inv - a tensor specifying the inverse of the Cholesky of the precision matrix of the
updated component.

Return type
tuple(float, tf. Tensor, tf.Tensor, tf.Tensor)

NgBasedComponentUpdaterlbir

class gmmvi.optimization.gmmvi_modules.ng_based_component_updater.NgBasedComponentUpdaterIblr (model:
GmmWrap-
per,
tem-
per-
a-
ture:

float)

This class updates the component using the improved Bayesian learning rule.
The iBLR performs Riemannian gradient descent and ensures positive definite covariance matrices
[LSK20].
Parameters
* gmm_wrapper — Gmmlirapper The wrapped model where we want to update the components.
* temperature — float Usually temperature=1., can be used to scale the importance of maxi-

mizing the model entropy.

apply_NG_update (expected_hessians_neg: Tensor, expected_gradients_neg: Tensor, stepsizes: Tensor)
Update the components based on the estimates of the natural gradients (provided in terms of the negated
expected Hessian and expected gradients) and the given component-specific stepsizes.
Parameters
e expected_hessians_neg - tfTensor A three-dimensional tensor of shape
num_components x num_dimensions x num_dimensions, containing an estimate of
—Eq(x|0) {Vxx log %] for each component.
* expected_gradients_neg - tf.Tensor A two-dimensional tensor of shape
num_components x num_dimensions x num_dimensions, containing an estimate of
—Eq(xl0) [Vx log %} for each component.

* stepsizes — tf.Tensor A one-dimensional tensor of shape num_components, containing
the stepsize for each component.
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NgEstimator

MoreNgEstimator

NgEstimator

SteinNgEstimator

class gmmvi.optimization.gmmvi_modules.ng_estimator.NgEstimator (femperature, model:

GmmWrapper,

requires_gradient: bool,
only_use_own_samples: bool,

use_self _normalized_importance_weights:
bool)

This class provides a common interface for estimating the natural gradient for a Gaussian component.

There are currently two options for estimating the natural gradient:

1. The MoreNgEstimator uses compatible function approximation to estimate the natural gradient from a
quadratic reward surrogate [ALL+15, PTA+19, PS08, SMSM99].

2. The SteinNgEstimator uses Stein’s Lemma to estimate the natural gradient using first-order information
[LKS19b].

Parameters

temperature — float Usually temperature=1., can be used to scale the importance of maxi-
mizing the model entropy.

model — Gmmiirapper The wrapped model where we want to update the components.
requires_gradient — bool Does this object require first-order information?

only_use_own_samples — bool If true, we do not use importance sampling to update one
component based on samples from a different component.

use_self_normalized_importance_weights —bool if true, use self-normalized impor-
tance weighting (normalizing the importance weights such they sum to one), rather than
standard importance weighting.

static build_from_config(config, temperature, gmm_wrapper)

This static method provides a convenient way to create a MoreNgEstimator, or SteinNgEstimator de-
pending on the provided config.

Parameters

* temperature — float Usually temperature=1., can be used to scale the importance of max-
imizing the model entropy.

» config — dict The dictionary is typically read from YAML a file, and holds all hyperpa-
rameters.
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get_expected_hessian_and_grad (samples: Tensor, mapping: Tensor, background_densities: Tensor,
target_Inpdfs: Tensor, target_Inpdfs_grads: Tensor)

Perform the natural gradient estimation, needs to be implemented by the deriving class.

Parameters

¢ samples —tf. Tensor a tensor of shape num_samples x num_dimension containing the sam-
ples used for the approximation

* mapping — tf.Tensor a one-dimensional tensor of integers, storing for every sample from
which component it was sampled.

* background_densities — tf.Tensor the log probability density of the background distri-
bution (which was used for sampling the provided samples). A one-dimensional tensor of
size num_samples.

» target_lnpdfs - tf.Tensor The rewards are given by the log-densities of the target-
distribution, log p(x).

e target_lnpdfs_grads - tf.Tensor The gradients of the target_Inpdfs with respect to the
samples, Vx log p(x).
Returns
expected_hessian_neg - A tensor of shape num_components X num_dimensions x

num_dimensions containing for each component an estimate of the (negated) expected Hes-
sian —E(x|o) [Vxx log p(x}

q(x
expected_gradient_neg - A tensor of shape num_components X num_dimensions containing

for each component an estimate of the (negated) expected gradient —Ex|o) {Vx log %}

Return type
tuple(tf.Tensor, tf. Tensor)

get_rewards_£for_comp (index: int, samples: Tensor, mapping: Tensor, component_log_densities,
log_ratios: Tensor, log_ratio_grads: Tensor, background_densities: Tensor) —
Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

property requires_gradients: bool

MoreNgEstimator

class gmmvi.optimization.gmmvi_modules.ng_estimator.MoreNgEstimator (temperature, model,
only_use_own_samples:
bool,
initial_I2_regularizer: float,
use_self_normalized_importance_weights:
bool)

Use compatible function approximation to estimate the natural gradient from a quadratic reward surrogate. See
[ALL+15, PTA+19, PS08, SMSM99].

Parameters

* temperature — float Usually temperature=1., can be used to scale the importance of maxi-
mizing the model entropy.

» model — Gmmiirapper The wrapped model where we want to update the components.
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» only_use_own_samples — bool If true, we do not use importance sampling to update one
component based on samples from a different component.

e initial_12_regularizer - float The 12_regularizer is as regularizer during weighted
least-squares (ridge regression) for fitting the compatible surrogate.

» use_self_normalized_importance_weights — bool if true, use self-normalized impor-
tance weighting (normalizing the importance weights such they sum to one), rather than
standard importance weighting.

get_expected_hessian_and_grad(samples: Tensor, mapping: Tensor, background_densities: Tensor,
target_Inpdfs: Tensor, target_Inpdfs_grads: Tensor) — [<class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>|

Estimates the natural gradient using compatible function approximation. This method does not require /
make use of the provided gradients, but only uses the function evaluations farget_Inpdfs for estimating the
natural gradient. The method fits a quadratic reward function R(x) = xTRx + xTr + ry to approximate
the target distribution using importance-weighted least squares where the targets are given by target_Inpdfs,
log p(x). The natural gradient estimate, can then be computed from the coefficients R and r.

Parameters

» samples — tf.Tensor a tensor of shape num_samples x num_dimension containing the sam-
ples used for the approximation

¢ mapping — tf.Tensor a one-dimensional tensor of integers, storing for every sample from
which component it was sampled.

* background_densities — tf.Tensor the log probability density of the background distri-
bution (which was used for sampling the provided samples). A one-dimensional tensor of
size num_samples.

» target_lnpdfs — tf. Tensor The rewards are given by the (unnormalized) log-densities of
the target-distribution, log p(x).

* target_lnpdfs_grads — tf.Tensor The gradients of the target_Inpdfs with respect to the
samples (not used), Vy log p(x).

Returns
expected_hessian_neg - A tensor of shape num_components x num_dimensions x

num_dimensions containing for each component an estimate of the (negated) expected Hes-

; (%)
sian —E(x|o) [Vxx log %}

expected_gradient_neg - A tensor of shape num_components X num_dimensions containing

for each component an estimate of the (negated) expected gradient —Ex|o) [Vx log %]

Return type
tuple(tf.Tensor, tf. Tensor)
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SteinNgEstimator

class gmmvi.optimization.gmmvi_modules.ng_estimator.SteinNgEstimator (femperature, model,
only_use_own_samples:
bool,
use_self_normalized_importance_weights:
bool)

Use Stein’s Lemma to estimate the natural gradient using first-order information. See [LKS19b].
Parameters

* temperature - float Usually temperature=1., can be used to scale the importance of maxi-
mizing the model entropy.

* model — Gmmlirapper The wrapped model where we want to update the components.

* only_use_own_samples - bool If true, we do not use importance sampling to update one
component based on samples from a different component.

» use_self_normalized_importance_weights — bool if true, use self-normalized impor-
tance weighting (normalizing the importance weights such they sum to one), rather than
standard importance weighting.

get_expected_hessian_and_grad(samples: Tensor, mapping: Tensor, background_densities: Tensor,
target_Inpdfs: Tensor, target_Inpdfs_grads: Tensor)
Estimates the natural gradient using Stein’s Lemma [LKS19b]. The expected gradient is a simple
importance-weighted Monte-Carlo estimate based on the provided farget Inpdfs_grads and the gradi-

ents of the component log-densities. The expected Hessians are estimated as —E(x|o) [Vxx log 5 Eﬂ =

- “Hx; — )V, g, where gy, = Vi, log ¢ L (x is the gradient of the log-ratio with respect to the
correspondlng sample.
Parameters

¢ samples —tf. Tensor a tensor of shape num_samples x num_dimension containing the sam-
ples used for the approximation

* mapping — tf.Tensor a one-dimensional tensor of integers, storing for every sample from
which component it was sampled.

¢ background_densities — tf. Tensor the log probability density of the background distri-
bution (which was used for sampling the provided samples). A one-dimensional tensor of
size num_samples.

» target_lnpdfs - tf.Tensor The rewards are given by the log-densities of the target-
distribution, log p(x).

¢ target_lnpdfs_grads — tf.Tensor The gradients of the target_Inpdfs with respect to the
samples, Vi log p(x).
Returns
expected_hessian_neg - A tensor of shape num_components x num_dimensions x

num_dimensions containing for each component an estimate of the (negated) expected Hes-
sian —Eqx|o) [Vxx log 2 p(x }

q(x
expected_gradient_neg - A tensor of shape num_components X num_dimensions containing
for each component an estimate of the (negated) expected gradient —Ex|o) {V log 7 (x}
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Return type
tuple(tf. Tensor, tf. Tensor)

WeightStepsizeAdaptation

DecayingWeightStepsizeAdaptation

=

WeightStepsizeAdaptation FixedWeightStepsizeAdaptation

\

ImprovementBasedWeightStepsizeAdaptation

Y

class gmmvi.optimization.gmmvi_modules.weight_stepsize_adaptation.WeightStepsizeAdaptation(initial_stepsize:

tf.float32)
This class provides a common interface for adapting the stepsize for the weight update.
There are currently three options for weight stepsize adpatation:
1. The FixedleightStepsizeAdaptation is a dummy-class, that does not do anything.
2. The DecayinglieightStepsizeAdaptation uses exponential decay.
3. The ImprovementBasedlieightStepsizeAdaptation uses a procedure similar to VIPS [AZN20] to

increase the stepsize if the mixture improved during the last updates, and to decrease it otherwise.

Parameters
initial_stepsize - float The initial stepsize for the weight update.

static build_from_config(config, gmm_wrapper)

This static method provides a convenient way to create a FixedWeightStepsizeAdaptation,
DecayingWeightStepsizeAdaptation or ImprovementBasedWeightStepsizeAdaptation de-
pending on the provided config.

Parameters

» config - dict The dictionary is typically read from YAML a file, and holds all hyperpa-
rameters.

e gmm_wrapper — Gmmiirapper The wrapped model.

update_stepsize()
Update the stepsizes, according to the chosen procedure.

Returns
the updated stepsize.

Return type
float
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DecayingWeightStepsizeAdaptation

class gmmvi.optimization.gmmvi_modules.weight_stepsize_adaptation.DecayingWeightStepsizeAdaptation (initia
if-floa
an-
neal-
ing_e

if-floa

This class implements an exponentially decaying stepsize schedule.
See [KNT+18].
Parameters
e gmm_wrapper — Gmmiirapper The wrapped.
* annealing_exponent — float controls how fast the stepsize decays

* initial_stepsize - float The initial stepsize for the weight update.

FixedWeightStepsizeAdaptation

class gmmvi.optimization.gmmvi_modules.weight_stepsize_adaptation.FixedWeightStepsizeAdaptation(initial_ste
tf.float32.
This class is a dummy class, that can be used when we want to keep the stepsize for the weight update constant.

Parameters
initial_stepsize - float The initial stepsize for the weight update.

ImprovementBasedWeightStepsizeAdaptation

class gmmvi.optimization.gmmvi_modules.weight_stepsize_adaptation.ImprovementBasedWeightStepsizeAdaptat

Increases the stepsize if the last weight update increased its reward, decreases it otherwise.
Parameters
* gmm_wrapper — Gmulirapper The wrapped model.
e initial_stepsize — float The initial stepsize for the weight update.

* min_stepsize — float Do not not decrease the stepsize below this point
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» max_stepsize - float Do not increase the stepsize above this point

» stepsize_inc_factor - float Factor (>1) for increasing the stepsize

» stepsize_dec_factor - float Factor in the range [0, 1] for decreasing the stepsize

WeightUpdater

WeightUpdater

DirectWeightUpdater

/

TrustRegionBasedWeightUpdater

class gmmvi.optimization.gmmvi_modules.weight_updater.WeightUpdater (model: GmmWrapper,

temperature: float,
use_self_normalized_importance_weights:
bool)

This class provides a common interface for updating the weights of the mixture model.

It currently supports two options:

1. The DirectWeightUpdater straightforwardly applies a natural gradient update using the given stepsize.

2. The TrustRegionBasedlieightUpdater treats the stepsize as a trust-region constraint between the cur-
rent distribution over weights and the updated distribution, and performs the largest step in the direction of
the natural gradient that confines to this constraint.

Parameters

e gmm_wrapper — Gmmiirapper The wrapped model where we want to update the weights.

* temperature — float Usually temperature=1., can be used to scale the importance of maxi-
mizing the model entropy.

* use_self normalized_importance_weights — bool if true, use self-normalized impor-
tance weighting (normalizing the importance weights such they sum to one), rather than

standard importance weighting for estimating the natural gradient.

static build_from_config(config, gmm_wrapper)

This static method provides

a convenient way to create

a

TrustRegionBasedlieightUpdater depending on the provided config.

Parameters

DirectWeightUpdater or

» config - dict The dictionary is typically read from YAML a file, and holds all hyperpa-

rameters.

e gmm_wrapper — Gmmlirapper The wrapped model for which we want to update the

weights.
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update_weights (samples: Tensor, background_mixture_densities: Tensor, target_Inpdfs: Tensor, stepsize:
float)
Computes the importance weights and uses them to estimate the natural gradient. Performs a natural gra-
dient step using the given stepsize.
Parameters

e samples — tf.Tensor The samples for which the background_mixture_densities and tar-
get_Inpdfs were evaluated. Needed for computing the importance weights.

* background_mixture_densities — tf.Tensor The log_densities of the samples for the
distribution that was effectively used for obtain the provided samples. Needed for comput-
ing the importance weights.

» target_lnpdfs - tf.Tensor The log densities of the target distribution evaluated for the
provided samples, log p(x).

* stepsize - float The stepsize that should be used for performing the weight update.

DirectWeightUpdater

class gmmvi.optimization.gmmvi_modules.weight_updater.DirectWeightUpdater (model:
GmmWrapper,
temperature: float,
use_self normalized_importance_wei,
bool)

This class can be used for directly updating the weights along the natural gradient, using the given stepsize.
Parameters
» gmm_wrapper — Gmulirapper The wrapped model where we want to update the weights.

* temperature — float Usually temperature=1., can be used to scale the importance of maxi-
mizing the model entropy.

» use_self_normalized_importance_weights — bool if true, use self-normalized impor-
tance weighting (normalizing the importance weights such they sum to one), rather than
standard importance weighting for estimating the natural gradient.

_update_weights_from_expected_log_ratios(expected_log_ratios: Tensor, stepsize: tf.float32)
Directly uses the stepsize to update the weights towards the expected_log_ratios

Parameters
* expected_log_ratios - tf.Variable(tf.float32) A vector containing an (MC-)estimate of
Eqy(xo) {log %} , for every component o.
* stepsize - tf.float32 The stepsize [, the new weights are proportional to

exp(old_log_weights + 3 * expected_log_ratios).
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TrustRegionBasedWeightUpdater

class gmmvi.optimization.gmmvi_modules.weight_updater.TrustRegionBasedWeightUpdater (model:
GmmWrap-
per,
tem-
pera-
ture:
float,
use_self_normalized_img
bool)

This class can be used for performing the weight update by treating the stepsize as a KL constraint.
Constrains the KL between the updated weights and the current weights KL(gnew(0)]]g(0)).
Parameters
e gmm_wrapper — Gmmiirapper The wrapped model where we want to update the weights.

* temperature — float Usually temperature=1., can be used to scale the importance of maxi-
mizing the model entropy.

* use_self normalized_importance_weights — bool if true, use self-normalized impor-
tance weighting (normalizing the importance weights such they sum to one), rather than
standard importance weighting for estimating the natural gradient.

_bracketing_search(expected_log_ratios: Tensor, ki_bound.: tf.float32, lower_bound: tf.float32,
upper_bound: tf.float32) — [tf.float32, tf.float32, <class
'tensorflow.python.framework.ops.Tensor'>]

This method finds the largest stepsize eta, such that the updated weight distribution stays within a KL-
constrained trust-region around the current distribution. Here we use a simple bracketing search, which can
be efficiently performed within a Tensorflow graph. The procedure simple keeps track of a lower bound
and an upper bound on the optimal stepsize and recursively evaluates the arithmetic mean of both bounds.
If this mean-stepsize results in a too large KL divergence, it becomes the new lower bound; otherwise the
new upper bound.

Parameters
e expected_log_ratios - tf.Tensor A vector containing an (MC-)estimate of
Eqy(xo) [10g %} , for every component o.

¢ k1_bound - tf.float32 The trust region constraint
* lower_bound - tf.float32 The initial lower bound on the stepsize
» upper_bound - The initial upper bound on the stepsize

Returns
new_lower_bound - The lower bound after a stopping criterion was reached.
new_upper_bound - The upper bound after a stopping criterion was reached.
new_log_weights - log of the updated weights, log(gnew (0))-

Return type
tuple(tf.float32, tf.float32, tf.Tensor)

_update_weights_from_expected_log_ratios(expected_log_ratios, ki_bound)
Perform the weight update, treating the stepsize as constraint on the KL-divergence.
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Parameters

* expected_log_ratios - tf.Variable(tf.float32) A vector containing an (MC-)estimate of

Eq(xo) [log %} , for every component o.

* stepsize - tf.float32 The stepsize ¢, the new weights will satisfy KL(gnew(0)]]g(0)) < €.

k1 (eta: tffloat32, component_rewards: Tensor) — [tf.float32, <class
'tensorflow.python.framework.ops.Tensor'>]

Computes the Kullback-Leibler divergence between the updated component and current component, when
updating with stepsize eta along the natural gradient.

Parameters
» eta — tf.float32 The stepsize for which the KL divergence should be computed.

¢ component_rewards — tf.float32 A tensor containing an MC-estimate of the expected
p(x)

reward (expected logratios) of each component, R(0) = Exo) [log ﬁ}

Returns
Kkl - a float corresponding to the KL between the updated and previous weight distribution.
new_log_weights - log of the updated weights, log(gnew (0))-

Return type
tuple(float, tf. Tensor)

3.3.2 Least Squares

LinFunc

RegressionFunc

QuadFunc

class gmmvi.optimization.least_squares.LinFunc(reg_fact: float)
This class can be used to learn a function that is linear in the inputs.
Parameters
reg_fact - float coefficient for ridge regularization
class gmmvi.optimization.least_squares.QuadFunc(dim: inr)
This class can be used to learn a function that is quadratic in the inputs (or linear in the quadratic features). The

approximation takes the form: 7 Rx + 277 + r

Parameters
dim — int the dimension of x
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fit_quadratic(regularizer: float, num_samples: int, inputs: Tensor, outputs: Tensor, weights:
Optional[Tensor] = None, sample_mean: Optional[Tensor] = None, sample_chol_cov:
Optional[Tensor] = None) — [<class 'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>, <class
'tensorflow.python.framework.ops.Tensor'>]

Fits the quadratic model.
Parameters
» regularizer — float Coefficient for ridge regression
¢ num_samples — int Number of input samples (we could get this from inputs)
¢ inputs — tf.Tensor A two-dimensional tensor containing the inputs x.
* outputs — tf. Tensor A one-dimensional tensor containing the targets / dependant variables.
» weights — tf. Tensor (importance) weights used for weighted least-squares

¢ sample_mean - tf.Tensor Mean of the Gaussian distribution that sampled the input (used
for whitening)

» sample_chol_cov — tf.Tensor Cholesky matrix of the Gaussian distribution that sampled
the input (used for whitening)

Returns
quad_term - the matrix R
lin_term - the vector r
const_term - the scalar bias

Return type
tuple(tf.Tensor, tf.Tensor, tf.Tensor)

class gmmvi.optimization.least_squares.RegressionFunc(bias_entry: Optional[int] = None)

Base class for least-square regression

Parameters
bias_entry - int index of the weight that corresponds to the constant offset (will not get regu-
larized)

fit (regularizer: float, num_samples: int, inputs: Tensor, outputs: Tensor, weights: Optional[Tensor] =
None) — Tensor

Compute the coefficients of the linear model.
Parameters
» regularizer - float ridge coefficient
e num_samples — int number of samples (could be obtained from inputs)
¢ inputs — tf. Tensor the data / samples
* outputs — tf.Tensor the targets / dependent variables
» weights — tf. Tensor or None (importance) weights for weighted least-squares

Returns
the learned parameters of the linear model

Return type
tf. Tensor
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class gmmvi.optimization.sample_db.SampleDB(dim, diagonal_covariances, keep_samples,
max_samples=None)

A database for storing samples and meta-information.

Along the samples, we also store
1. The parameters of the Gaussian distribution that were used for obtaining each sample
2. log-density evaluations of the target distribution, log p(x)

3. (if available), gradients of the log-densites of the target distribution, Vy log p(x)

Parameters
* dim - int dimensionality of the samples to be stored

» diagonal_covariances — bool True, if the samples are always drawn from Gaussians with
diagonal covariances (saves memory)

» keep_samples — bool If this is False, the samples are not actually stored

* max_samples — int Maximal number of samples that are stored. If adding new samples
would exceed this limit, every N-th sample in the database gets deleted.

add_samples (samples, means, chols, target_Inpdfs, target_grads, mapping)
Add the given samples to the database.

Parameters

» samples - tf. Tensor a two-dimensional tensor of shape num_samples x num_dimensions
containing the samples to be added.

» means — tf. Tensor a two-dimensional tensor containing for each Gaussian distribution that
was used for obtaining the samples the corresponding mean. The first dimension of the
tensor can be smaller than the number of samples, if several samples where drawn from
the same Gaussian (see the parameter mapping).

 chols - tf.Tensor a three-dimensional tensor containing for each Gaussian distribution that
was used for obtaining the samples the corresponding Cholesky matrix. The first dimension
of the tensor can be smaller than the number of samples, if several samples where drawn
from the same Gaussian (see the parameter mapping).

» target_lnpdfs - tf.Tensor a one-dimensional tensor containing the log-densities of the
(unnormalized) target distribution, log p(x).

* target_grads — tf.Tensor a two-dimensional tensor containing the gradients of the log-
densities of the (unnormalized) target distribution, Vy log p(x).

e mapping — tf.Tensor a tensor of size number_of_samples, which corresponds for every
sample the index to means and chols that corresponds to the Gaussian distribution that was
used for drawing that sample.

static build_from_config(config, num_dimensions)
A static method to conveniently create a SampleDB from a given config dictionary.

Parametes:

config: dict
The dictionary is typically read from YAML a file, and holds all hyperparameters.

num_dimensions: int
dimensionality of the samples to be stored
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evaluate_background (weights, means, chols, inv_chols, samples)

Evaluates the log-densities of the given samples on a GMM with the given parametes. This function is
implemented in a memory-efficient way to scale to mixture models with many components.

Parameters
weights —

tf. Tensor
The weights of the GMM that should be evaluated

means: tf.Tensor
The means of the GMM that should be evaluated

chols: tf.Tensor
The Cholesky matrices of the GMM that should be evaluated

inv_chols: tf.Tensor
The inverse of abovementioned chols

samples: tf.Tensor
The samples to be evaluated.

get_newest_samples(N)

Returns (up to) the N newest samples, and their meta-information.

Returns

log_pdfs - the log-density of the GMM that was effectively used for drawing the samples

(used for importance sampling)

active_sample - the selected samples

active_mapping - contains for every sample the index of the component that was used for

drawing it

active_target_Inpdfs - log-density evaluations of the target distribution for the selected sam-

ples

active_target_grads - gradients evaluations of the log-density of the target distribution for

the selected samples

Return type
tuple(tf.Tensor, tf. Tensor, tf. Tensor, tf. Tensor, tf.Tensor)

get_random_sample (N: int)

Get N random samples from the database.

Parameters
N — int abovementioned N

Returns
tuple(tf.Tensor, tf.Tensor)
samples - the chosen samples
target_Inpdfs - the corresponding log densities of the target distribution

remove_every_nth_sample(N: inr)
Deletes Every N-th sample from the database and the associated meta information.

Parameters
N — int abovementioned N
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class gmmvi.optimization.gmmvi.GMMVI (model: GmmWrapper, sample_db: SampleDB, temperature:

tf.float32, sample_selector: SampleSelector,
num_component_adapter: ComponentAdaptation,
component_stepsize_adapter: ComponentStepsizeAdaptation,
ng_estimator: NgEstimator, ng_based_updater:
NgBasedComponentUpdater, weight_stepsize_adapter:
WeightStepsize Adaptation, weight_updater: WeightUpdater)

The main class of this framework, which provides the functionality to perform a complete update step for the

GMM.

Responsibilities for performing the necessary sub-steps (sample selection, natural gradient estimation, etc.) and
for keeping track of data are delegated to the GMMVI Modules, the SampIleDB and Gmmiirapper. Hence, this
class acts mainly as a manager between these components.

Parameters

» model — Gmmiirapper The (wrapped) model that we are optimizing.

sample_db — SampleDB The database for storing samples.

temperature — tf.float32 The temperature parameter 3 for weighting the model entropy
H (qg) in the optimization problem arg max, IE [log(p(x))] + SH (q).

sample_selector — SampleSelector The SampleSelector for selecting the samples that
are used during each iteration.

num_component_adapter — NumComponentAdaptation The NumComponentAdapter
used for adding and deleting components.

component_stepsize_adapter - ComponentStepsizeAdaptation The Compo-
nentStepsizeAdapter for choosing the learning rates for the component update.

ng_estimator — NgEstimator The NgEstimator for estimating the natural gradient for the
component update.

ng_based_updater — NgBasedComponentUpdater The NgBasedComponentUpdater for
updating the components based on the estimated natural gradients.

weight_stepsize_adapter - [IeightStepsizeAdaptation The WeightStep-
sizeAdapter for choosing the learning rate for updating the mixture weights.

weight_updater — WeightUpdater The NgBasedComponentUpdater for updating the
components based on the estimated natural gradients.

static build_from_config(config: dict, target_distribution: LNPDF, model: GmmWrapper)

Create a GMMVI instance from a configuration dictionary.

This static method provides a convenient way to create a GMMVI instance, based on an initial GMM ( a
wrapped model ), a target_distribution and a dictionary containing the types and parameters of the
GMMVI modules.

Parameters

e config - dict The dictionary should contain for each GMMVI module an en-
try of the form XXX _type (a string) and XXX_config (a dict) for specifying
the type of each module, and the module-specific hyperparameters. For exam-
ple, the dictionary could contain sample_selector_type={‘“component-based”}
and  sample_selector_config={‘“desired_samples_per_component”: 100, “ra-
tio_reused_samples_to_desired”: 2.}. Refer to the example yml-configs, or to the

individual GMMVI module for the expected parameters, and type-strings.
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e target_distribution — LNPDF The (unnormalized) target distribution that we want to
approximate.

* model — Gmmlirapper The (wrapped) model that we are optimizing.
train_iter()
Perform a single training iteration.

This method does not take any parameters, nor does it return anything. However, it may have several effects,
such as

* drawing new samples from the model and evaluating them on the target distribution,
* updating the gmmvi.optimization.gmmvi.GMMVI.model parameters,
* adapting learning rates, etc.

class gmmvi.gmmvi_runner.GmmviRunner (config, log_metrics_interval)

This class runs GMMVI, but also evaluates learning metrics and provides logging functionality.
Parameters
» config - dict A dictionary containing the hyperparameters and environment specifications.

* log_metrics_interval — int metrics that take non-negligible overhead are evaluated ever
log_metrics_interval iterations.

static build_from_config(config: dict)
Create a GMMVI instance from a configuration dictionary.

This static method provides a convenient way to create a GMMVI instance, based on a dictionary containing
the types and parameters of the GMMVI modules.

Parameters

config - dict The dictionary should contain for each GMMVI module an en-
try of the form XXX type (a string) and XXX_config (a dict) for specifying
the type of each module, and the module-specific hyperparameters. For ex-
ample, the dictionary could contain sample_selector_type={‘“‘component-based”}
and sample_selector_config={*“desired_samples_per_component”: 100, “ra-
tio_reused_samples_to_desired”: 2.}. Refer to the example yml-configs, or to the
individual GMMVI module for the expected parameters, and type-strings.

finalize()

Can be called after learning. Saves the final model parameters to the hard drive.

get_cheap_metrics()
Returns a dictionary of ‘cheap’ metrics, e.g. the current number of components, that we can obtain after
every iteration without adding computational overhead.

Returns
A dictionary containing cheap metrics.

Return type
dict
get_expensive_metrics()
Computes ‘expensive’ metrics, such as plots, test-set evaluations, etc. Some of these metrics can be task-
specific (see LNPDF . expensive_metrics()).

Returns
A dictionary containing expensive metrics.
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Return type
dict

get_samples_and_entropy (num_samples)
Draws num_samples from the model and uses them to estimate the model’s entropy.

Parameters
num_samples — int Number of samples to be drawn

Returns
test_samples - The drawn samples
entropy - MC estimate of the entropy

Return type
tuple(tf. Tensor, float)

iterate_and_log(n: int) — dict

Perform one learning iteration and computes and logs metrics.

Parameters
n — int The current iteration

Returns
A dictionary containing metrics and plots that we want to log.

Return type
dict
log_to_disk(n: int)
Saves the model parameters to the hard drive

Parameters
n — int The current iteration
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